1
|
Shen W, Li Z, Tao Y, Zhou H, Wu H, Shi H, Huang F, Wu X. Tauroursodeoxycholic acid mitigates depression-like behavior and hippocampal neuronal damage in a corticosterone model of female mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5785-5796. [PMID: 39611999 DOI: 10.1007/s00210-024-03637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Depression, a complex mental disorder influenced by both psychological and physiological factors, predominantly affects females. Studies have indicated that elevated levels of cortisol/corticosterone (CORT) under stress conditions can lead to hippocampal neuronal damage, thereby contributing to depression. Tauroursodeoxycholic acid (TUDCA), a bile acid, possesses anti-apoptotic, antioxidant, and anti-inflammatory properties. This study aimed to investigate the protective mechanism of TUDCA against CORT-induced neuromolecular and behavioral phenotypes of depression in female mice, providing theoretical support for its use in treating female depression. The antidepressant effects of TUDCA were evaluated through a series of behavioral tests, measurement of serum neurotransmitter levels, Nissl staining of the hippocampal CA3 region, and assessment of hippocampal proteins. Behavioral results demonstrated that TUDCA exhibited antidepressant effects, as evidenced by increased sucrose preference and locomotor activity, as well as reduced immobility time in depressed mice. Furthermore, TUDCA ameliorated neurotransmitter imbalances. Nissl staining revealed that TUDCA reduced neuronal damage in depressed mice, while Western blotting results indicated that TUDCA activated the hippocampal BDNF/TrkB/CREB pathway and regulated the expression of GR-related proteins. These findings suggested that TUDCA exerted neuroprotective effects in CORT-induced neuronal damage in female depressed mice. The mechanism appeared to be related to the activation of the BDNF/TrkB/CREB signaling pathway and the modulation of GR-related protein expression.
Collapse
Affiliation(s)
- Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Wang F, Li Z, Li B, Xu M, Wang Y, Wang J, Li J, Zhu Y, He L, Ma J, Mao L, Xu X, Li X, Zhang H, Yang J, Zhang K, Wu C. Xiaochaihutang ameliorates depression-like behaviors induced via chronic social defeat stress by regulating exon-specific Bdnf transcription through H3K18 acetylation in the hippocampus of mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156567. [PMID: 40068295 DOI: 10.1016/j.phymed.2025.156567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Depression is a prevalent and persistent mental disease characterized by symptoms such as anhedonia, anxiety, and desperation. Although our previous study shows that Xiaochaihutang (XCHT) upregulates hippocampal brain-derived neurotrophic factor (BDNF) levels in depressed mice and rats, the underlying mechanism requires further clarification. OBJECTIVES To assess the mechanism by which XCHT regulates hippocampal BDNF expression in chronic social defeat stress (CSDS)-induced mice. METHODS Adult C57BL/6J mice were exposed to CSDS for 10 consecutive days to establish a depression model. XCHT treatment (2.3, 7 and 21 g/kg, intragastric administration) was administered for 4 consecutive weeks. Behavioral assessments were sequentially conducted to investigate the antidepressant effects of CSDS-induced XCHT. Golgi staining, immunofluorescence, immunoblotting, real time fluorescence quantitative polymerase chain reaction and chromatin immunoprecipitation were then employed to study the mechanisms underlying the regulation of XCHT on hippocampal BDNF expression. RESULTS XCHT significantly improved CSDS-induced anhedonia, social avoidance, recognition memory impairment, and anxiety/depression-like behaviors in mice. XCHT significantly promoted neuronal complexity and dendritic spine maturation in the mouse hippocampus. Furthermore, XCHT reversed the CSDS-induced reduction in the number of hippocampal BDNF+ cells and increased hippocampal BDNF protein and mRNA levels by upregulating the expression of specific Bdnf exons I, IV and VI. XCHT increased Bdnf transcripts by upregulating histone H3K18 acetylation at the Bdnf promoters. The administration of an acetyltransferase inhibitor reversed the effects of these changes. CONCLUSION XCHT may enhance the transcripts of specific Bdnf exons I, VI and VI by upregulating the H3K18 acetylation at the corresponding Bdnf promoters, which consequently promotes BDNF expression levels. This further promotes neuronal plasticity in the hippocampus, ultimately ameliorating anxiety/depression-like behavior in CSDS-induced mice.
Collapse
Affiliation(s)
- Fan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziming Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaying Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinlai Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuwei Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linqi He
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianchi Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Mao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xixi Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinwei Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Zou T, Tang X, Wang H, Shang X, Liang X, Ma X. Nanocrystalline cellulose-geniposide complex enhances gut-brain axis modulation for depression treatment. Commun Biol 2025; 8:667. [PMID: 40287572 PMCID: PMC12033350 DOI: 10.1038/s42003-025-07934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Depression, a major global health issue, is closely associated with imbalances in gut microbiota and altered intestinal functions. This study investigates the antidepressant potential of a composite of Geniposide (GP) and Nanocrystalline Cellulose (NCC), focusing on its effects on the gut-brain axis. Utilizing network pharmacology, GP was identified as a key compound targeting the BCL2 gene in depression management. Experimental approaches, including a chronic unpredictable mild stress (CUMS) model in mice, cellular assays, and fecal microbiota transplantation (FMT), were used to evaluate the composite's effectiveness. Results indicate that GP activates the adenosine monophosphate-activated protein kinase (AMPK) pathway by upregulating BCL2, enhancing intestinal barrier integrity, and balancing gut flora. These mechanisms contribute to its positive effects on hippocampal function and depressive-like behaviors in mice, suggesting that the GP-NCC composite could be a promising avenue for developing depression therapies that target gut health.
Collapse
Affiliation(s)
- Tianyu Zou
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine (Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine), Shenzhen, 518000, Guangdong, PR China.
| | - Xiang Tang
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine (Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine), Shenzhen, 518000, Guangdong, PR China
| | - Haiping Wang
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine (Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine), Shenzhen, 518000, Guangdong, PR China
| | - Xiaolong Shang
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine (Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine), Shenzhen, 518000, Guangdong, PR China
| | - Xiaoyu Liang
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine (Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine), Shenzhen, 518000, Guangdong, PR China
| | - Xuemiao Ma
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine (Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine), Shenzhen, 518000, Guangdong, PR China
| |
Collapse
|
4
|
Shen CL, Hassan T, Presto P, Payberah D, Devega R, Wakefield S, Dunn DM, Neugebauer V. Novel insights into dietary bioactive compounds and major depressive disorders: evidence from animal studies and future perspectives. J Nutr 2025:S0022-3166(25)00190-7. [PMID: 40274236 DOI: 10.1016/j.tjnut.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Clinical depression, including major depressive disorder (MDD), is a chronic mental illness characterized by persistent sadness and indifference. Depression is associated with neuroinflammation, oxidative stress, and neuronal apoptosis in the brain, resulting in microglial overactivation, decreased neuronal and glial proliferation, monoamine depletion, structural abnormalities, and aberrant biochemical activity via the hypothalamic-pituitary-adrenal axis. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of MDD progression. Here, in this narrative review, we reported the effects of commonly consumed bioactive compounds (curcumin, saffron, garlic, resveratrol, omega-3 fatty acids, ginger, blueberry, tea, and creatine) on MDD and MDD-related neuroinflammation and oxidative stress. The evidence reviewed here is almost exclusively from animal studies and strongly suggest that these commonly consumed bioactive compounds have anti-MDD effects as shown in anti-depression-like behaviors, such as increased immobility, sucrose preference, and social interaction. Based on the literature/studies reviewed, the proposed molecular mechanisms include (i) the reduction of neuroinflammation activation and oxidative stress, (ii) the enhancement of anti-inflammatory and anti-oxidant properties, (iii) the reduction of monoamine oxidase-A production, and (iv) the elevation of brain-derived neurotropic factor and neurogenesis. In the future, dietary bioactive compounds on clinical randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in individuals with MDD.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Taha Hassan
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Peyton Presto
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Daniel Payberah
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Rodan Devega
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Sarah Wakefield
- Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| |
Collapse
|
5
|
Nisha, Paramanik V. Neuroprotective Roles of Daidzein Through Extracellular Signal-Regulated Kinases Dependent Pathway In Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2025; 62:4899-4921. [PMID: 39495229 DOI: 10.1007/s12035-024-04567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Depression is a stress-related neuropsychiatric disorder causing behavioural, biochemical, molecular dysfunctions and cognitive impairments. Previous studies suggested connection between neuropsychiatric diseases like depression with estrogen and estrogen receptors (ER). Daidzein is a phytoestrogen that functions as mammalian estrogen and regulates gene expressions through extracellular signal-regulated kinases (ERKs) dependent pathway by activating ERβ. ERβ modulates stress responses, physiological processes by activating protein kinases and plays a significant role in various neurological diseases like depression. However, significant roles of daidzein in depression involving ERK1/2, pERK1/2, and mTOR still unknown. Herein, we examined neuroprotective role of daidzein in chronic unpredictable mild stress (CUMS) mouse model. CUMS model was prepared, and placed in six groups namely, control, CUMS, CUMS vehicle, CUMS DZ (Daidzein 1 mg/kgbw, orally), CUMS PHTPP (ERβ blocker, 0.3 mg/kgbw, i..p.) and CUMS Untreated. Supplementation of daidzein to CUMS mice exhibits decrease depressive and anxiety-like behaviour, improved motor coordination and memory. Further, immunofluorescence results showed daidzein improved ERK1/2, pERK1/2 and mTOR expressions in the cortex, hippocampus and medulla of stressed mice. SOD, catalase and acetylcholinesterase levels were also improved. Blocking of ERβ with PHTPP stressed mice showed deficits in behaviour, low expression of ERK1/2, pERK1/2 and mTOR, and no significant changes in SOD, catalase and acetylcholinesterase level. Collectively, this study suggests that daidzein may ameliorate depressive and anxiety-like behaviour through ERK downregulating pathway by activating ERβ through ERK1/2, pERK1/2 and mTOR. Such study may be useful to understand daidzein dependent neuroprotection through ERβ in depression.
