1
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
2
|
Qureshi AK, Farooq U, Shakeel Q, Ali S, Ashiq S, Shahzad S, Tariq M, Seleiman MF, Jamal A, Saeed MF, Manachini B. The Green Synthesis of Silver Nanoparticles from Avena fatua Extract: Antifungal Activity against Fusarium oxysporum f.sp. lycopersici. Pathogens 2023; 12:1247. [PMID: 37887762 PMCID: PMC10609796 DOI: 10.3390/pathogens12101247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Using plant extracts as eco-friendly reducing and stabilizing agents for the synthesis of nanoparticles has gained significant attention in recent years. The current study explores the green synthesis of silver nanoparticles (AgNPs) using the Avena fatua extract and evaluates their antifungal activity against Fusarium oxysporum f.sp. lycopersici (Fol), a fungal plant pathogen. A green and sustainable approach was adopted to synthesize silver nanoparticles before these nanoparticles were employed for anti-fungal activity. The primary indication that AgNPs had formed was performed using UV-vis spectroscopy, where a strong peak at 425 nm indicated the effective formation of these nanoparticles. The indication of important functional groups acting as reducing and stabilizing agents was conducted using the FTIR study. Additionally, morphological studies were executed via SEM and AFM, which assisted with more effectively analyzing AgNPs. Crystalline behavior and size were estimated using powder XRD, and it was found that AgNPs were highly crystalline, and their size ranged from 5 to 25 nm. Synthesized AgNPs exhibited significant antifungal activity against Fol at a concentration of 40 ppm. Furthermore, the inhibitory index confirmed a positive correlation between increasing AgNPs concentration and exposure duration. This study suggests that the combined phytochemical mycotoxic effect of the plant extract and the smaller size of synthesized AgNPs were responsible for the highest penetrating power to inhibit Fol growth. Moreover, this study highlights the potential of using plant extracts as reducing and capping agents for the green synthesis of AgNPs with antifungal properties. The study concludes that A. fatua extract can synthesize antifungal AgNPs as a sustainable approach with robust antifungal efficacy against Fol, underscoring their promising potential for integration into plant protection strategies.
Collapse
Affiliation(s)
- Ahmad Kaleem Qureshi
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (U.F.); (S.A.)
| | - Umar Farooq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (U.F.); (S.A.)
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sajjad Ali
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sarfraz Ashiq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (U.F.); (S.A.)
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Muhammad Tariq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, Multan 60800, Pakistan;
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan;
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Barbara Manachini
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
3
|
Shinto H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Effect of salt concentration and exposure temperature on adhesion and cytotoxicity of positively charged nanoparticles toward yeast cells. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. Int J Mol Sci 2021; 22:10952. [PMID: 34681612 PMCID: PMC8536023 DOI: 10.3390/ijms222010952] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the synthesis of metal nanoparticles (MeNPs), and more specifically gold nanoparticles (AuNPs), have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. The properties of functionalised MeNPs can be fine-tuned depending on their final application, and subsequently, these properties can strongly modulate their biological effects. In this review, we will firstly focus on the impact of MeNP characteristics (particularly of gold nanoparticles, AuNPs) such as shape, size, and aggregation on their biological activities. Moreover, we will detail different in vitro and in vivo assays to be performed when cytotoxicity and biocompatibility must be assessed. Due to the complex nature of nanomaterials, conflicting studies have led to different views on their safety, and it is clear that the definition of a standard biosafety label for AuNPs is difficult. In fact, AuNPs' biocompatibility is strongly affected by the nanoparticles' intrinsic characteristics, biological target, and methodology employed to evaluate their toxicity. In the last part of this review, the current legislation and requirements established by regulatory authorities, defining the main guidelines and standards to characterise new nanomaterials, will also be discussed, as this aspect has not been reviewed recently. It is clear that the lack of well-established safety regulations based on reliable, robust, and universal methodologies has hampered the development of MeNP applications in the healthcare field. Henceforth, the international community must make an effort to adopt specific and standard protocols for characterisation of these products.
