1
|
Kong M, Hao Y, Xu R, Guo J, Wei X, Yin S, Zhang R. Characteristic trends and source shifts of n-alkanes in a multi-year study: Insights from gas-particle partitioning in a central Chinese city. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137445. [PMID: 39893980 DOI: 10.1016/j.jhazmat.2025.137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Understanding the carbon distribution and source shifts of n-alkanes, which have considerable environmental and public health implications, is vital for assessing the long-term atmospheric behaviour of organic compounds. Here, we combined seasonal data of PM2.5 bounded n-alkanes (C8-C40) collected in a Chinese city across three time periods (2014-2015, 2019, 2022) to investigate their characteristics and source proportions over time. The annual average concentration of particulate n-alkanes in 2022 was 118 ng m⁻³ , showing a 41 % decline from 2019 and a 50 % reduction from 2014 to 2015. Diagnostic ratio analysis (carbon preference index and plant wax ratio) revealed that anthropogenic sources dominated in all three periods. Positive Matrix Factorisation (PMF) model of PM2.5 bounded n-alkanes identified a shift from coal combustion to motor vehicle emissions as the primary source, while contributions from plant waxes increased in 2022 (22.6 %) compared to 2014-2015 (18.8 %) and 2019 (19.6 %). A comparative analysis of the source of intermediate and semi-volatile n-alkanes (C16-C29, including measured particle-phase and predicted gas-phase) against particle-phase n-alkanes (C16-C29) demonstrated notable discrepancies, highlighting the significant role of gas-particle partitioning in source attribution. These insights deepen the understanding of long-term n-alkane trends and are critical for designing effective air pollution control strategies.
Collapse
Affiliation(s)
- Mengdi Kong
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanyan Hao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixin Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jing Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinfei Wei
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shasha Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Yan X, An J, He W, Zhou Q. Environmental factors influencing the soil-air partitioning of semi-volatile petroleum hydrocarbons: Laboratory measurements and optimization model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171953. [PMID: 38537825 DOI: 10.1016/j.scitotenv.2024.171953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The soil-air partition coefficient (KSA) values are commonly utilized to examine the fate of organic contaminants in soils; however, their measurement has been lacking for semi-volatile petroleum hydrocarbons within soil contaminated by crude oil. This research utilized a solid-phase fugacity meter to determine the KSA values of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) under crucial environmental conditions. The results showed a notable increase in KSA values with the extent of crude oil contamination in soil. Specifically, in the 3 % crude oil treatment, the KSA values for n-alkanes and PAHs increased by 1.16 and 0.66 times, respectively, compared to the 1 % crude oil treatment. However, the KSA values decreased with changes in temperature, water content, and particle size within the specified experimental range. Among these factors, temperature played a significant role. The KSA values for n-alkanes and PAHs decreased by 0.27-0.89 and 0.61-0.83 times, respectively, with a temperature increase from 5 °C to 35 °C. Moreover, the research identified that the molecular weight of n-alkanes and PAHs contributed to variations in KSA values under identical environmental factors. With an increase in temperature from 5 °C to 35 °C, the range of n-alkanes present in the air phase expanded from C11 to C34, and PAHs showed elevated levels of acenaphthene (ACE) and benzo (b) fluoranthene (BbFA). Furthermore, heightened water content and particle size were observed to facilitate the volatilization of low molecular weight petroleum hydrocarbons. The effect of environmental variables on soil-air partitioning was evaluated using the Box-Behnken design (BBD) model, resulting in the attainment of the lowest log KSA values. These results illustrate that soil-air partitioning is a complex process influenced by various factors. In conclusion, this study improves our comprehension and predictive capabilities concerning the behavior and fate of n-alkanes and PAHs within soil-air systems.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110142, China.