Collapse
Affiliation(s)
- Nisha
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India.
| |
Collapse
|
6
|
Gong G, Liu Y, Zhang Z, Zheng Y. Therapeutic Targets and Molecular Mechanisms of Calycosin in the Treatment of Depression: Insights From Chronic Mild Stress Animal Models. CNS Neurosci Ther 2025; 31:e70353. [PMID: 40260589 PMCID: PMC12012568 DOI: 10.1111/cns.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Depression is a complex psychiatric disorder with limited therapeutic options and various side effects. Calycosin, a bioactive compound derived from Astragalus membranaceus, possesses multiple pharmacological properties. This study aimed to investigate the antidepressant effects of calycosin in chronic mild stress (CMS) animal models of depression and to elucidate its underlying mechanisms. METHODS The antidepressant effects of calycosin were assessed in vivo using CMS animal models of depression, including the grooming frequency test, sucrose intake test, tail suspension test, and open field test. Neurogenic effects were evaluated by measuring the levels of BDNF, GDNF, and NGF in isolated hippocampus tissues. The hepatoprotective effects were assessed by measuring liver enzyme levels. The molecular mechanisms underlying calycosin's antidepressant effects were explored in vitro using PC12 cells. RESULTS Calycosin exhibited potent antidepressant-like activities in CMS animal models of depression. Treatment with calycosin significantly alleviated depressive symptoms and improved neurogenic effects. Additionally, calycosin displayed hepatoprotective effects by modulating liver enzymes in vitro. The antidepressant effects of calycosin are mediated by the stimulation of the TrkB-MEK-Erk1/2-CREB signaling pathway. CONCLUSION In conclusion, calycosin shows promise as a novel therapeutic agent for depression due to its potent antidepressant-like activities and diverse pharmacological properties. Further studies are warranted to elucidate the exact molecular targets of calycosin and to assess its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Guowei Gong
- Department of BioengineeringZunyi Medical UniversityZhuhaiGuangdongChina
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| |
Collapse
|
7
|
Qin Q, Li S, Zhong Y, Bai J, An L, Yang L, Gu W, Deng D, Zhao J, Zhang R, Liu H, Bai S. Chronic stress enhances glycolysis and promotes tumorigenesis. Front Oncol 2025; 15:1543872. [PMID: 40129916 PMCID: PMC11931049 DOI: 10.3389/fonc.2025.1543872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Depression is a well-known risk factor for tumors, but the mechanisms other than inflammation are unclear. Aerobic glycolysis is considered to be a critical element in the reprogramming of energy metabolism in malignant tumors, and impaired glycolysis has been reported in the brains of chronic stress mice. Therefore, this study aimed to explore the role of glycolysis in which depression promotes tumorigenesis. We examined the impacts of chronic unpredictable mild stress (CUMS) on the growth and metastasis of breast cancer (BC) and lung cancer (LC). CUMS was used to construct a mouse depression model, BALB/c mice were injected with 4T1-Luc cells in the right subcutaneous mammary fat pad, and C57BL/6 mice were injected with Lewis-Luc cells in the tail vein. The experiments were conducted through behavioral experiments, live imaging techniques of small animals, Western blot, Glycolytic metabolites measurement, Hematoxylin and eosin staining (H&E staining), Nissl staining, and immunohistochemical (IHC) tests. The findings showed that both CUMS and tumors induced depressive-like behavior, neuronal damage, and impaired synaptic plasticity in mice, while CUMS also enhanced tumor development and metastasis in both BC and LC. In the brain, both CUMS and tumor alone and in combination less influence glycolytic products and enzyme levels. However, CUMS significantly enhanced the levels of aerobic glycolytic products and enzymes in tumor tissue. Collectively, our results provide insights into how glycolysis is regulated in the brain, leading to depression-like behavior, and how depression, in turn, enhanced glycolysis and promoted tumorigenesis.
Collapse
Affiliation(s)
- Qiufeng Qin
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuying Li
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yixuan Zhong
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Bai
- Pharmacy Department, JiNan Authority Hospital, Jinan, China
| | - Lin An
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Yang
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Gu
- Huizhou Hospital of Guangzhou University of Chinese Medicine/Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Di Deng
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinlan Zhao
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Zhang
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiquan Liu
- Huizhou Hospital of Guangzhou University of Chinese Medicine/Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Shasha Bai
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Yu X, Hua S, Jin E, Guo R, Huang H. Improving hemodialysis patient depression outcomes with acupuncture: A randomized controlled trial. Acta Psychol (Amst) 2025; 253:104728. [PMID: 39884157 DOI: 10.1016/j.actpsy.2025.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of acupuncture as a supplementary treatment for mild to moderate depression in hemodialysis patients. METHOD This multicenter, randomized, controlled, single-masked trial included 64 hemodialysis patients aged 18-75 divided into two groups. One group received genuine acupuncture, while the other received sham acupuncture over 12 weeks. The primary outcome measure was Hamilton Depression Scale (HAMD) scores; an inclusion criterion was HAMD scores of 10-23. Secondary outcomes included life quality improvements and changes in biochemical markers, such as serum albumin and hemoglobin levels. To assess the predictive effects of acupuncture treatment and biochemical parameters on depressive symptoms, a multivariable linear regression analysis was conducted. RESULTS Following acupuncture treatment, HAMD scores significantly decreased, quality of life scores improved, and biochemical indicators (serum albumin, hemoglobin, transferrin, and total protein levels) showed some improvement, indicating the effectiveness of acupuncture in alleviating depressive symptoms and enhancing overall health in hemodialysis patients. Multivariable regression analysis showed that acupuncture treatment (P = 0.004) and serum albumin levels (P = 0.03) were significant predictors of improvement in depressive symptoms, with an adjusted R2 of 0.45, indicating that the model explained 45 % of the variance in symptom improvement. Other biochemical indicators, such as hemoglobin, transferrin, and total protein, did not show significant predictive effects (P > 0.05). No serious adverse events were observed during the treatment. CONCLUSION Acupuncture is a safe and effective adjunct therapy for alleviating mild to moderate depression in hemodialysis patients. Acupuncture treatment and certain biochemical indicators (such as serum albumin) have significant predictive value for improving depressive symptoms.
Collapse
Affiliation(s)
- Xijing Yu
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China.
| | - Shuisheng Hua
- Department of pediatric orthopaedic emergency, Nanchang Hongdu Hospital of traditional Chinese medicine, China
| | - Engyu Jin
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China
| | - Rong Guo
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China
| | - Hui Huang
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China
| |
Collapse
|
9
|
Zhang S, Chen X, Wang C, Sun Y, Gong B, Li D, Wu Y, Liu Y, Wei J. Antidepressant Activity of Agarwood Essential Oil: A Mechanistic Study on Inflammatory and Neuroprotective Signaling Pathways. Pharmaceuticals (Basel) 2025; 18:255. [PMID: 40006068 PMCID: PMC11859912 DOI: 10.3390/ph18020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Depression ranks among the most severe mental health conditions, and poses a burden on global health. Agarwood, an aromatic medicinal plant, has shown potential for improving mental symptoms. As a common folk medicine, agarwood has been applied as an alternative method for mental disorders such as depression through aromatherapy. Previous studies have found that the therapeutic effects of agarwood aromatherapy are primarily related to its volatile components. This study aimed to examine the antidepressant properties and underlying mechanisms of agarwood essential oil (AEO), a collection of the volatile components of agarwood utilized through aromatherapy inhalation and injection administration in mice. Methods: A lipopolysaccharide (LPS)-induced inflammatory depression model was used to evaluate the effects of AEO inhalation and injection on depression-like symptoms. Behavioral assessments included the open-field, tail suspension, and forced swimming tests. Western blot (WB) and ELISA techniques were used to further verify the mechanistic insights. Results: In the LPS-induced depression-like model, AEO inhalation and injection significantly improved depression-like symptoms, decreased immobility duration in both the tail suspension and forced swimming tests in model mice, and reduced the levels of inflammatory cytokines IL-1β, IL-6, and TNF-α. WB experiments demonstrated that AEO inhibited the NF-κB/IκB-α inflammatory pathway and activated the BDNF/TrkB/CREB pathway in the hippocampus of the LPS-depression model mice. Notably, AEO extracted by hydrodistillation was more effective in alleviating LPS-induced depressive-like behaviors than using supercritical CO2 fluid extraction. Conclusions: Both the inhalation and the injection administration of AEO exerted notable antidepressant effects, potentially associated with reducing inflammation levels in the brain, downregulating inflammatory NF-κB/IκB-α, and upregulating the neuroprotective BDNF/TrkB/CREB signaling pathway. In the future, it is necessary to further determine the pharmacodynamic components, key targets and specific molecular mechanisms of AEO's antidepressant effects so as to provide more support for the neuroprotective research of medicinal plants.