Collapse
Affiliation(s)
- Małgorzata Kus-Liśkiewicz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Patrick Fickers
- TERRA Research and Teaching Centre, Microbial Processes and Interactions Laboratory (MiPI), Gembloux Agro-Bio Tech-University of Liège, Avenue de la Faculté 2B, 5030 Gembloux, Belgium; (P.F.); (I.B.T.)
| | - Imen Ben Tahar
- TERRA Research and Teaching Centre, Microbial Processes and Interactions Laboratory (MiPI), Gembloux Agro-Bio Tech-University of Liège, Avenue de la Faculté 2B, 5030 Gembloux, Belgium; (P.F.); (I.B.T.)
| |
Collapse
|
5
|
Mahaye N, Leareng SK, Musee N. Cytotoxicity and genotoxicity of coated-gold nanoparticles on freshwater algae Pseudokirchneriella subcapitata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105865. [PMID: 34034204 DOI: 10.1016/j.aquatox.2021.105865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Gold engineered nanoparticles (nAu) are increasingly detected in ecosystems, and this raises the need to establish their potential effects on aquatic organisms. Herein, cytotoxic and genotoxic effects of branched polyethylenimine (BPEI)- and citrate (cit)-coated nAu (5, 20, and 40 nm) on algae Pseudokirchneriella subcapitata were evaluated. The apical biological endpoints: growth inhibition and chlorophyll a (Chl a) content were investigated at 62.5-1000 µg/L over 168 h. In addition, the apurinic/apyrimidinic (AP) sites, randomly amplified polymorphic deoxyribonucleic acid (RAPD) profiles, and genomic template stability (GTS) were assessed to determine the genotoxic effects of nAu. The results show algal growth inhibition at 5 nm BPEI-nAu up to 96 h, and thereafter cell recovery except at the highest concentration of 1000 µg/L. Insignificant growth reduction for cit-nAu (all sizes), as well as 20 and 40 nm BPEI-nAu, was observed over 96 h, but growth promotion was apparent at all exposures thereafter except for 40 nm BPEI-nAu at 250 µg/L. A decrease in Chl a content following exposure to 5 nm BPEI-nAu at 1000 µg/L corresponded to significant algal growth reduction. In genotoxicity studies, a significant increase in AP sites content was observed relative to the control - an indication of nAu ability to induce genotoxic effects irrespective of their size and coating type. For 5 nm- and 20 nm-sized nAu for both coating types and exposure concentrations no differences in AP sites content were observed after 72 and 168 h. However, a significant reduction in AP sites was observed following algae exposure to 40 nm-sized nAu (irrespective of coating type and exposure concentration) at 168 h compared to 72 h. Thus, AP sites results at 40 nm-size suggest likely DNA damage recovery over a longer exposure period. The findings on AP sites content showed a good correlation with an increase in genome template stability and growth promotion observed after 168 h. In addition, RAPD profiles demonstrated that nAu can induce DNA damage and/or DNA mutation to P. subcapitata as evidenced by the appearance and/or disappearance of normal bands compared to the controls. Therefore, genotoxicity results revealed significant toxicity of nAu to algae at the molecular level although no apparent effects were detectable at the morphological level. Overall, findings herein indicate that long-term exposure of P. subcapitata to low concentrations of nAu may cause undesirable sub-lethal ecological effects.
Collapse
Affiliation(s)
- Ntombikayise Mahaye
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Samuel K Leareng
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| |
Collapse
|
6
|
Sousa MDM, Lima RMTD, Lima AD, Reis AC, Cavalcante AADCM, Sattler JAG, Almeida-Muradian LBD, Lima Neto JDS, Moreira-Araujo RSDR, Nogueira NDN. Antioxidant action and enzyme activity modulation by bioaccessible polyphenols from jambolan (Syzygium cumini (L.) Skeels). Food Chem 2021; 363:130353. [PMID: 34147898 DOI: 10.1016/j.foodchem.2021.130353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Jambolan is rich in antioxidant polyphenols; however, the bioactivity of these compounds remains poorly investigated. We compared changes in polyphenols and antioxidant capacity by ABTS and FRAP assays of jambolan pulp during in vitro digestion and chemical extraction and evaluated the effects of these changes on oxidative stress in wild and mutant Saccharomyces cerevisiae. Digestion and chemical extraction were performed with enzyme saline solutions, deionized water, and 50% (v/v) aqueous acetone solution. Caffeic, quinic, gallic, and ellagic acids, isomers of myricetin, catechin, and anthocyanins are bioaccessible during gastric digestion. In the duodenum, flavonoids and proanthocyanidins remained stable when the pH changed from acidic to neutral/alkaline, whereas anthocyanins were degraded when exposed to pH 7. In the colon, anthocyanins were not identified. The antioxidant activity of bioaccessible fractions is correlated with non-anthocyanin flavonoids and proanthocyanidins, reflected in the modulation of antioxidant enzymes of S. cerevisiae. The digestion process favors the release of bio-polyphenols from jambolan with preventive, scavenger, and reparative antioxidant action. They also stimulate the production and activity of Sod and Cat, strengthening the endogenous antioxidant system.
