1
|
Zhou J, Liu Z, Li Z, Xie R, Jiang X, Cheng J, Chen T, Yang X. Heavy metals release in lead-zinc tailings: Effects of weathering and acid rain. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136645. [PMID: 39603131 DOI: 10.1016/j.jhazmat.2024.136645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Heavy metals (HMs) release from lead (Pb)-zinc (Zn) tailings poses significant environmental risks to surrounding areas. Furthermore, with the natural weathering and frequently happened acid rain events, the release of HMs could be elevated. This study conducted a series of laboratory column experiments with thermodynamics and hydrogeochemical analysis to investigate the environmental behavior of HMs release in Pb-Zn tailings under natural weathering conditions and acid rain events. Results showed that the weathering of calcite facilitates the release of Pb (17.9 mg/kg) and cadmium (Cd) (0.15 mg/kg), while acid rain promotes Zn release (10.5 mg/kg) from the Fe-Mn oxides, with no significant change for arsenic (As). Among the influencing factors during the column experiments, the oxidation-reduction potential (ORP) was identified as the primary indicator for the predictions of the HMs release behavior based upon the Random Forest model (R2 = 0.973 - 0.997). Correlation analysis revealed a strong relationship between coexistent ions and HM release patterns. Therefore, saturation index (SI) could effectively identify the influence range of each mineral phase on HM release. This study provides scientific evidence for effective management in carbonate-type tailings ponds.
Collapse
Affiliation(s)
- Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhen Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Ruoni Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xueqing Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiayi Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Simou A, Sarti O, Abdelfattah B, Mrabet A, Khaddor M, Allali N. Assessing ecological and health risks of potentially toxic elements in marine and beach sediments of Tangier Bay, Southwestern Mediterranean sea. MARINE POLLUTION BULLETIN 2024; 209:117234. [PMID: 39522119 DOI: 10.1016/j.marpolbul.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
This study investigates the distribution, sources, and ecological risks of potentially toxic elements (PTEs) in marine and beach sediments of Tangier Bay, Southwestern Mediterranean. Sediments from 22 locations were analyzed for physicochemical properties and concentrations of metals such as As, Cr, Zn, Cd, Pb, and Cu. Elevated levels of As (up to 40.28 mg/kg), Cr (40.60 mg/kg), and Zn (57.29 mg/kg) were found in marine sediments near industrial discharge areas, while beach sediments had higher Cd levels (up to 35.85 mg/kg), indicating urban runoff contamination. The spatial variation in metal levels is influenced by both natural and anthropogenic factors. Geological characteristics and river inputs establish baseline concentrations, but industrial activities, wastewater discharge, and maritime operations exacerbate pollution. Risk assessment using geo-accumulation, enrichment factor, and ecological risk indices revealed significant pollution, notably from Cd and As. These findings emphasize the need for focused remediation efforts to protect Tangier Bay's environmental health.
Collapse
Affiliation(s)
- Ayoub Simou
- Laboratory of Physic-Chemistry of Materials, Natural Substances and Environment (LAMSE), Faculty of Sciences and Techniques of Tangier, B.P. 416, Tangier 90000, Morocco.