Collapse
Affiliation(s)
- Shunan Zhang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiqin Chen
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Canhong Wang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525011, China
| | - Yuanyuan Sun
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Bao Gong
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
| | - Dan Li
- The Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK;
| | - Yulan Wu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
| | - Yangyang Liu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (S.Z.); (X.C.); (C.W.); (Y.S.); (B.G.); (Y.W.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
10
|
Yang C, Chen J, Tang J, Li L, Zhang Y, Li Y, Ruan C, Wang C. Study on the Mechanism of Dictyophora duplicata Polysaccharide in Reducing Depression-like Behavior in Mice. Nutrients 2024; 16:3785. [PMID: 39519618 PMCID: PMC11547661 DOI: 10.3390/nu16213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Depression is a prevalent worldwide mental health disorder that inflicts significant harm to individuals and society. Dictyophora duplicata is an edible fungus that contains a variety of nutrients, including polysaccharides. This study aims to investigate the monosaccharide composition and molecular weight of the Dictyophora duplicata polysaccharide (DDP-B1), followed by an exploration of its antidepressant effects in chronic unpredictable mild stress (CUMS) mice. METHODS Dictyophora duplicata was purified using a DEAE-52 column and an S-400 column to obtain DDP-B1. The monosaccharide composition and molecular weight of DDP-B1 were investigated via high-performance gel permeation chromatograph. Six-week-old C57BL/6 male mice were utilized for the CUMS modeling to evaluate the antidepressant efficacy of DDP-B1. Fluoxetine served as the positive control group. The depressive-like behaviors and brain pathology of mice were evaluated. Immunofluorescence (IF) staining, metabolomics analysis, and western blot were employed to further investigate the underlying mechanisms. RESULTS DDP-B1 significantly alleviated the depression-like behavior of CUMS mice and increased the expression of SYN and PSD-95 in the mice's brains, which was further validated by western blot. Metabolomics analysis indicated a reduction in serum glutamate in CUMS mice following DDP-B1 treatment. Moreover, DDP-B1 treatment led to an increase in levels of GABAAR, BDNF, p-TrkB and p-p70S6K. CONCLUSIONS DDP-B1 regulated abnormalities in the glutamatergic system, subsequently activated the BDNF-TrkB-mTOR pathway and mitigated the pathological manifestations of CUMS mice. This study validated the potential of DDP-B1 as an antidepressant medication and established a theoretical foundation for the development of fungi with similar properties.
Collapse
Affiliation(s)
- Chenxi Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Jiaqi Chen
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Jie Tang
- Sichuan Institute of Edible Fungi, Chendu 610066, China;
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Changchun Ruan
- Jilin Province Technology Research Center of Biological Control Engineering, Jilin Province International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
11
|
Li J, Yao D, Zhang T, Tong T, Shen J, Yan S, Zeng J, Aslam MS, Li M, You Z, Li J, Li Z, Li Y, Hao C, Meng X. GABA B modulate NF-κB/NLRP3 pathways in electroacupuncture prevention of depression in CUMS rats. Brain Res Bull 2024; 218:111108. [PMID: 39447764 DOI: 10.1016/j.brainresbull.2024.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Our previous research has demonstrated that electroacupuncture (EA) has the potential to mitigate depression-like symptoms resulting from chronic stress. However, further investigation is required to fully understand the underlying mechanisms. The regulatory role of γ-aminobutyric acid type B (GABAB) in synaptic plasticity and the involvement of NF-κB/NLRP3-mediated inflammation in the lateral habenula nucleus (LHb) are key factors in the development of depression. This study sought to investigate the potential of EA in mitigating depression-like symptoms induced by chronic stress through mechanisms such as enhancing GABAB levels, regulating synaptic plasticity in the LHb, and suppressing NF-κB/NLRP3-mediated inflammation. METHODS Sprague-Dawley rats were exposed to chronic unpredictable mild stress (CUMS) in order to create a model of depression. Subsequently, the weight and behavioral assessments of all rats were monitored, and samples of the lateral habenula and serum were collected. The protein expression levels were analyzed using western blotting. The 5-hydroxytryptophan (5-HT), Dopamine (DA), and Norepinephrine (NE) in the LHb and serum were measured using ELISA. The alterations in GABAB and NF-κB in the LHb were observed through immunofluorescence. The neuronal damage in the LHb was assessed using Nissl staining. RESULTS EA upregulated the expression of GABAB in the LHb of rats subjected to CUMS. Subsequent behavioral assessments indicated that blocking GABAB attenuated the antidepressant effects of EA in CUMS-exposed rats. Furthermore, EA enhanced synaptic plasticity in the LHb of CUMS-exposed rats and mitigated NF-κB/NLRP3-mediated inflammatory responses, with these effects potentially being reversed by GABAB inhibition. CONCLUSION Through the promotion of GABAB levels, regulation of synaptic plasticity within the LHb, and inhibition of NF-κB/NLRP3-mediated neuroinflammation in the same region, electroacupuncture at Shangxing and Fengfu acupoints demonstrates efficacy in mitigating depression-like behaviors induced by CUMS.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China; Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Dong Yao
- The Fifth Hospital of Xiamen, Xiamen, Fujian, PR China
| | - Tiansheng Zhang
- Shanxi Acupuncture and moxibustion Hospital, Taiyuan, Shanxi, PR China
| | - Tao Tong
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Junliang Shen
- Longyan Hospital of Traditional Chinese Medicine Affiliated to Xiamen University, Longyan, Fujian, PR China
| | - Simin Yan
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Jingyu Zeng
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Muhammad Shahzad Aslam
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China; School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Meng Li
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Zhuoran You
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Jingxuan Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Zhongwen Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Yizheng Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Chongyao Hao
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China.
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China; Shenzhen Research Institute of Xiamen University, Shenzhen, PR China.
| |
Collapse
|
12
|
Yao C, Jiang N, Sun X, Zhang Y, Pan R, He Q, Chang Q, Liu X. Effects of inulin-type oligosaccharides (JSO) from Cichorium intybus L. on behavioral deficits induced by chronic restraint stress in mice and associated molecular alterations. Front Pharmacol 2024; 15:1484337. [PMID: 39555096 PMCID: PMC11563967 DOI: 10.3389/fphar.2024.1484337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Depression and anxiety are serious psychiatric disorders with significant physical and mental health impacts, necessitating the development of safe and effective treatments. This study aimed to evaluate the efficacy of Jiangshi oligosaccharide (JSO), a type of inulin-based oligosaccharide, in alleviating anxiety and depression and to investigate the underlying molecular mechanisms. Using a mouse model of chronic restraint stress (CRS), JSO was administered orally at doses of 50, 100, and 200 mg/kg for 21 days. Behavioral tests, including the novelty-suppressed feeding test (NSFT), open field test (OFT), elevated plus maze test (EPMT), tail suspension test (TST), and forced swimming test (FST), demonstrated that JSO significantly improved anxiety- and depressive-like behaviors (P< 0.05). Notably, JSO reduced feeding latency in the NSFT, increased time spent in the center in the OFT, enhanced time and entries into open arms in the EPMT, and decreased immobility time in the TST and FST (P< 0.01). Histological and molecular analyses revealed that JSO treatment attenuated neuronal loss in the hippocampus (Hip) and medial prefrontal cortex (mPFC) and reduced the expression of inflammatory markers such as Iba-1 and GFAP in these regions. JSO significantly downregulated the mRNA and protein expression of pro-inflammatory factors (IL-1β, TNF-α, IL-6) while increasing anti-inflammatory markers (IL-10, TGF-β) (P< 0.05). Furthermore, JSO inhibited the c-GAS-STING-NLRP3 axis and apoptosis-related proteins (Bax/Bcl-2, Caspase-3/8/9) while promoting the expression of brain-derived neurotrophic factor (BDNF), PSD-95, and synaptophysin (SYP), indicating improved neuronal survival and synaptic plasticity (P< 0.01). These findings suggest that JSO exerts potent anti-anxiety and antidepressant effects by modulating neuroinflammation, synaptic function, and neuronal apoptosis in the Hip and mPFC of CRS mice. This study highlighted JSO as a potential therapeutic agent for stress-induced anxiety and depression.