Collapse
Affiliation(s)
- Mariana de Morais Sousa
- Department of Hospitality, Leisure and Food Production, Federal Institute of Piauí, Teresina Zona Sul Campus, São Pedro, Teresina, Piauí, Brazil.
| | - Rosália Maria Tôrres de Lima
- Department of Hospitality, Leisure and Food Production, Federal Institute of Piauí, Teresina Zona Sul Campus, São Pedro, Teresina, Piauí, Brazil.
| | - Alessandro de Lima
- Department of Hospitality, Leisure and Food Production, Federal Institute of Piauí, Teresina Zona Sul Campus, São Pedro, Teresina, Piauí, Brazil.
| | - Antonielly Campinho Reis
- Department of Pharmacy, Federal University of Piauí, Ministro Petrônio Portela Campus, Ininga, Teresina, Piauí, Brazil.
| | | | - José Augusto Gasparotto Sattler
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| | - Lígia Bicudo de Almeida-Muradian
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| | - José de Sousa Lima Neto
- Laboratory of Organic Geochemistry, Federal University of Piauí, Ministro Petrônio Portela Campus, Ininga, Teresina, Piauí, Brazil.
| | | | - Nadir do Nascimento Nogueira
- Departament of Nutrition, Federal University of Piauí, Ministro Petrônio Portela Campus, Ininga, Teresina, Piauí, Brazil.
| |
Collapse
|
7
|
Dogra V, Kaur G, Kumar R, Kumar S. Toxicity profiling of metallosurfactant based ruthenium and ruthenium oxide nanoparticles towards the eukaryotic model organism Saccharomyces cerevisiae. CHEMOSPHERE 2021; 270:128650. [PMID: 33131730 DOI: 10.1016/j.chemosphere.2020.128650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a facile method was used to synthesize the ruthenium and ruthenium oxide (RuO2) nanoparticles (NPs) derived from three different metallosurfactants. Firstly, three metallosurfactants were fabricated i.e. RuCTAC (Bishexadecyltrimethylammonium ruthenium tetrachloride), RuDDA (Bisdodecylamine ruthenium dichloride), and RuHEXA (Bishexadecylamine ruthenium dichloride) and characterized by CHN, FTIR, and 1HNMR. These metallosurfactants were further utilized to fabricate the mixed type of NPs (Ru and RuO2 NPs) using the biocompatible microemulsion technique and NPs were then characterized. Subsequently, the nanotoxicity of mixed NPs (Ru & RuO2) was studied towards Saccharomyces cerevisiae. The detailed study of nanotoxicity against the S. cerevisiae cells was done by employing optical microscopy, FESEM, anti-yeast activity assay, circular dichroism, and gel electrophoresis techniques. FESEM and optical microscopy analyses indicated that RuCTAC nanosuspension (Ns) has the most toxic effect on the S. cerevisiae cells. FESEM analysis confirmed the harmful impact of Ru and RuO2 NPs on the S. cerevisiae cells. From the FESEM analysis, complete alteration in the morphology, cell membrane breakage, and formation of the holes on the cell wall of S. cerevisiae was affirmed in presence of all three types of Ns i.e. RuCTAC, RuDDA, and RuHEXA Ns. Genotoxicity of the NPs was confirmed by circular dichroism and gel electrophoresis and it was found that RuCTAC and RuHEXA Ns have the most damaging influence on the yeast genomic DNA.