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Dominutti PA, Mari X, Jaffrezo JL, Dinh VTN, Chifflet S, Guigue C, Guyomarc'h L, Vu CT, Darfeuil S, Ginot P, Elazzouzi R, Mhadhbi T, Voiron C, Martinot P, Uzu G. Disentangling fine particles (PM 2.5) composition in Hanoi, Vietnam: Emission sources and oxidative potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171466. [PMID: 38447718 DOI: 10.1016/j.scitotenv.2024.171466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
A comprehensive chemical characterization of fine particulate matter (PM2.5) was conducted at an urban site in one of the most densely populated cities of Vietnam, Hanoi. Chemical analysis of a series of 57 daily PM2.5 samples obtained in 2019-2020 included the quantification of a detailed set of chemical tracers as well as the oxidative potential (OP), which estimates the ability of PM to catalyze reactive oxygen species (ROS) generation in vivo as an initial step of health effects due to oxidative stress. The PM2.5 concentrations ranged from 8.3 to 148 μg m-3, with an annual average of 40.2 ± 26.3 μg m-3 (from September 2019 to December 2020). Our results obtained by applying the Positive Matrix Factorization (PMF) source-receptor apportionment model showed the contribution of nine PM2.5 sources. The main anthropogenic sources contributing to the PM mass concentrations were heavy fuel oil (HFO) combustion (25.3 %), biomass burning (20 %), primary traffic (7.6 %) and long-range transport aerosols (10.6 %). The OP activities were evaluated for the first time in an urban site in Vietnam. The average OPv levels obtained in our study were 3.9 ± 2.4 and 4.5 ± 3.2 nmol min-1 m-3 for OPDTT and OPAA, respectively. We assessed the contribution to OPDTT and OPAA of each PM2.5 source by applying multilinear regression models. It shows that the sources associated with human activities (HFO combustion, biomass burning and primary traffic) are the sources driving OP exposure, suggesting that they should be the first sources to be controlled in future mitigation strategies. This study gives for the first time an extensive and long-term chemical characterization of PM2.5, providing also a link between emission sources, ambient concentrations and exposure to air pollution at an urban site in Hanoi, Vietnam.
Collapse
Affiliation(s)
- Pamela A Dominutti
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France.
| | - Xavier Mari
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Jean-Luc Jaffrezo
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Vy Thuy Ngoc Dinh
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Sandrine Chifflet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Catherine Guigue
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Lea Guyomarc'h
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Cam Tu Vu
- Water-Environment-Oceanography (WEO) Department, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Sophie Darfeuil
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Patrick Ginot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Rhabira Elazzouzi
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Takoua Mhadhbi
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Céline Voiron
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Pauline Martinot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Gaëlle Uzu
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France.
| |
Collapse
|
4
|
Wu D, Chen L, Ma Z, Zhou D, Fu L, Liu M, Zhang T, Yang J, Zhen Q. Source analysis and health risk assessment of polycyclic aromatic hydrocarbon (PAHs) in total suspended particulate matter (TSP) from Bengbu, China. Sci Rep 2024; 14:5080. [PMID: 38429521 PMCID: PMC10907572 DOI: 10.1038/s41598-024-55695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The polycyclic aromatic hydrocarbon (PAH) concentrations in total suspended particulate matter (TSP) samples collected from October, 2021 to September, 2022 were analyzed to clarify the pollution characteristics and sources of 16 PAHs in the atmospheric TSP in Bengbu City. The ρ(PAHs) concentrations ranged from 1.71 to 43.85 ng/m3 and higher concentrations were detected in winter, followed by spring, autumn, and summer. The positive matrix factorization analysis revealed that, in spring and summer, PAH pollution was caused mainly by industrial emissions, gasoline and diesel fuel combustion, whereas in autumn and winter, it was coal, biomass and natural gas combustion. The cluster and potential source factor analyses showed that long-range transport was a significant factor. During spring, autumn, and winter, the northern and northwestern regions had a significant impact, whereas the coastal area south of Bengbu had the greatest influence in summer. The health risk assessment revealed that the annual total carcinogenic equivalent concentration values for PAHs varied from 0.0159 to 7.437 ng/m3, which was classified as moderate. Furthermore, the annual incremental lifetime cancer risk values ranged from 1.431 × 10-4 to 3.671 × 10-3 for adults and from 6.823 × 10-5 to 1.749 × 10-3 for children, which were higher than the standard.