Collapse
Affiliation(s)
- Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruile Pan
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi Chang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Yan J, Li T, Ji K, Zhou X, Yao W, Zhou L, Huang P, Zhong K. Safranal alleviates pentetrazole-induced epileptic seizures in mice by inhibiting the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118408. [PMID: 38823659 DOI: 10.1016/j.jep.2024.118408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron, a traditional Chinese medicine, is derived from Crocus sativus L. stigmas and has been reported to possess neuroprotective properties and potentially contribute to the inhibition of apoptosis and inflammation. Safranal, a potent monothyral aldehyde, is a main component of saffron that has been reported to have antiepileptic activity. However, the specific mechanism by which safranal suppresses epileptic seizures via its antiapoptotic and anti-inflammatory properties is unclear. AIM To evaluate the effect of safranal on seizure severity, inflammation, and postictal neuronal apoptosis in a mouse model of pentetrazole (PTZ)-induced seizures and explore the underlying mechanism involved. MATERIALS AND METHODS The seizure stage and latency of stage 2 and 4 were quantified to assess the efficacy of safranal in mitigating PTZ-induced epileptic seizures in mice. Electroencephalography (EEG) was employed to monitor epileptiform afterdischarges in each experimental group. The cognitive abilities and motor functions of the mice were evaluated using the novel object recognition test and the open field test, respectively. Neurons were quantified using hematoxylin and eosin staining. Additionally, bioinformatics tools were utilized to predict the interactions between safranal and specific target proteins. Glycogen synthase kinase-3β (GSK-3β), mitochondrial apoptosis-related proteins, and inflammatory factor levels were analyzed through western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) concentrations in brain tissue were assessed by ELISA. RESULTS Safranal decreased the average seizure stage and increased the lantency of stage 2 and 4 seizures in PTZ-induced epileptic mice. Additionally, safranal exhibited neuroprotective effects on hippocampal CA1 and CA3 neurons and reduced hyperactivity caused by postictal hyperexcitability. Bioinformatics analysis revealed that safranal can bind to five specific proteins, including GSK-3β. By promoting Ser9 phosphorylation and inhibiting GSK-3β activity, safranal effectively suppressed the NF-κB signaling pathway. Moreover, the findings indicate that safranal treatment can decrease TNF-α and IL-1β levels in the cerebral tissues of epileptic mice and downregulate mitochondrial apoptosis-related proteins, including Bcl-2, Bax, Bak, Caspase 9, and Caspase 3. CONCLUSION Safranal can suppress the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation, suggesting that it is a promising therapeutic agent for epilepsy treatment.
Collapse
Affiliation(s)
- Jieping Yan
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| | - Tingting Li
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Kaiyue Ji
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Weiyi Yao
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liujing Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Kai Zhong
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
14
|
Ren Q, He C, Sun Y, Gao X, Zhou Y, Qin T, Zhang Z, Wang X, Wang J, Wei S, Wang F. Asiaticoside improves depressive-like behavior in mice with chronic unpredictable mild stress through modulation of the gut microbiota. Front Pharmacol 2024; 15:1461873. [PMID: 39494347 PMCID: PMC11527651 DOI: 10.3389/fphar.2024.1461873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background Asiaticoside, the main active ingredient of Centella asiatica, is a pentacyclic triterpenoid compound. Previous studies have suggested that asiaticoside possesses neuroprotective and anti-depressive properties, however, the mechanism of its anti-depressant action not fully understood. In recent years, a growing body of research on anti-depressants has focused on the microbiota-gut-brain axis, we noted that disruption of the gut microbial community structure and diversity can induce or exacerbate depression, which plays a key role in the regulation of depression. Methods Behavioral experiments were conducted to detect depression-like behavior in mice through sucrose preference, forced swimming, and open field tests. Additionally, gut microbial composition and short-chain fatty acid (SCFA) levels in mouse feces were analyzed 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS). Hippocampal brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine receptor 1A (5-HT1A) expression in mice was assessed by western blotting. Changes in serum levels of inflammatory factors, neurotransmitters, and hormones were measured in mice using ELISA. Results This study revealed that oral administration of asiaticoside significantly improved depression-like behavior in chronic unpredictable mild stress (CUMS) mice. It partially restored the gut microbial community structure in CUMS mice, altered SCFA metabolism, regulated the hypothalamic-pituitary-adrenal axis (HPA axis) and inflammatory factor levels, upregulated BDNF and 5-HT1A receptor protein expression, and increased serum serotonin (5-hydroxytryptamine, 5-HT) concentration. These findings reveal that asiaticoside exerts antidepressant effects via the microbiota-gut-brain axis. Conclusions These results suggested that asiaticoside exerts antidepressant effects through the microbiota-gut-brain axis in a CUMS mouse model.
Collapse
Affiliation(s)
- Qingyi Ren
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chenxi He
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaowei Gao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Zhou
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Tao Qin
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jun Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China
| | - Fang Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Wang Y, Wu LH, Hou F, Wang ZJ, Wu MN, Hölscher C, Cai HY. Mitochondrial calcium uniporter knockdown in hippocampal neurons alleviates anxious and depressive behavior in the 3XTG Alzheimer's disease mouse model. Brain Res 2024; 1840:149060. [PMID: 38851312 DOI: 10.1016/j.brainres.2024.149060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by emotional disturbance, especially anxiety and depression. More and more evidence shows that the imbalance of mitochondrial Ca2+ (mCa2+) homeostasis has a close connection with the pathogenesis of anxiety and depression. The Mitochondrial Calcium Uniporter (MCU), a key channel of mCa2+ uptake, induces the imbalance of mCa2+ homeostasis and may be a therapeutic target for anxiety and depression of AD. In the present study, we revealed for the first time that MCU knockdown in hippocampal neurons alleviated anxious and depressive behaviors of APP/PS1/tau mice through elevated plus-maze (EPM), elevated zero maze (EZM), sucrose preference test (SPT) and tail suspension test (TST). Western blot analysis results demonstrated that MCU knockdown in hippocampal neurons increased levels of glutamate decarboxylase 67 (GAD67), vesicular GABA transporter (vGAT) and GABAA receptor α1 (GABRA1) and activated the PKA-CREB-BDNF signaling pathway. This study indicates that MCU inhibition has the potential to be developed as a novel therapy for anxiety and depression in AD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Lin-Hong Wu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Fei Hou
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China.
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China.
| |
Collapse
|
16
|
Zhou Y, Chen Z, Su F, Tao Y, Wang P, Gu J. NMR-based metabolomics approach to study the effect and related molecular mechanisms of Saffron essential oil against depression. J Pharm Biomed Anal 2024; 247:116244. [PMID: 38810330 DOI: 10.1016/j.jpba.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Depression currently ranks as the fourth leading cause of disability globally, affecting approximately 20% of the world's population. we established a chronic restraint stress (CRS) induced depression model in mice and employed fluoxetine as a reference drug. We assessed the therapeutic potential of saffron essential oil (SEO) and elucidated its underlying mechanisms through behavioral indices and NMR-based metabolomic analysis. The findings indicate that SEO ameliorates behavioral symptoms of depression, such as the number of entries into the central area, fecal count, latency to immobility, and duration of immobility in both the Tail Suspension Test (TST) and the Forced Swim Test (FST), along with correcting the dysregulation of 5-serotonin. Metabolomic investigations identified sixteen potential biomarkers across the liver, spleen, and kidneys. SEO notably modulated nine of these biomarkers: dimethylglycine, glycerol, adenosine, β-glucose, α-glucose, uridine, mannose, sarcosine, and aspartate, with glycerol emerging as a common biomarker in both the liver and spleen. Pathway analysis suggests that these biomarkers participate in glycolysis, glycine serine threonine metabolism, and energy metabolism, potentially implicating a role in neural regulation. In summary, SEO effectively mitigates depressive-like behaviors in CRS mice, predominantly via modulation of glycolysis, amino acid metabolism, and energy metabolism, and potentially exerts antidepressant effects through neural regulation. Our study offers insights into small molecule metabolite alterations in CRS mice through a metabolomics lens, providing evidence for the antidepressant potential of plant essential oils and contributing to our understanding of the mechanisms of traditional Chinese medicine in treating depression.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Feng Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China.
| |
Collapse
|
17
|
Fei F, Chen Z, Tao Y, Jiang X, Xu X, Ma Y, Feng P, Wang P. Comparison of CUMS at different pregnancy stages, maternal separation, and their effects on offspring in postpartum depression mouse models. Heliyon 2024; 10:e35363. [PMID: 39166014 PMCID: PMC11334627 DOI: 10.1016/j.heliyon.2024.e35363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Due to the diversity of postpartum depression (PPD) patients and the complexity of associated pathophysiological changes, most current animal models cannot accurately simulate PPD-like symptoms. In this study, we established a reliable animal model for PPD by inducing chronic unpredictable mild stress (CUMS) at different stages (pre-pregnancy, pregnancy, or postnatal) in female mice, followed by maternal separation (MS) from day 2-21 after delivery. The results for female mice subjected to pre-pregnancy stress were not statistically significant due to a lower conception rate. However, female mice exposed to CUMS during either the gestational or postnatal stage, followed by MS, successfully exhibited PPD-like symptoms. The models were deemed effective based on observed behavioral abnormalities, impaired hippocampal neuron functioning, and reduced serum concentrations of neurotransmitters (5-HT, GABA, and NE). Additionally, mice that underwent gestational CUMS followed by MS displayed a more dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and more severe uterine inflammation. The study also investigated the impact of PPD on the behavior and neurodevelopment of adolescent offspring through behavioral tests, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and western blotting (WB). The results indicated that adolescent offspring of mothers with PPD exhibited behavioral and neurodevelopmental disorders, with male offspring being more susceptible than females. Female mice exposed to both CUMS and MS during the postnatal period had more severe adverse effects on their offspring compared to the other model groups.