Collapse
Affiliation(s)
- Varsha Dogra
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, 125 001, Haryana, India
| |
Collapse
|
8
|
Limón D, Vilà S, Herrera-Olivas A, Vera R, Badia J, Baldomà L, Planas M, Feliu L, Pérez-García L. Enhanced cytotoxicity of highly water-soluble gold nanoparticle-cyclopeptide conjugates in cancer cells. Colloids Surf B Biointerfaces 2020; 197:111384. [PMID: 33113488 DOI: 10.1016/j.colsurfb.2020.111384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/04/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Conjugation of cytostatic drugs to nanomaterials seeks to improve their low bioavailability and selectivity to overcome the important associated side effects. In this work, we aimed to synthesize water-soluble gold nanoparticles as transporters for synthetic cyclic peptides with a potential anticancer activity but with a limited bioavailability. The highly water-soluble nanoparticles (2.5 nm diameter gold core) are coated with a mixture of polyethylene glycol linkers, one bearing a terminal hydroxyl group for increasing dispersibility in water, and the second bearing a carboxylic acid group for peptide conjugation through amide bond formation. Peptide-functionalized particles have a 9.7 ± 1.8 nm hydrodynamic diameter and are highly water-soluble and stable in solution for at least one year. The morphology of the gold cores as well as their organic coating was studied using Transmission Electron Microscopy, showing that the attachment of a limited number of peptides per nanoparticle leads to a uneven organic coating of two different thicknesses, one of 2.0 ± 0.6 nm formed by polyethylene glycol linkers, and a second of 3.6 ± 0.5 nm which includes the peptide. GNP significantly enhance the internalization of the cyclic peptide BPC734 in cells as compared to peptide in solution, with improved uptake in cancerous HT29 cells. Cytotoxicity studies show that peptide BPC734 in solution is toxic in the micromolar range, whereas peptide-functionalized particles are toxic at nanomolar peptide concentrations and with a significantly higher toxicity for cancerous cells. All these results, besides the stability and expected passive tumor targeting, make these particles a promising option for improving the bioavailability, efficacy, and selectivity in cancer therapy.
Collapse
Affiliation(s)
- David Limón
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Sílvia Vilà
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Anahí Herrera-Olivas
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Rodrigo Vera
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Falanga A, Siciliano A, Vitiello M, Franci G, Del Genio V, Galdiero S, Guida M, Carraturo F, Fahmi A, Galdiero E. Ecotoxicity Evaluation of Pristine and Indolicidin-coated Silver Nanoparticles in Aquatic and Terrestrial Ecosystem. Int J Nanomedicine 2020; 15:8097-8108. [PMID: 33116520 PMCID: PMC7585781 DOI: 10.2147/ijn.s260396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metallic nanoparticles (NPs) are highly exploited in manufacturing and medical processes in a broad spectrum of industrial applications and in the academic sectors. Several studies have suggested that many metallic nanomaterials including those derived by silver (Ag) are entering the ecosystem to cause significant toxic consequences in cell culture and animal models. However, ecotoxicity studies are still receiving limited attention when designing functionalized and non.-functionalized AgNPs. OBJECTIVE This study aimed to investigate different ecotoxicological profiles of AgNPs, which were analyzed in two different states: in pristine form uncoated AgNPs and coated AgNPs with the antimicrobial peptide indolicidin. These two types of AgNPs are exploited for a set of different tests using Daphnia magna and Raphidocelis subcapitata, which are representatives of two different levels of the aquatic trophic chain, and seeds of Lepidium sativum, Cucumis sativus and Lactuca sativa. RESULTS Ecotoxicological studies showed that the most sensitive organism to AgNPs was crustacean D. magna, followed by R. subcapitata and plant seeds, while AgNPs coated with indolicidin (IndAgNPs) showed a dose-dependent decreased toxicity for all three. CONCLUSION The obtained results demonstrate that high ecotoxicity induced by AgNPs is strongly dependent on the surface chemistry, thus the presence of the antimicrobial peptide. This finding opens new avenues to design and fabricate the next generation of metallic nanoparticles to ensure the biosafety and risk of using engineered nanoparticles in consumer products.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Portici80055, Italy
| | | | - Mariateresa Vitiello
- Department of Clinical Pathology, Virology Unit, “San Giovanni di Dio e Ruggi d’Aragona Hospital”, Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Italy
| | - Valentina Del Genio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples80134, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples80134, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples80100, Italy
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, Naples80100, Italy
| | - Amir Fahmi
- Rhein-Waal University of Applied Sciences, KleveD-47533, Germany
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Naples80100, Italy
| |
Collapse
|
10
|