Collapse
Affiliation(s)
- Danchen Wu
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Liu Chen
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Zhijing Ma
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Dalin Zhou
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Le Fu
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Mengmeng Liu
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
- Fuyang Cancer Hospital, Fuyang, 236010, People's Republic of China
| | - Tianer Zhang
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
- Xinchang Center for Disease Control and Prevention, Xinchang, 312599, People's Republic of China
| | - Jing Yang
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Quan Zhen
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China.
| |
Collapse
|
5
|
Gheriani A, Boudehane A, Lounas A, Balducci C, Cecinato A, Khadraoui A. n-Alkanes and Polycyclic Aromatic Hydrocarbons in Deposition Dust and PM 10 of Interiors in Touggourt Region, Algeria. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:226-241. [PMID: 36006420 DOI: 10.1007/s00244-022-00954-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of pollutants in environment displays its maximum impact on human health and on the global "quality" of life in the places where humans spend most of their time, i.e., indoors. A field study was undertaken in the region of Touggourt, Algeria. The goal was that of obtaining information on the main sources of indoor pollutant emissions (n-alkanes and polycyclic aromatic compounds) associated with deposition dusts (DDs) and suspended particulates (PM10). A multi-service clinic, two schools, a coffee bar, three houses, and an asphalt distribution center were investigated. Forty-five samples in total were collected, including 31 deposition dusts and 14 airborne particulates. That would improve the current understanding of pollution features in central Algeria reached through previous investigations in the Touggourt region. Capillary gas chromatography coupled with mass spectrometric detection was adopted to determine the concentrations of n-alkanes and PAHs. In deposition dust, total n-alkanes (TNAs) ranged between 37 and 794 ng/(m2 day) in the summer and 33-1,724 ng/(m2 day) in the fall. Meanwhile, TNAs loads in the PM10 samples ranged between 778 and 2,024 ng/m3. According to Carbon Preference Index (CPI), Cmax, and wax n-alkanes (WaxCn) approaches, both DD and PM10 were released overall by anthropogenic sources, though the contribution of natural emissions could not be neglected. Total polycyclic aromatic hydrocarbons (TPAHs) associated with DD ranged from 4.4 ng/(m2 day) to 127 ng/(m2 day) during the summer period, and 2.0-224 ng/(m2 day) in the fall; TPAHs' concentrations in PM10 ranged between 40 ng/m3 and 984 ng/m3. Preliminary information about the sources of PAHs was drawn by calculating the concentration ratios between diagnostic pairs (DRs) of PAHs. According to PAH DR values, the pollution sources influenced at distinct extents all of the sites and locations investigated. Anyway, the PAH occurrence was associated with petrogenic sources, with the prevalence of gasoline fuel cars, at most sites. A wide variability was also observed by comparing the concentrations of pollutants observed in the summer and in the fall. This was in agreement with the results of n-alkanes emissions.
Collapse
Affiliation(s)
- Abdennour Gheriani
- Pollution and Waste Treatment Laboratory, Faculty of Mathematics and Matter Sciences, University of Kasdi Merbah Ouargla, 30000, Ouargla, Algeria.
| | - Aicha Boudehane
- Pollution and Waste Treatment Laboratory, Faculty of Mathematics and Matter Sciences, University of Kasdi Merbah Ouargla, 30000, Ouargla, Algeria
| | - Ali Lounas
- Pollution and Waste Treatment Laboratory, Faculty of Mathematics and Matter Sciences, University of Kasdi Merbah Ouargla, 30000, Ouargla, Algeria
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
- Department of Chemistry, University "Sapienza - Roma 1", Rome, Italy
| | - Abbas Khadraoui
- Pollution and Waste Treatment Laboratory, Faculty of Mathematics and Matter Sciences, University of Kasdi Merbah Ouargla, 30000, Ouargla, Algeria
| |
Collapse
|
6
|
Jaafar W, Zaherddine V, Hussein F, Saliba NA, Hayeck N. Poor regulation implications in a low and middle income country based on PAH source apportionment and cancer risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1986-1996. [PMID: 34755749 DOI: 10.1039/d1em00285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ambient particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected for one year at an urban background site, and spatially and temporally compared to yearly averages in three coastal cities in Lebanon. The samples were quantified using gas chromatography-mass spectrometry (GC-MS) and source apportioned with an optimized robust method using positive matrix factorization (PMF). Three major sources were found to contribute to PAH emissions at the urban background site, namely, traffic (48%), diesel generators (23%), and incineration (29%). The cancer risk was found higher than what was measured at the same site in previous years with an increase of 35%. Improper regulations of the sources (incineration, power plant, diesel generators and traffic) identified in the different sites resulted in PAH intraurban variability. It is essential to study the chemical components of particulate matter (PM) in order to assess toxicity. In particular, particle-bound PAHs and their oxidation products are known for their carcinogenicity as well as their persistence in the atmosphere, which facilitate their transport to new locations. In the absence of law enforcement, unregulated sources and their total contribution to ambient PAHs present a major health risk. This calls for the attention of development funding agencies and their need to implement sustainable "carbon-free" funding strategies in support of urban development of low and middle-income countries (LMICs).