Collapse
Affiliation(s)
- Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinliang Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinyue Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yifeng Ma
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- ZJUT-Jinhua Innovation Joint Research Institute, Jinhua, 321001, People's Republic of China
| |
Collapse
|
18
|
Vora LK, Gholap AD, Hatvate NT, Naren P, Khan S, Chavda VP, Balar PC, Gandhi J, Khatri DK. Essential oils for clinical aromatherapy: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118180. [PMID: 38614262 DOI: 10.1016/j.jep.2024.118180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aromatherapy, a holistic healing practice utilizing the aromatic essences of plant-derived essential oils, has gained significant attention for its therapeutic potential in promoting overall well-being. Use of phytoconstituent based essential oil has played a significant role in the evolving therapeutic avenue of aromatherapy as a complementary system of medicine. AIM OF THE STUDY This comprehensive review article aims to explore the usage of essential oils for aromatherapy, shedding light on their diverse applications, scientific evidence, and safety considerations. Furthermore, the growing interest in using essential oils as complementary therapies in conjunction with conventional medicine is explored, underscoring the significance of collaborative healthcare approaches. MATERIALS AND METHODS Literature search was performed from databases like PubMed, ScienceDirect, Scopus, and Bentham using keywords like Aromatherapy, Aromatic Plants, Essential oils, Phytotherapy, and complementary medicine. The keywords were used to identify literature with therapeutic and mechanistic details of herbal agents with desired action. RESULTS The integration of traditional knowledge with modern scientific research has led to a renewed interest in essential oils as valuable tools in contemporary healthcare. Various extraction methods used to obtain essential oils are presented, emphasizing their impact on the oil's chemical composition and therapeutic properties. Additionally, the article scrutinizes the factors influencing the quality and purity of essential oils, elucidating the significance of standardization and certification for safe usage. A comprehensive assessment of the therapeutic effects of essential oils is provided, encompassing their potential as antimicrobial, analgesic, anxiolytic, and anti-inflammatory agents, among others. Clinical trials and preclinical studies are discussed to consolidate the existing evidence on their efficacy in treating diverse health conditions, both physical and psychological. Safety considerations are of paramount importance when employing essential oils, and this review addresses potential adverse effects, contraindications, and best practices to ensure responsible usage. CONCLUSIONS This comprehensive review provides valuable insights into the exploration of essential oils for aromatherapy, emphasizing their potential as natural and potent remedies for a wide range of ailments. By amalgamating traditional wisdom and modern research, this article aims to encourage further investigation into the therapeutic benefits of essential oils while advocating for their responsible and evidence-based incorporation into healthcare practices.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, 431213, Maharashtra, India
| | - Padmashri Naren
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Jimil Gandhi
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
19
|
Zhang S, Hu Y, Zhao Y, Feng Y, Wang X, Miao M, Miao J. Molecular mechanism of Chang Shen Hua volatile oil modulating brain cAMP-PKA-CREB pathway to improve depression-like behavior in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155729. [PMID: 38772184 DOI: 10.1016/j.phymed.2024.155729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Depression is a common and complex mental illness that manifests as persistent episodes of sadness, loss of interest, and decreased energy, which might lead to self-harm and suicide in severe cases. Reportedly, depression affects 3.8 % of the world's population and has been listed as one of the major global public health concerns. In recent years, aromatherapy has been widely used as an alternative and complementary therapy in the prevention and treatment of depression; people can relieve anxiety and depression by sniffing plant aromatic essential oils. Acorus tatarinowii and Panax ginseng essential oils in Chang Shen Hua volatile oil (CSHVO) are derived from Acorus tatarinowii and Panax ginseng, respectively, the main medicines in the famous Chinese medicine prescription Kai Xin San (KXS), Then, these oils are combined with the essential oil of Albizia julibrissin flower to form a new Chinese medicine inhalation preparation, CSHVO. KXS has been widely used in the treatment of depression; however, whether CSHVO can ameliorate depression-like behavior, its pharmacological effects, and the underlying mechanisms of action are yet to be elucidated. STUDY DESIGN AND METHODS A rat model of chronic and unpredictable mild stimulation (CUMS) combined with orphan rearing was treated with CSHVO for 4 weeks. Using behavioral tests (sucrose preference, force swimming, tail suspension, and open field), the depression-like degree was evaluated. Concurrently, brain homogenate and serum biochemistry were analyzed to assess the changes in the neurotransmitters and inflammatory and neurotrophic factors. Furthermore, tissue samples were collected for histological and protein analyses. In addition, network pharmacology and molecular docking analyses of the major active compounds, potential therapeutic targets, and intervention pathways predicted a role of CSHVO in depression relief. Subsequently, these predictions were confirmed by in vitro experiments using a corticosterone (CORT)-induced PC12 cell damage model. RESULTS CSHVO inhalation can effectively improve the weight and depression-like behavior of depressed rats and regulate the expression of inflammatory factors and neurotransmitters. Hematoxylin-eosin, Nissl, and immunofluorescence staining indicated that compared to the model group, the pathological damage to the brain tissues of rats in the CSHVO groups was improved. The network pharmacological analysis revealed that 144 CSHVO active compounds mediate 71 targets relevant to depression treatment, most of which are rich in the cAMP signaling and inflammatory cytokine pathways. Protein-protein interaction analysis showed that TNF, IL6, and AKT are the core anti-depressive targets of CSHVO. Molecular docking analysis showed an adequate binding between the active ingredients and the key targets. In vitro experiments showed that compared to the model group, the survival rate of PC12 cells induced by CSHVO intervention was increased, the apoptosis rate was decreased, and the expression of inflammatory cytokines in the cell supernatant was improved. Western blot analysis and immunofluorescence staining confirmed that CSHVO regulates PC12 cells in the CORT model through the cAMP-PKA-CREB signaling pathway, and pretreatment with PKA blocker H89 eliminates the protective effect of CSHVO on CORT-induced PC12 cells. CONCLUSIONS CSHVO improves CORT-induced injury in the PC12 cell model and CUMS combined with orphan rearing-induced depression model in rats. The antidepressant mechanism of CSHVO is associated with the modulation of the cAMP-PKA-CREB signaling pathway.
Collapse
Affiliation(s)
- Shuangli Zhang
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yilong Hu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yinan Zhao
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yifan Feng
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoxue Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingsan Miao
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
20
|
Li X, Xiao D, Li C, Wu T, Li L, Li T, Pan X, Liu Q, Chi M, Li R, Jiao Y, Li P. Lavender essential oil alleviates depressive-like behavior in alcohol-withdrawn rats: Insights from gut metabolites and hippocampal transcriptome analysis. Biomed Pharmacother 2024; 176:116835. [PMID: 38810402 DOI: 10.1016/j.biopha.2024.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
Lavender, an aromatic plant with a history dating back to ancient Egypt and Greece, is consumed because of its diverse pharmacological properties, including sedation, sleep aid, and antidepressant effects. However, the mechanisms underlying these antidepressant properties remain unclear. In this study, we explored the impact of lavender essential oil (LEO) inhalation on the diversity of gut microbiota, metabolites, and differential gene expression in the hippocampus of alcohol-withdrawn depressive rats. Additionally, we examined alterations in the hippocampal transient receptor potential (TRP) channel-mediated inflammatory regulation within the brain-gut axis of depressive rats. The results demonstrated a significant decrease in sucrose preference, diminished activity in the central zone of the open field test, and prolonged immobility time in the forced swim test in alcohol-withdrawn depressive rats, indicating the amelioration of depressive states following lavender essential oil inhalation. 16 S rDNA sequencing analysis revealed a significant reduction in Bacteroidota and Muribaculaceae in the gut of alcohol-withdrawn depressive rats, whereas lavender essential oil significantly increased the relative abundance of Muribaculaceae and other bacterial species. Metabolomic analysis identified 646 distinct metabolites as highly correlated biomarkers between the model and lavender essential oil groups. Furthermore, lavender essential oil inhalation significantly attenuated hippocampal inflammatory factors IL-2, IL-6, IL-1β, and TNF-α. This study identified elevated expression of Trpv4 and Calml4 in the hippocampal region of alcohol-withdrawn depressed rats and showed that lavender essential oil inhalation regulated aberrantly expressed genes. Our research suggests that lavender essential oil downregulates Trpv4, modulates inflammatory factors, and alleviates depressive-like behavior in alcohol withdrawal rats.