Shinto H, Takiguchi M, Furukawa Y, Minohara H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Adhesion and cytotoxicity of positively charged nanoparticles toward budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ragucci S, Landi N, Russo R, Valletta M, Citores L, Iglesias R, Pedone PV, Pizzo E, Di Maro A. Effect of an additional N-terminal methionyl residue on enzymatic and antifungal activities of Ageritin purified from Agrocybe aegerita fruiting bodies. Int J Biol Macromol 2020; 155:1226-1235. [DOI: 10.1016/j.ijbiomac.2019.11.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/10/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022]
|
12
|
Li H, Pan Y, Farmakes J, Xiao F, Liu G, Chen B, Zhu X, Rao J, Yang Z. A sulfonated mesoporous silica nanoparticle for enzyme protection against denaturants and controlled release under reducing conditions. J Colloid Interface Sci 2019; 556:292-300. [DOI: 10.1016/j.jcis.2019.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/23/2023]
|
13
|
Rahimi H, Roudbarmohammadi S, Delavari H H, Roudbary M. Antifungal effects of indolicidin-conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. Int J Nanomedicine 2019; 14:5323-5338. [PMID: 31409990 PMCID: PMC6646856 DOI: 10.2147/ijn.s207527] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/11/2019] [Indexed: 01/12/2023] Open
Abstract
Background:Candida albicans as an opportunistic fungus is one of the most important causes of late-onset morbidity and mortality in patients with major burns and severely impaired immune system. In recent years, the emergence of resistance to opportunistic fungi and toxicity of antimicrobial drugs make it necessary to develop new drugs. Methods: In the present study, we investigated anticandidal effects of indolicidin, as a representative of host defense peptide, conjugated with gold nanoparticles in fluconazole-resistant clinical isolates of C. albicans. After characterizing the conjugation of indolicidin using biophysical methodologies, the cytotoxicity and hemolytic activity of the nanocomplex were examined. In addition, the expression level of ERG11, responsible for antifungal resistance, and the immunomodulatory effect of peptide-nanomaterial conjugates were assessed. Results: Our data indicated that the nanocomplex was nontoxic for the fibroblast cells and erythrocytes. Treatment with the nanocomplex significantly reduced the expression levels of the ERG11 gene in fluconazole-resistant C. albicans isolates and the iNOS gene in macrophages. Conclusion: The study data provides a chance to develop innovative therapies for the treatment of C. albicans burn infections. However, further investigation is required to examine the efficiency of the nanocomplex.
Collapse
Affiliation(s)
- Hossein Rahimi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahla Roudbarmohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Delavari H
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Barreto A, Luis LG, Pinto E, Almeida A, Paíga P, Santos LHMLM, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Genotoxicity of gold nanoparticles in the gilthead seabream (Sparus aurata) after single exposure and combined with the pharmaceutical gemfibrozil. CHEMOSPHERE 2019; 220:11-19. [PMID: 30576896 DOI: 10.1016/j.chemosphere.2018.12.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Due to their diverse applications, gold nanoparticles (AuNPs) are expected to increase of in the environment, although few studies are available on their mode of action in aquatic organisms. The genotoxicity of AuNPs, alone or combined with the human pharmaceutical gemfibrozil (GEM), an environmental contaminant frequently detected in aquatic systems, including in marine ecosystems, was examined using gilthead seabream erythrocytes as a model system. Fish were exposed for 96 h to 4, 80 and 1600 μg L-1 of 40 nm AuNPs with two coatings - citrate or polyvinylpyrrolidone; GEM (150 μg L-1); and a combination of AuNPs and GEM (80 μg L-1 AuNPs + 150 μg L-1 GEM). AuNPs induced DNA damage and increased nuclear abnormalities levels, with coating showing an important role in the toxicity of AuNPs to fish. The combined exposures of AuNPs and GEM produced an antagonistic response, with observed toxic effects in the mixtures being lower than the predicted. The results raise concern about the safety of AuNPs and demonstrate interactions between them and other contaminants.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - L G Luis
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Almeida
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - L H M L M Santos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Melittin Inhibition and Eradication Activity for Resistant Polymicrobial Biofilm Isolated from a Dairy Industry after Disinfection. Int J Microbiol 2019; 2019:4012394. [PMID: 30766602 PMCID: PMC6350607 DOI: 10.1155/2019/4012394] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
The emerging concern about the increase of antibiotic resistance and associated biofilm has encouraged scientists to look for alternative antibiotics such as antimicrobial peptides (AMPs). This study evaluated the ability of melittin to act as an antibacterial biofilm inhibitor and biofilm remover considering isolates from dairy industry. Minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and biofilm removal activities were studied in polymicrobial biofilms produced from isolates. MIC and MBC were set at 1–3 µg/mL and 25–50 µg/mL for Gram-positive and Gram-negative bacteria, respectively. Results demonstrated a good MBIC reaching 85% inhibition ability and a good activity and better penetration in deeper layers against the mixed preformed biofilm, thereby increasing its activity against all isolates also at the lowest tested concentrations. Melittin showed interesting characteristics suggesting its potential to act as an antimicrobial agent for polymicrobial biofilm from dairy industry even in environmental isolates.