Collapse
Affiliation(s)
- Wiaam Jaafar
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Vera Zaherddine
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Fatima Hussein
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Najat Aoun Saliba
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Nathalie Hayeck
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon.
| |
Collapse
|
7
|
Ari PE, Ari A, Dumanoğlu Y, Odabasi M, Gaga EO. Organic chemical characterization of size segregated particulate matter samples collected from a thermal power plant area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114360. [PMID: 32443206 DOI: 10.1016/j.envpol.2020.114360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Kütahya city, a thermal power plant (TPPs) affected region of Turkey, has serious air quality problems like similar industrial regions of the world due to the emissions from three closely-located coal-fired TPPs, residential coal combustion along with the contribution of several industrial stacks. The organic chemical speciation of ambient size-segregated particulate matter (PM) was investigated during two seasons at two sites with different pollution characteristics (urban and rural). The ambient PM was collected using a high volume cascade impactor, with 6 stages: PM>10.2, PM10.2-4.2, PM4.2-2.1, PM2.1-1.3, PM1.3-0.69 and PM<0.69. Collected PM samples were extracted with organic solvents and the organic composition (Polycyclic aromatic hydrocarbons (PAHs), n-alkanes and carboxylic acids) was determined by GC-MS. Sources of the organic species were assessed using molecular PAH diagnostic ratios, carbon preference index and wax percentages. More than 70% of the PM-bound PAHs were quantified in submicron particles. Similarly, 34-42% of n-alkanes and approximately 30% of the carboxylic acids were found on the smallest particles. The main sources of the PM-bound organic species were considered as the anthropogenic emissions such as coal and biomass combustion and also vehicular emissions rather than the biogenic sources. Considerably high cancer risk levels were obtained through inhalation of PAHs. Seasonal variations and size distributions of the carboxylic acids and levoglucosan were also evaluated. Polar organic compound concentrations were higher in the summer period at both locations probably due to the higher sunlight intensity and temperature favoring their photochemical formation.
Collapse
Affiliation(s)
- Pelin Ertürk Ari
- Engineering Faculty, Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey; Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Akif Ari
- Engineering Faculty, Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey; Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Yetkin Dumanoğlu
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey
| | - Mustafa Odabasi
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey
| | - Eftade O Gaga
- Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey.
| |
Collapse
|
8
|
Padoan S, Zappi A, Adam T, Melucci D, Gambaro A, Formenton G, Popovicheva O, Nguyen DL, Schnelle-Kreis J, Zimmermann R. Organic molecular markers and source contributions in a polluted municipality of north-east Italy: Extended PCA-PMF statistical approach. ENVIRONMENTAL RESEARCH 2020; 186:109587. [PMID: 32668546 DOI: 10.1016/j.envres.2020.109587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Exceeding the maximum levels for environmental pollutants creates public and scientific interest for the environmental and human health impact it may have. In Northern Italy, the Po Valley, and in particular the Veneto region, is still a hotspot for air quality improvement. Several monitoring campaigns were carried out in this area to acquire information about sources of pollutants which are considered critical. For the first time, a deep study of the aerosol organic fraction was performed in the town Sernaglia della Battaglia, nearby Treviso. During three seasons of 2017, PM1 and PM2.5 samples were collected simultaneously. Organic molecular markers have been analyzed by in-situ derivatization thermal desorption gas chromatography time-of-flight mass spectrometry (IDTD-GC-TOFMS). Alkanes, polycyclic aromatic hydrocarbons, oxi-polycyclic aromatic hydrocarbons, anhydrous sugars, resins acids, triterpenoids, and acids were considered. The organic chemical composition has been analyzed based on seasonal variation and source contributions. Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) have been combined to deeply investigate the main sources of particulate organic matter. On the one hand, PCA evaluates the correlations between the organic markers and their seasonal distribution. On the other hand, the source contributions to aerosol composition are estimated by PMF. Four main emission sources were found by PMF: solid fuel combustion (coal, wood), combustion of petroleum distillates (gas and fuel oil) and exhaust gases of vehicles, industrial combustion processes, home heating, and forest fires are evaluated as the most important sources for the air quality and pollution in this municipality of Northern Italy.