Collapse
Affiliation(s)
- Xin Li
- Department of Psychiatry, The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, China; Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zheng Zhou, He Nan, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Wu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Libo Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xin Pan
- The Third Hospital of Heilongjiang Province, Bei An, Heilongjiang, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Minghe Chi
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Runze Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yu Jiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
21
|
Tian H, Gao S, Xu M, Yang M, Shen M, Liu J, Li G, Zhuang D, Hu Z, Wang C. tiRNA-Gly-GCC-001 in major depressive disorder: Promising diagnostic and therapeutic biomarker. Br J Pharmacol 2024; 181:1952-1972. [PMID: 38439581 DOI: 10.1111/bph.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND PURPOSE In major depressive disorder (MDD), exploration of biomarkers will be helpful in diagnosing the disorder as well as in choosing a treatment and predicting the treatment response. Currently, tRNA-derived small ribonucleic acids (tsRNAs) have been established as promising non-invasive biomarker candidates that may enable a more reliable diagnosis or monitoring of various diseases. Herein, we aimed to explore tsRNA expression together with functional activities in MDD development. EXPERIMENTAL APPROACH Serum samples were obtained from patients with MDD and healthy controls, and small RNA sequencing (RNA-Seq) was used to profile tsRNA expression. Dysregulated tsRNAs in MDD were validated by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic utility of specific tsRNAs and the expression of these tsRNAs after antidepressant treatment were analysed. KEY RESULTS In total, 38 tsRNAs were significantly differentially expressed in MDD samples relative to healthy individuals (34 up-regulated and 4 down-regulated). qRT-PCR was used to validate the expression of six tsRNAs that were up-regulated in MDD (tiRNA-1:20-chrM.Ser-GCT, tiRNA-1:33-Gly-GCC-1, tRF-1:22-chrM.Ser-GCT, tRF-1:31-Ala-AGC-4-M6, tRF-1:31-Pro-TGG-2 and tRF-1:32-chrM.Gln-TTG). Interestingly, serum tiRNA-Gly-GCC-001 levels exhibited an area under the ROC curve of 0.844. Moreover, tiRNA-Gly-GCC-001 is predicted to suppress brain-derived neurotrophic factor (BDNF) expression. Furthermore, significant tiRNA-Gly-GCC-001 down-regulation was evident following an 8-week treatment course and served as a promising baseline predictor of patient response to antidepressant therapy. CONCLUSION AND IMPLICATIONS Our current work reports for the first time that tiRNA-Gly-GCC-001 is a promising MDD biomarker candidate that can predict patient responses to antidepressant therapy.
Collapse
Affiliation(s)
- Haihua Tian
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shugui Gao
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Miaomiao Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mei Yang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mengyuan Shen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jimeng Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guangxue Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
22
|
Bai Y, Niu L, Song L, Dai G, Zhang W, He B, San W, Li S. Uncovering the effect and mechanism of Jiawei Xiaoyao Wan in treating breast cancer complicated with depression based on network pharmacology and experimental analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155427. [PMID: 38513380 DOI: 10.1016/j.phymed.2024.155427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Depression is a clinically common co-morbidity in breast cancer cases that brings negative outcomes on quality of life and potentially survival. Jiawei Xiaoyao Wan (JXW) is widely used in treating breast cancer and depressive disorder, but its potential pharmacological mechanisms remain elusive. PURPOSE We aimed to explore the dual therapeutic effects and mechanisms of JXW acting on breast cancer complicated with depression (BCCD) by network pharmacology and in vivo experimental verification. METHODS The chemical constituents of JXW were characterized using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-TOF/MS). The targets related to constituents of JXW were predicted by the TCMSP and Swiss Target Prediction databases, and targets of breast cancer and depression were screened by the GeneCards and OMIM databases. Gene Ontology annotation and KEGG enrichment analysis were performed with the DAVID database. Ultimately, a BCCD mouse model induced by chronic restraint stress (CRS) was used to explore therapeutic effects and mechanisms of JXW against BCCD. The efficacy of JXW in the treatment of BCCD was evaluated based on behavioral tests, tumor volume and weight, and pathological examination. Additionally, the underlying mechanisms were explored by measuring the levels of neurotransmitter and inflammatory factors, as well as detecting the expression of genes or proteins associated with candidate targets and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway through RT-PCR, western blotting, and immunohistochemistry. RESULTS Totals of 108 components were identified in JXW using LC-Q-TOF/MS. By network pharmacology analysis, 714 compound targets of JXW, 2114 breast cancer targets, 1122 depression targets, and 98 overlapping proteins were obtained. PPI network and KEGG analysis implied that TP53, ESR1, VEGFA, AKT1, IL6, TNF, EGFR and the JAK/STAT pathway might be the potential targets of JXW in treating BCCD. In vivo experiments indicated that JXW significantly ameliorated depressive symptoms and tumor progression in BCCD mice. Further mechanistic studies showed that JXW could reduce the levels of inflammatory factors, increase 5-HT level, and regulate mRNA expression levels of TP53, VEGFA, AKT1, IL6, TNF, and EGFR targets. Moreover, the expression levels of proteins related to the JAK2/STAT3 signaling pathway in BCCD mice were effectively regulated by JXW. CONCLUSION JXW exerts dual therapeutic effects in a BCCD mouse via multiple targets. The underlying mechanisms might be associated with regulating the levels of neurotransmitter and inflammatory factors; more importantly, the JAK2/STAT3 pathway plays a significant role in this process.
Collapse
Affiliation(s)
- Yongtao Bai
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Lihua Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Baoxia He
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shuolei Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
23
|
Xu J, Zhou L, Chen Z, Wang Y, Xu F, Kuang Q, Zhang Y, Zheng H. Bacillus coagulans and Clostridium butyricum synergistically alleviate depression in a chronic unpredictable mild stress mouse model through altering gut microbiota and prefrontal cortex gene expression. Front Pharmacol 2024; 15:1393874. [PMID: 38855745 PMCID: PMC11158626 DOI: 10.3389/fphar.2024.1393874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction: The prevalence of major depressive disorder (MDD) has gradually increased and has attracted widespread attention. The aim of this study was to investigate the effect of a probiotic compound consisting of Bacillus coagulans and Clostridium butyricum, on a mouse depression model. Methods: Mice were subjected to chronic unpredictable mild stress (CUMS) and then treated with the probiotics at different concentrations. And mice received behavior test such as forced swimming test and tail suspension test. After that, all mice were sacrificed and the samples were collected for analysis. Moreover, prefrontal cortex (PFC) gene expression and the gut microbiota among different groups were also analyzed. Results: Probiotics improved depressive-like behavior in CUMS mice, as indicated by decreased immobility time (p < 0.05) in the forced swimming test and tail suspension test. probiotics intervention also increased the level of 5-hydroxytryptamine (5-HT) in the prefrontal cortex and decreased the adrenocorticotropic hormone (ACTH) level in serum. In addition, by comparing the PFC gene expression among different groups, we found that the genes upregulated by probiotics were enriched in the PI3K-Akt signaling pathway in the prefrontal cortex. Moreover, we found that downregulated genes in prefrontal cortex of CUMS group such as Sfrp5 and Angpt2, which were correlated with depression, were reversed by the probiotics. Furthermore, the probiotics altered the structure of the gut microbiota, and reversed the reduction of cob(II)yrinate a,c-diamide biosynthesis I pathway in CUMS group. Several species like Bacteroides caecimuris and Parabacteroides distasoni, whose abundance was significantly decreased in the CUMS group but reversed after the probiotics intervention, showed significantly positive correlation with depression associated genes such as Tbxas1 and Cldn2. Discussion: These findings suggested that CUMS-induced depression-like behavior can be alleviated by the probiotics, possibly through alterations in the PFC gene expression and gut microbiota.
Collapse
Affiliation(s)
- Jingyi Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhaowei Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Fang Xu
- The Academician Workstation, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qun Kuang
- Jiangsu Limited Company of Suwei Microbiology, Wuxi, China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- The Academician Workstation, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
24
|
Yang Y, Chen YK, Xie MZ. Exploring the transformative impact of traditional Chinese medicine on depression: Insights from animal models. World J Psychiatry 2024; 14:607-623. [PMID: 38808079 PMCID: PMC11129158 DOI: 10.5498/wjp.v14.i5.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
Depression, a prevalent and complex mental health condition, presents a significant global health burden. Depression is one of the most frequent mental disorders; deaths from it account for 14.3% of people worldwide. In recent years, the integration of complementary and alternative medicine, including traditional Chinese medicine (TCM), has gained attention as a potential avenue for addressing depression. This comprehensive review critically assesses the efficacy of TCM interventions in alleviating depressive symptoms. An in-depth look at different research studies, clinical trials, and meta-analyses is used in this review to look into how TCM practices like herbal formulations, acupuncture, and mind-body practices work. The review looks at the quality of the evidence, the rigor of the methods, and any possible flaws in the current studies. This gives us an idea of where TCM stands right now in terms of treating depression. This comprehensive review aims to assess the efficacy of TCM interventions in alleviating depressive symptoms. In order to learn more about their possible healing effects, the study also looks into how different types of TCM work, such as herbal formulas, acupuncture, and mind-body practices.
Collapse
Affiliation(s)
- Yan Yang
- School of Nursing, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Yan-Kun Chen
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, Guangdong Province, China
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Meng-Zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| |
Collapse
|
25
|
Han S, Cao Y, Wu X, Xu J, Nie Z, Qiu Y. New horizons for the study of saffron (Crocus sativus L.) and its active ingredients in the management of neurological and psychiatric disorders: A systematic review of clinical evidence and mechanisms. Phytother Res 2024; 38:2276-2302. [PMID: 38424688 DOI: 10.1002/ptr.8110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 03/02/2024]
Abstract
Saffron (Crocus sativus), as an herbal medicine, has been extensively investigated for treating neurological and psychiatric disorders. This systematic review aimed to assess the overall effects of saffron on cognition, depression, anxiety, sleep disorders, attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Relevant randomized controlled trials (RCTs) were identified by searching PubMed/Medline, Web of Science, and Clinical Trials databases up to June 2023 according to search terms and inclusion criteria. The participants were either healthy or suffering from some diseases, including neurological and psychiatric disorders, and consumed saffron or its extracts as an intervention. The risk of bias was assessed according to the Cochrane guidelines, and the PRISMA statement was followed. The meta-analysis was performed using RevMan and STATA software. A random-effects or fixed-effects model was used to calculate the pooled effect sizes. Forty-six RCTs were enrolled, and the duration of these trials ranged from 4 to 48 weeks with saffron or its extracts, both alone or in combination with conventional drugs. Saffron was more effective than placebo in improving cognition, depression with an overall effect size of -4.26 (95% CI: -5.76, -2.77), anxiety of -3.75 (95% CI: -5.83, -1.67), and sleep disorders of -1.91 (95% CI: -2.88, -0.93). Saffron was non-inferior to conventional drugs for treating cognitive disorders, depression, anxiety, ADHD, and OCD, and it exhibited good tolerance with few side effects. Saffron may exert protective roles for neurological and psychiatric disorders and represents a relatively favorable and safe treatment.