Collapse
|
16
|
de Alteriis E, Maselli V, Falanga A, Galdiero S, Di Lella FM, Gesuele R, Guida M, Galdiero E. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect Drug Resist 2018; 11:915-925. [PMID: 30013374 PMCID: PMC6037145 DOI: 10.2147/idr.s164262] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This article examines the use of a novel nano-system, gold nanoparticles coated with indolicidin (AuNPs-indolicidin), against pathogenic Candida albicans biofilms. Candida species cause frequent infections owing to their ability to form biofilms, primarily on implant devices. MATERIALS AND METHODS We used an integrated approach, evaluating the effect of AuNPs-indolicidin on prevention and eradication of Candida biofilms formed in multi-well polystyrene plates, with relative gene expression assays. Four biofilm-associated genes (FG1, HWP1, ALS1 and ALS3, and CDR1 and CDR2) involved in efflux pump were analyzed using reverse transcription polymerase chain reaction. RESULTS Treatment with the nano-complex significantly inhibits the capacity of C. albicans to form biofilms and impairs preformed mature biofilms. Treatment with AuNPs-indolicidin results in an increase in the kinetics of Rhodamine 6G efflux and a reduction in the expression of biofilm-related genes. CONCLUSION These data provide a chance to develop novel therapies against nosocomially acquired refractory C. albicans biofilms.
Collapse
Affiliation(s)
| | - Valeria Maselli
- Department of Biology, University of Naples "Federico II", Naples, Italy,
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Federica Maria Di Lella
- Section of Microbiology and Virology, University Hospital "Luigi Vanvitelli" of Naples, Naples, Italy
| | - Renato Gesuele
- Department of Biology, University of Naples "Federico II", Naples, Italy,
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Naples, Italy,
| | - Emilia Galdiero
- Department of Biology, University of Naples "Federico II", Naples, Italy,
| |
Collapse
|
17
|
Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M. Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review. Molecules 2017; 22:molecules22091439. [PMID: 28858240 PMCID: PMC6151384 DOI: 10.3390/molecules22091439] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Nano-based products are widespread in several sectors, including textiles, medical-products, cosmetics, paints and plastics. Nanosafety and safe-by-design are driving nanoparticle (NP) production and applications through NP functionalization (@NPs). Indeed, @NPs frequently present biological effects that differ from the parent material. This paper reviews the impact of quantum dots (QDs), gold nanoparticles (AuNPs), and polystyrene-cored NPs (PSNPs), evidencing the role of NP functionalization in toxicity definition. Key biological models were taken into consideration for NP evaluation: Saccharomyces cerevisiae, fresh- (F) and saltwater (S) microalgae (Raphidocelis subcapitata (F), Scenedesmus obliquus (F) and Chlorella spp. (F), and Phaeodactylum tricornutum (S)), Daphnia magna, and Xenopus laevis. QDs are quite widespread in technological devices, and they are known to induce genotoxicity and oxidative stress that can drastically change according to the coating employed. For example, AuNPs are frequently functionalized with antimicrobial peptides, which is shown to both increase their activity and decrease the relative environmental toxicity. P-NPs are frequently coated with NH2− for cationic and COOH− for anionic surfaces, but when positively charged toxicity effects can be observed. Careful assessment of functionalized and non-functionalized NPs is compulsory to also understand their potential direct and indirect effects when the coating is removed or degraded.
Collapse
Affiliation(s)
- Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| |
Collapse
|
18
|
Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics. Molecules 2017; 22:molecules22071217. [PMID: 28726740 PMCID: PMC6152268 DOI: 10.3390/molecules22071217] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Cyclic peptides are receiving significant attention thanks to their antimicrobial activity and high serum stability, which is useful to develop and design novel antimicrobial agents. Antimicrobial peptides appear to be key components of innate defences against bacteria, viruses, and fungi. Among the others, defensins possess a strong microbicidial activity. Defensins are cationic and amphipathic peptides with six cysteine residues connected by three disulfide bonds found in plants, insects, and mammals; they are divided in three families: α-, β-, and θ-defensins. α-Defensins are contained in the primary granules of human neutrophils; β-defensins are expressed in human epithelia; and θ-defensins are pseudo-cyclic defensins not found in humans, but in rhesus macaques. The structural diversities among the three families are reflected in a different antimicrobial action as well as in serum stability. The engineering of these peptides is an exciting opportunity to obtain more functional antimicrobial molecules highlighting their potential as therapeutic agents. The present review reports the most recent advances in the field of cyclic peptides with a specific regard to defensin analogs.
Collapse
|