Collapse
Affiliation(s)
- Sara Padoan
- Universität der Bundeswehr München, Neubiberg, Germany; CMA Comprehensive Molecular Analytics, Helmholtz Zentrum München, München, Germany.
| | - Alessandro Zappi
- Department of Chemistry Ciamician, University of Bologna, Bologna, Italy
| | - Thomas Adam
- Universität der Bundeswehr München, Neubiberg, Germany; CMA Comprehensive Molecular Analytics, Helmholtz Zentrum München, München, Germany
| | - Dora Melucci
- Department of Chemistry Ciamician, University of Bologna, Bologna, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice-Mestre, Italy
| | - Gianni Formenton
- Department of Regional Laboratories, Regional Agency for Environmental Prevention and Protection of Veneto, Mestre, Italy
| | | | - Dac-Loc Nguyen
- CMA Comprehensive Molecular Analytics, Helmholtz Zentrum München, München, Germany; Chair of Analytical Chemistry and Joint Mass Spectrometry Centre (JMSC), University of Rostock, D-18051, Rostock, Germany; Institute of Geophysics, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | | | - Ralf Zimmermann
- CMA Comprehensive Molecular Analytics, Helmholtz Zentrum München, München, Germany; Chair of Analytical Chemistry and Joint Mass Spectrometry Centre (JMSC), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
9
|
Giorio C, Bortolini C, Kourtchev I, Tapparo A, Bogialli S, Kalberer M. Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure photoionisation high-resolution mass spectrometry. CHEMOSPHERE 2019; 224:786-795. [PMID: 30851530 DOI: 10.1016/j.chemosphere.2019.02.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants of high concern for public health. In the atmosphere they undergo oxidation, mainly through reactions with ·OH and NOx to produce nitro- and oxygenated (oxy-) derivatives. In this study, we developed a new method for the detection of particle-bound PAHs, nitro-PAHs and oxy-PAHs using direct infusion into an atmospheric pressure photoionisation high-resolution mass spectrometer (APPI-HRMS). Method optimisation was done by testing different source temperatures, gas flow rates, mobile phases and dopants. Samples were extracted with methanol, concentrated by evaporation and directly infused in the APPI source after adding toluene as dopant. Acquisition was performed in both polarity modes. The method was applied to target analysis of seasonal PM2.5 samples from an urban background site in Padua (Italy), in the Po Valley, in which a series of PAHs, nitro- and oxy-PAHs were detected. APPI-HRMS was then used for non-target analysis of seasonal PM2.5 samples and results compared with nano-electrospray ionisation (nanoESI) HRMS. The results showed that, when samples were characterised by highly oxidised organic compounds, including S-containing compounds, like in summer samples, APPI did not bring any additional information with respect to nanoESI in negative polarity (nanoESI(-)). Conversely, for winter samples, APPI(-) could detect a series of aromatic and poly-aromatic compounds, mainly oxidised and nitrogenated aromatics, that were not otherwise detected with nanoESI.
Collapse
Affiliation(s)
- Chiara Giorio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy.