Collapse
Affiliation(s)
- Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yifei Cao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xingrong Wu
- Male Department of General Psychiatry, Shanxi Provincial Mental Health Center and Taiyuan Psychiatric Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Jiaoyang Xu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Zizheng Nie
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Qiu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
26
|
Nguyen LTH, Nguyen NPK, Tran KN, Shin HM, Yang IJ. Intranasal administration of the essential oil from Perillae Folium ameliorates social defeat stress-induced behavioral impairments in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117775. [PMID: 38224793 DOI: 10.1016/j.jep.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perillae Folium, the leaves and twigs of Perilla frutescens (L.) Britton, has been included in many traditional Chinese medicine herbal formulas to treat depression. However, the precise antidepressant mechanism of the essential oil from Perillae Folium (PFEO) has not been fully investigated. AIM OF THE STUDY To assess the effects and potential mechanisms of PFEO on depression using animal models and network pharmacology analysis. MATERIALS AND METHODS PFEO was intranasally administered to a mouse model of social defeat stress (SDS). The antidepressant effects of PFEO on SDS-induced mice were evaluated using behavioral tests. Enzyme-linked immunosorbent assay (ELISA) and western blot were performed to measure the levels of depression-related biomarkers in the hippocampus and serum of the mice. The chemical compounds of PFEO were determined using gas chromatography-mass spectrometry (GC-MS). Network pharmacology and molecular docking analyses were conducted to investigate the potential bioactive components of PFEO and the mechanisms underlying the antidepressant effects. To validate the mechanisms of the bioactive compounds, in vitro models using PC12 and BV2 cells were established and the blood-brain barrier (BBB) permeability was evaluated. RESULTS The intranasal administration of PFEO suppressed SDS-induced depression in mice by increasing the time spent in the social zone and the social interactions in the social interaction test and by decreasing the immobility time in the tail suspension and forced swimming tests. Moreover, the PFEO treatment reduced the SDS-induced anxiety-like behavior, as inferred from the increased activity in the central zone observed in the open field test and in the open arms observed in the elevated plus maze test. PFEO administration recovered the SDS-induced decrease in the levels of 5-HT, NE, gamma-aminobutyric acid (GABA), and p-ERK in the hippocampus of mice. Furthermore, the increased serum corticosterone level was also attenuated by the PFEO treatment. A total of 21 volatile compounds were detected in PFEO using GC-MS, among which elemicin (15.52%), apiol (15.16%), and perillaldehyde (12.79%) were the most abundant ones. The PFEO compounds targeted 32 depression-associated genes, which were mainly related to neural cells and neurotransmission pathways. Molecular docking indicated good binding affinities between the bioactive components of PFEO (apiol, β-caryophyllene, elemicin, and myristicin) and the key targets, including ACHE, IL1B, IL6, MAOB, SLC6A2, SLC6A3, SLC6A4, and tumor necrosis factor. Among the four compounds, β-caryophyllene, elemicin, and myristicin were more effective in reducing neurotoxicity and neuroinflammation. Elemicin showed the highest BBB permeability rate. CONCLUSIONS This study shows the antidepressant activities of PFEO in an SDS-induced mouse model and suggests its potential mechanisms of action: regulation of the corticosterone levels, hippocampal neurotransmitters, and ERK signaling. Apiol, β-caryophyllene, elemicin, and myristicin may be the main contributors to the observed effects induced by PFEO. Further studies are needed to fully elucidate the underlying mechanisms and the main PFEO bioactive components.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Khoa Nguyen Tran
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Heung-Mook Shin
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - In-Jun Yang
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
27
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
28
|
Jain NK, Tailang M, Chandrasekaran B, Khazaleh N, Thangavel N, Makeen HA, Albratty M, Najmi A, Alhazmi HA, Zoghebi K, Alagusundaram M, Jain HK. Integrating network pharmacology with molecular docking to rationalize the ethnomedicinal use of Alchornea laxiflora (Benth.) Pax & K. Hoffm. for efficient treatment of depression. Front Pharmacol 2024; 15:1290398. [PMID: 38505421 PMCID: PMC10949534 DOI: 10.3389/fphar.2024.1290398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background: Alchornea laxiflora (Benth.) Pax & K. Hoffm. (A. laxiflora) has been indicated in traditional medicine to treat depression. However, scientific rationalization is still lacking. Hence, this study aimed to investigate the antidepressant potential of A. laxiflora using network pharmacology and molecular docking analysis. Materials and methods: The active compounds and potential targets of A. laxiflora and depression-related targets were retrieved from public databases, such as PubMed, PubChem, DisGeNET, GeneCards, OMIM, SwissTargetprediction, BindingDB, STRING, and DAVID. Essential bioactive compounds, potential targets, and signaling pathways were predicted using in silico analysis, including BA-TAR, PPI, BA-TAR-PATH network construction, and GO and KEGG pathway enrichment analysis. Later on, with molecular docking analysis, the interaction of essential bioactive compounds of A. laxiflora and predicted core targets of depression were verified. Results: The network pharmacology approach identified 15 active compounds, a total of 219 compound-related targets, and 14,574 depression-related targets with 200 intersecting targets between them. SRC, EGFR, PIK3R1, AKT1, and MAPK1 were the core targets, whereas 3-acetyloleanolic acid and 3-acetylursolic acid were the most active compounds of A. laxiflora with anti-depressant potential. GO functional enrichment analysis revealed 129 GO terms, including 82 biological processes, 14 cellular components, and 34 molecular function terms. KEGG pathway enrichment analysis yielded significantly enriched 108 signaling pathways. Out of them, PI3K-Akt and MAPK signaling pathways might have a key role in treating depression. Molecular docking analysis results exhibited that core targets of depression, such as SRC, EGFR, PIK3R1, AKT1, and MAPK1, bind stably with the analyzed bioactive compounds of A. laxiflora. Conclusion: The present study elucidates the bioactive compounds, potential targets, and pertinent mechanism of action of A. laxiflora in treating depression. A. laxiflora might exert an antidepressant effect by regulating PI3K-Akt and MAPK signaling pathways. However, further investigations are required to validate.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | | | | | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| |
Collapse
|
29
|
Chen S, Wang K, Wang H, Gao Y, Nie K, Jiang X, Su H, Tang Y, Lu F, Dong H, Wang Z. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol Res 2024; 201:107090. [PMID: 38309381 DOI: 10.1016/j.phrs.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
30
|
Gong G, Ganesan K, Wang Y, Zhang Z, Liu Y, Wang J, Yang F, Zheng Y. Ononin ameliorates depression-like behaviors by regulating BDNF-TrkB-CREB signaling in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117375. [PMID: 37944872 DOI: 10.1016/j.jep.2023.117375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ononin is a flavonoid compound found in several medicinal plants, including Astragalus membranaceus, Sophora flavescens, and Ononis spinosa. These plants have been traditionally used in various parts of the world for their medicinal properties, including anti-inflammatory, antioxidant, and antitumor effects. Major depression is a common, long-lasting, and recurrent psychiatric disorder with a high suicide rate. Naturally occurring flavonoids treat depression via poorly understood mechanisms. AIM OF THE STUDY The present study aimed to determine whether ononin conferred an antidepressant-like effect in PC12 cell models and chronic mild stress (CMS)-induced depressive rat models and to explore its possible mechanisms. MATERIALS AND METHODS Depression-related behaviors were measured using sucrose preference, tail suspension and open-field tests. Furthermore, to explore these mechanisms, we employed in vitro and in vivo assay methods, including neurite outgrowth, western blotting, quantitative RT-PCR, and staining methods. RESULTS Treatment with ononin or BDNF significantly increased PC12 cells' neuronal growth and differentiation. Furthermore, ononin promotes the activation of TrkB and growth factors and upregulates the PI3K/Akt and BDNF/TrkB/CREB signaling pathways. The in vitro results were consistent with CMS-induced depressive rat models, in which ononin treatment significantly decreased depression-like behaviors and activated TrkB, growth factors, and BDNF/TrkB/CREB signaling pathways in the frontal cortex and hippocampus. Depression-induced microscopic alterations in the frontal cortex and hippocampus of rats with CMS-induced depression were also mitigated following ononin treatment. CONCLUSION Based on these findings, we suggest that ononin is a promising antidepressant candidate for treating depression.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, Guangdong, China; Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, 999077, Hong Kong Special Administrative Region of China
| | - Yongjie Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Junli Wang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fenglian Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China; Guangdong East Drug and Food & Health Branch, Chaozhou, Guangdong 521041, China.
| |
Collapse
|
31
|
Tao Y, Zhou H, Li Z, Wu H, Wu F, Miao Z, Shi H, Huang F, Wu X. TGR5 deficiency-induced anxiety and depression-like behaviors: The role of gut microbiota dysbiosis. J Affect Disord 2024; 344:219-232. [PMID: 37839469 DOI: 10.1016/j.jad.2023.10.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND PURPOSE Anxiety and depression have been associated with imbalances in the gut microbiota and bile acid metabolism. Takeda G protein-coupled receptor 5 (TGR5), a bile acid receptor involved in metabolism, is influenced by the gut microbiota. This study aimed to investigate the relationship between anxiety, depression, and microbiota using TGR5 knockout mice. METHODS We employed the following methods: (1) Assessment of behavioral changes, (2) Measurement of 5-HT levels and protein expression, (3) Analysis of stool samples, (4) Utilization of gene sequencing and statistical analysis to identify microbial signatures, (5) Examination of correlations between microbial signatures and 5-HT levels, and (6) Fecal microbiota transplantation experiments of TGR5-/- mice. RESULTS The deletion of TGR5 was found to result in increased anxiety- and depression-like behaviors in mice. TGR5 knockout mice exhibited significant reductions in 5-hydroxytryptamine (5-HT) levels in both serum and hippocampus, accompanied by a decrease in the expression of 5-HT1A receptor in the hippocampus. Moreover, TGR5 deficiency was associated with a decrease in the species richness of the gut microbiota. Specifically, the gut microbiota compositions of TGR5 knockout mice displayed distinct differences compared to their littermates, characterized by higher abundances of Anaeroplasma, Prevotella, Staphylococcus, Jeotgalicoccus, and Helicobacter, and a lower abundance of Bifidobacterium. Notably, a strong association between Jeotgalicoccus as well as Staphylococcus and serum 5-HT levels was observed in co-occurrence network. Furthermore, mice that received fecal microbiota transplants from TGR5-/- mice displayed anxiety and depression -like behaviors, accompanied by alterations in 5-HT levels in the hippocampus and serum. LIMITATIONS Study limitations for gut bacteria were analyzed at the genus level only. CONCLUSION TGR5 deletion in mice induces anxiety and depression-like behaviors, linked to reduced 5-HT levels in serum and the hippocampus. Gut microbiota changes play a direct role in these behaviors and serotonin alterations. This implicates TGR5 and gut bacteria in mood regulation, with potential therapeutic implications.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fanggeng Wu
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Zhiguo Miao
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
32
|
Wei E, Gao A, Mu X, Qu S, Yang C, Li F, Li S, Liu X, Song C, Guo Y. Paeonol ameliorates hippocampal neuronal damage by inhibiting GRM5/GABBR2/β-arrestin2 and activating the cAMP-PKA signaling pathway in premenstrual irritability rats. Brain Res Bull 2023; 205:110830. [PMID: 38036272 DOI: 10.1016/j.brainresbull.2023.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is a periodic psychiatric disorder with high prevalence in women of childbearing age, seriously affecting patients' work and life. Currently, the international first-line drugs for PMDD have low efficiency and increased side effects. Paeonol, a major component of the traditional Chinese medicine Cortex Moutan, has been applied in treating PMDD in China with satisfactory results, but the therapeutic mechanism is not fully understood. This study aims to evaluate the therapeutic effects and pharmacological mechanisms of paeonol on the main psychiatric symptoms and hippocampal damage in PMDD. We established a premenstrual irritability rat model by the resident-intruder paradigm and performed elevated plus maze and social interactions. And we employed the HE and Nissl staining techniques to observe the therapeutic effect of paeonol on hippocampal damage in PMDD rats. Subsequently, Elisa, qRT-PCR Array, Western Blotting, and cell models were utilized to elucidate the underlying molecular mechanisms through which paeonol intervenes in treating PMDD. In this study, we demonstrated the therapeutic effects of paeonol on irritability, anxiety, and social withdrawal behaviors in rats. In addition, we found that paeonol significantly reduced the serum corticosterone (CORT) level, improved hippocampal morphological structure and neuron number, and reduced hippocampal neuron apoptosis in PMDD rats. Paeonol reduced GRM5, GABBR2, β-arrestin2, and GRK3 expression levels in hippocampal brain regions of PMDD rats and activated the cAMP/PKA signaling pathway. Inhibitor cell experiments showed that paeonol specifically ameliorated hippocampal injury by modulating the β-arrestin2/PDE4-cAMP/PKA signaling pathway. The present study demonstrates, for the first time, that paeonol exerts a therapeutic effect on periodic psychotic symptoms and hippocampal injury in PMDD through inhibiting GRM5/GABBR2/β-arrestin2 and activating cAMP-PKA signaling pathway. These findings enhance our understanding of the pharmacological mechanism underlying paeonol and provide a solid scientific foundation for its future clinical application.
Collapse
Affiliation(s)
- Enhua Wei
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Aiying Gao
- Taian Institute for Food and Drug Control (Taian Fiber Inspection Institute), Taian 271000, China
| | - Xiaofei Mu
- Department of Pharmacy, Rizhao Central Hospital, Rizhao 276800, China
| | - Songlin Qu
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Caixing Yang
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fengling Li
- Taian Institute for Food and Drug Control (Taian Fiber Inspection Institute), Taian 271000, China
| | - Shujing Li
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuehuan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunhong Song
- Shandong Key Laboratory of Traditional Chinese Medicine and Stress Injury, Department of Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.
| | - Yinghui Guo
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
33
|
Zou J, Yang L, Yang G, Gao J. The efficacy and safety of some new GABAkines for treatment of depression: A systematic review and meta-analysis from randomized controlled trials. Psychiatry Res 2023; 328:115450. [PMID: 37683318 DOI: 10.1016/j.psychres.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, or GABAkines, play important roles in the treatment of depression, epilepsy, insomnia, and other disorders. Recently, some new GABAkines (zuranolone and brexanolone) have been administrated to patients with major depressive disorder (MDD) or postpartum depression (PPD) in randomized controlled trials (RCTs). This study aims to systematically review and examine the efficacy and safety of zuranolone or brexanolone for treatment of depression. A systematic literature retrieval was conducted through August 20, 2023. RCTs evaluating the efficacy and safety of zuranolone or brexanolone for treatment of depression were included. Eight studies (nine reports) were identified in the study. The percentages of patients with PPD achieving Hamilton Depression Rating Scale (HAM-D) response and remission were significantly higher after brexanolone or zuranolone administration compared with placebo at different points. The percentages of patients with MDD achieving HAM-D response and remission were significantly increased during the zuranolone treatment period compared with placebo. In addition, zuranolone caused more adverse events in patients with MDD compared with placebo. Our findings support the effects of brexanolone on improving the core symptoms of depression in patients with PPD, and the potential of zuranolone in treating patients with MDD or PPD.
Collapse
Affiliation(s)
- Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guoyu Yang
- School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
34
|
Delam H, Keshtkaran Z, Shokrpour N, Eidi A, Bazrafshan MR. The effect of Crocus sativus L. (saffron) herbal tea on happiness in postmenopausal women: a randomized controlled trial. BMC Complement Med Ther 2023; 23:176. [PMID: 37264347 DOI: 10.1186/s12906-023-04014-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Evidence suggests that menopause can be associated with a variety of negative psychological changes such as depression and anxiety, and improving the mental health status of women during menopause is one of the important priorities and challenges of the health system. The aim of this study was to determine the effect of saffron (Crocus sativus L., Iridaceae) herbal tea on happiness in postmenopausal women. METHODS In this randomized clinical trial which was conducted in 2021, 72 postmenopausal women were enrolled and divided into intervention and control groups. The randomization blocks method was used for random allocation, and the Oxford Happiness Questionnaire was utilized to measure the scores. The intervention included the use of 30 mg of dried stigmas of the saffron plant, which was boiled once (in the morning, in 300 ml of boiling water for 10-15 min) and consumed with white rock candy as one cup of saffron tea daily. To compare the trend of changes and after removing the effect of other variables, generalized estimating equation (GEE) was used. RESULTS There was no significant difference between the intervention and control groups in any of the quantitative and qualitative characteristics (p > 0.05). The results of paired samples t-test showed that the happiness mean score in the intervention group increased significantly (p < 0.001) from 42.93 ± 8.54 to 61.58 ± 8.24, while in the control group, there was no significant difference between the happiness mean score at the beginning and end of the study (p = 0.861). Also, after applying the treatment program in the intervention group, there was a significant difference between the two groups in terms of the happiness mean scores (p < 0.001). CONCLUSION Saffron herbal tea had a positive effect on reducing depression and increasing the happiness score; thus, it is recommended that it should be used as a complementary treatment in consultation with the treating physician. TRIAL REGISTRATION The present study was registered with the code of IRCT20210403050818N1 (Registration date: 09/04/2021) in the Iranian Registry of Clinical Trials. It was also approved by the Ethics Committee of Larestan University of Medical Sciences (Approval ID: IR.LARUMS.REC.1399.017).
Collapse
Affiliation(s)
- Hamed Delam
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
- Imam Reza Teaching Hospital, Larestan University of Medical Sciences, Larestan, Iran
| | - Zahra Keshtkaran
- Community Based Psychiatric Care Research Center, Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Shokrpour
- English Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmadreza Eidi
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Mohammad-Rafi Bazrafshan
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran.
| |
Collapse
|