| | - Claudio Bortolini
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Ivan Kourtchev
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrea Tapparo
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| |
Collapse
|
10
|
Włóka D, Placek A, Smol M, Rorat A, Hutchison D, Kacprzak M. The efficiency and economic aspects of phytoremediation technology using Phalaris arundinacea L. and Brassica napus L. combined with compost and nano SiO 2 fertilization for the removal of PAH's from soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:311-319. [PMID: 30634123 DOI: 10.1016/j.jenvman.2018.12.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
The paper presents an evaluation of efficiency and economic potential of the phytoremediation technology, based on the use of energy crops (P. arundinacea L. and B. Napus L.), combined with the fertilization with compost, supported by the addition of nano SiO2. The experiment was conducted in in-situ conditions, using two experimental blocks, divided according to used plant species. Each block included four types of plots with different fertilization treatments (control plots; treatment with nano SiO2; treatment with compost; treatment with mixture of compost and nano SiO2). During the studied period (three vegetation seasons), a cyclic analysis of 16 PAH's content were conducted. Furthermore, a quantitative determination of biomass production was performed as well as assessment of economic potential of different strategies. Data collected during research, shows that method based on energy crops use, due to the join effect of the dangerous pollutants removal and the production of removable energy resource, can be considered as sustainable and should be recommended for use during heavy polluted soil remediation. Moreover, it should be also noted, that the best results for both PAH's removal efficiency and biomass production, were acquired on plots with P. arundinacea L. cultivation, fertilized with mix of compost and nano SiO2.
Collapse
Affiliation(s)
- Dariusz Włóka
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka Street 60a, 42-200 Czestochowa, Poland.
| | - Agnieszka Placek
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka Street 60a, 42-200 Czestochowa, Poland
| | - Marzena Smol
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 31-261 Cracow, Poland.
| | - Agnieszka Rorat
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d'Ascq, France
| | - Dylan Hutchison
- University of Arizona, 1200 E University Blvd, Arizona, PO Box 210073, Tucson, AZ 8572185721-0073, USA
| | - Małgorzata Kacprzak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka Street 60a, 42-200 Czestochowa, Poland
| |
Collapse
|
11
|
Shen R, Liu Z, Chen X, Wang Y, Wang L, Liu Y, Li X. Atmospheric levels, variations, sources and health risk of PM 2.5-bound polycyclic aromatic hydrocarbons during winter over the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:581-590. [PMID: 30476838 DOI: 10.1016/j.scitotenv.2018.11.220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during winter 2015 at three urban sites, including Beijing, Tianjin and Shijiazhuang, and one background site (Xinglong) over the North China Plain (NCP) were investigated. The spatial variations of PAHs showed the same trends with PM2.5 mass concentrations, i.e. the highest PAHs concentrations was in Shijiazhuang, followed by Tianjin, Beijing and the lowest PAHs concentrations was in Xinglong. The diurnal variations of PAHs exhibited PAHs concentrations during nighttime were higher than those during daytime. The dominant species in PAHs were fluranthene and benzo[b + k]fluoranthene, indicating that diesel vehicle emission, coal combustion and biomass burning could be important and potential sources for PAHs over the NCP. There results were supported by diagnostic ratios analysis. But coefficient of divergence analysis showed that a high extent of spatial contrast among four sampling sites, except between Beijing and Tianjin. Analysis of toxicity equivalent quantities (TEQ) and the lifetime excess cancer risk (ECR) from inhalation exposure to PAHs showed that 818, 1517, 5129 and 182 cases per 100,000 people exposed in Beijing, Tianjin, Shijiazhuang and Xinglong, respectively, which were much higher than the threshold value suggested by US-EPA, i.e. 1 case per 100,000 people, and indicating that the NCP suffered from very serious health risk from PAHs, especially in Shijiazhuang.
Collapse
Affiliation(s)
- Rongrong Shen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xi Chen
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yusi Liu
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China; State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of China Meteorology Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xingru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
12
|
Feng B, Li L, Xu H, Wang T, Wu R, Chen J, Zhang Y, Liu S, Ho SSH, Cao J, Huang W. PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J Environ Sci (China) 2019; 77:11-19. [PMID: 30573075 DOI: 10.1016/j.jes.2017.12.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/04/2017] [Accepted: 12/25/2017] [Indexed: 05/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been of health concern due to its carcinogenesis and mutagenesis. In this study, we aimed to assess the variations, sources, and lifetime excessive cancer risk (ECR) attributable to PAHs bound to ambient particulate matters with aerodynamic diameter less than 2.5μm (PM2.5) in metropolitan Beijing, China. We collected 24-hour integrated PM2.5 samples on daily basis between November 2014 and June 2015 across both central heating (cold months) and non-heating (warm months) seasons, and further analyzed the PAH components in these daily PM2.5 samples. Our results showed that total concentrations of PM2.5-bound PAHs varied between (88.6±75.4)ng/m3 in the cold months and (11.0±5.9)ng/m3 in the warm months. Benzo[a]pyrene (BaP), the carcinogenic marker of PAHs, averaged at 5.7 and 0.4ng/m3 in the cold and warm months, respectively. Source apportionment analyses illustrated that gasoline, biomass burning, diesel, coal combustion and cooking were the major contributors, accounting for 12.9%, 17.8%, 24.7%, 24.3% and 6.4% of PM2.5-bound PAHs, respectively. The BaP equivalent lifetime ECR from inhalation of PM2.5-bound PAHs was 16.2 cases per million habitants. Our results suggested that ambient particulate reduction from energy reconstruction and adaption of clean fuels would result in reductions PM2.5-bound PAHs and its associated cancer risks. However, as only particulate phased PAHs was analyzed in the present study, the concentration of ambient PAHs could be underestimated.
Collapse
Affiliation(s)
- Baihuan Feng
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100871, China
| | - Lijuan Li
- Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China
| | - Jie Chen
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China
| | - Yi Zhang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China
| | - Steven Sai Hang Ho
- Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100871, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Miettinen M, Leskinen A, Abbaszade G, Orasche J, Sainio M, Mikkonen S, Koponen H, Rönkkö T, Ruusunen J, Kuuspalo K, Tiitta P, Jalava P, Hao L, Fang D, Wang Q, Gu C, Zhao Y, Michalke B, Schnelle-Kreis J, Lehtinen KEJ, Zimmermann R, Komppula M, Jokiniemi J, Hirvonen MR, Sippula O. PM 2.5 concentration and composition in the urban air of Nanjing, China: Effects of emission control measures applied during the 2014 Youth Olympic Games. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1-18. [PMID: 30347308 DOI: 10.1016/j.scitotenv.2018.10.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/28/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
Industrial processes, coal combustion, biomass burning (BB), and vehicular transport are important sources of atmospheric fine particles (PM2.5) and contribute to ambient air concentrations of health-hazardous species, such as heavy metals, polycyclic aromatic hydrocarbons (PAH), and oxygenated-PAHs (OPAH). In China, emission controls have been implemented to improve air quality during large events, like the Youth Olympic Games (YOG) in August 2014 in Nanjing. In this work, six measurement campaigns between January 2014 and August 2015 were undertaken in Nanjing to determine the effects of emission controls and meteorological factors on PM2.5 concentration and composition. PAHs, OPAHs, hopanes, n‑alkanes, heavy metals, and several other inorganic elements were measured. PM2.5 and potassium concentrations were the highest in May-June 2014 indicating the prevalence of BB plumes in Nanjing. Emission controls substantially reduced concentrations of PM2.5 (31%), total PAHs (59%), OPAHs (37%), and most heavy metals (44-89%) during the YOG compared to August 2015. In addition, regional atmospheric transport and meteorological parameters partly explained the observed differences between the campaigns. The most abundant PAHs and OPAHs were benzo[b,k]fluoranthenes, fluoranthene, pyrene, chrysene, 1,8‑naphthalic anhydride, and 9,10‑anthracenedione in all campaigns. Carbon preference index and the contribution of wax n‑alkanes indicated mainly biogenic sources of n‑alkanes in May-June 2014 and anthropogenic sources in the other campaigns. Hopane indexes pointed to vehicular transport as the major source of hopanes, but contribution of coal combustion was detected in winter 2015. The results provide evidence to the local government of the impacts of the air protection regulations. However, differences between individual components were observed, e.g., concentrations of potentially more harmful OPAHs decreased less than concentrations of PAHs. The results suggest that the proportions of hazardous components in the PM2.5 may also change considerably due to emission control measures.
Collapse
Affiliation(s)
- Mirella Miettinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio FI-70211, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Centre - Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München, 81764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Centre - Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München, 81764 Neuherberg, Germany; Joint Mass Spectrometry Centre - Institute of Chemistry, Division of Analytical and Technical Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Maija Sainio
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Hanna Koponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Teemu Rönkkö
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Jarno Ruusunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Kari Kuuspalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Petri Tiitta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Liqing Hao
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Die Fang
- Nanjing University, School of the Environment, 210023 Nanjing, China
| | - Qingeng Wang
- Nanjing University, School of the Environment, 210023 Nanjing, China
| | - Cheng Gu
- Nanjing University, School of the Environment, 210023 Nanjing, China
| | - Yu Zhao
- Nanjing University, School of the Environment, 210023 Nanjing, China
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 81764 Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Centre - Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München, 81764 Neuherberg, Germany
| | - Kari E J Lehtinen
- Finnish Meteorological Institute, Kuopio FI-70211, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre - Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München, 81764 Neuherberg, Germany; Joint Mass Spectrometry Centre - Institute of Chemistry, Division of Analytical and Technical Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Mika Komppula
- Finnish Meteorological Institute, Kuopio FI-70211, Finland
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI-70211, Finland; Department of Chemistry, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
14
|
Anh HQ, Tomioka K, Tue NM, Tuyen LH, Chi NK, Minh TB, Viet PH, Takahashi S. A preliminary investigation of 942 organic micro-pollutants in the atmosphere in waste processing and urban areas, northern Vietnam: Levels, potential sources, and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:354-364. [PMID: 30359902 DOI: 10.1016/j.ecoenv.2018.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Of 942 organic micro-pollutants screened, 167 compounds were detected at least once in the atmosphere in some primitive waste processing sites and an urban area in northern Vietnam by using a polyurethane foam-based passive air sampling (PUF-PAS) method and an Automated Identification and Quantification System with a Database (AIQS-DB) for GC-MS. Total concentrations of organic pollutants were higher in samples collected from an urban area of Hanoi city (2300-2600 ng m-3) as compared with those from an end-of-life vehicle (ELV) dismantling area in Bac Giang (900-1700 ng m-3) and a waste recycling cooperative in Thai Nguyen (870-1300 ng m-3). Domestic chemicals (e.g., n-alkanes, phthalate ester plasticizers, and synthetic phenolic antioxidants) dominated the organic pollutant patterns in all the samples, especially in the urban area. Pesticides (e.g., permethrins, chlorpyrifos, and propiconazole) were found in the atmosphere around the ELV sites at more elevated concentrations than the other areas. Levels of polycyclic aromatic hydrocarbons and their derivatives in the Bac Giang and Thai Nguyen facilities were significantly higher than those measured in Hanoi urban houses, probably due to the waste processing activities. Daily intake doses of organic pollutants via inhalation were estimated for waste processing workers and urban residents. This study shall provide preliminary data on the environmental occurrence, potential emission sources, and effects of multiple classes of organic pollutants in urban and waste processing areas in northern Vietnam.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; The United Graduate School of Agricultural Sciences (UGAS-EU), Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Keidai Tomioka
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Le Huu Tuyen
- Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Ngo Kim Chi
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Tu Binh Minh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Pham Hung Viet
- Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
15
|
Barhoumi B, Castro-Jiménez J, Guigue C, Goutx M, Sempéré R, Derouiche A, Achour A, Touil S, Driss MR, Tedetti M. Levels and risk assessment of hydrocarbons and organochlorines in aerosols from a North African coastal city (Bizerte, Tunisia). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:422-431. [PMID: 29753250 DOI: 10.1016/j.envpol.2018.04.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to assess, for the first time, the concentrations, sources, dry deposition and human health risks of polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in total suspended particle (TSP) samples collected in Bizerte city, Tunisia (North Africa), during one year (March 2015-January 2016). Concentrations of PAHs, AHs, PCBs and OCPs ranged 0.5-17.8 ng m-3, 6.7-126.5 ng m-3, 0.3-11 pg m-3 and 0.2-3.6 pg m-3, respectively, with higher levels of all contaminants measured in winter. A combined analysis revealed AHs originating from both biogenic and petrogenic sources, while diesel vehicle emissions were identified as dominant sources for PAHs. PCB potential sources included electronic, iron, cement, lubricant factories located within or outside Bizerte city. The dominant OCP congeners were p,p'-DDT and p,p'-DDE, reflecting a current or past use in agriculture. Health risk assessment showed that the lifetime excess cancer risk from exposure to airborne BaP was negligible in Bizerte, except in winter, where a potential risk to the local population may occur.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia; Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Javier Castro-Jiménez
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Madeleine Goutx
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Richard Sempéré
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Abdelkader Derouiche
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Amani Achour
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Soufiane Touil
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
| |
Collapse
|