| | - Otmane Sarti
- Laboratory of Physic-Chemistry of Materials, Natural Substances and Environment (LAMSE), Faculty of Sciences and Techniques of Tangier, B.P. 416, Tangier 90000, Morocco
| | - Bahia Abdelfattah
- Laboratory of Physic-Chemistry of Materials, Natural Substances and Environment (LAMSE), Faculty of Sciences and Techniques of Tangier, B.P. 416, Tangier 90000, Morocco
| | - Amena Mrabet
- Laboratory of Physic-Chemistry of Materials, Natural Substances and Environment (LAMSE), Faculty of Sciences and Techniques of Tangier, B.P. 416, Tangier 90000, Morocco
| | - Mohamed Khaddor
- Laboratory of Physic-Chemistry of Materials, Natural Substances and Environment (LAMSE), Faculty of Sciences and Techniques of Tangier, B.P. 416, Tangier 90000, Morocco
| | - Nabil Allali
- Laboratory of Physic-Chemistry of Materials, Natural Substances and Environment (LAMSE), Faculty of Sciences and Techniques of Tangier, B.P. 416, Tangier 90000, Morocco
| |
Collapse
|
3
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
4
|
Liu B, Jiang S, Guan DX, Song X, Li Y, Zhou S, Wang B, Gao B. Geochemical fractionation, bioaccessibility and ecological risk of metallic elements in the weathering profiles of typical skarn-type copper tailings from Tongling, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164859. [PMID: 37336397 DOI: 10.1016/j.scitotenv.2023.164859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Nonferrous metal tailings have long posed a significant threat to the surrounding environment and population. Previous studies have primarily focused on heavy metal pollution in the vicinity of sulfide tailings, while little attention was given to metal mobility and bioavailability within skarn-type tailings profile during weathering. Therefore, this study aimed to investigate the fractionation, bioaccessibility, and ecological risk associated with metallic elements (MEs, including Pb, Cd, Cr, Zn, and Cu) in two representative weathering copper-tailings profiles of Tongling mine (China). This was achieved through the use of mineralogical analyses, BCR extractions (F1: exchangeable, F2: reducible, F3: oxidizable, F4: residual fraction), in-vitro gastrointestinal simulation test (PBET) and risk assessment models. The mineral compositions of two weathering profiles were similar, with quartz and calcite being the dominant minerals, along with minor amounts of siderite, hematite and spangolite. The mean concentration in the tailings profile was approximately 0.31 (Cr), 1.8 (Pb), 12 (Zn), 33 (Cd) or 34 (Cu) times of the local background values (LBVs). The mean content of the bottom weakly-weathering layer in profile was about 0.36 (Cr), 0.91 (Pb), 1.91 (Cd), 2.73 (Zn) or 2.68 (Cu) times of the surface oxide layer, indicating a strong weathering-leaching effect. The average proportion of BCR-F1 fraction for Cd (30.94 %) was the highest among the five MEs, possibly due to its association with calcite. The PBET-extracted fractions for Cd, Zn and Cu were significantly positively correlated with the F1, F2 and F3 fractions of BCR, suggesting that these elements have higher bioavailability/bioaccessibility. The assessment results indicated that Cd posed a higher health risk, while the risk of Cu, Zn, and Pb is relatively low and Cr is safe. In conclusion, this study provides valuable insights into the environmental geochemical behavior and potential risks of MEs in skarn-type non-ferrous metal tailings ponds.
Collapse
Affiliation(s)
- Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China.
| | - Shuo Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaopeng Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Bo Gao
- Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
5
|
Zhao L. Immobilization of Cr(VI)-containing tailings by using slag-cementing materials for cemented paste backfill: influence of sulfate and limestone addition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91984-91996. [PMID: 37479941 DOI: 10.1007/s11356-023-28605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/01/2023] [Indexed: 07/23/2023]
Abstract
Heavy metals in mine tailings lead to serious environmental problems. Cemented paste backfill (CPB) is widely used for treating the mine tailing. The high cost of ordinary Portland cement (OPC) reduces the profit of mine production. The work investigates the treatment of Cr(VI)-containing tailings by using slag-based cementitious materials for CPB. Flue gas desulfurization gypsum (FGDG) and limestone were used to modify the properties of samples. Results showed that the coupling addition of 6 wt% FGDG and 3 wt% limestone (A6L3) led to the highest compressive strength of CPB samples, which also presented satisfactory immobilization effects for Cr(VI). The compressive strength of CPB samples using A6L3 as a binder was comparable to the OPC-based sample, reaching about 5.53 MPa; the immobilization efficiency for Cr(VI) was about 99.5%. The effects of FGDG and limestone were twofold: the addition of FGDG favored the formation of ettringite and then contributed to a more compact structure; besides, incorporating limestone increased the packing density of the CPB system by decreasing the loosening and wedge effect.
Collapse
Affiliation(s)
- Liding Zhao
- Department of Mining Engineering, Luliang University, Lvliang, 033000, China.
| |
Collapse
|
6
|
Chen T, Wen XC, Zhang LJ, Tu SC, Zhang JH, Sun RN, Yan B. The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120328. [PMID: 36202267 DOI: 10.1016/j.envpol.2022.120328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Large quantities of lead/zinc (Pb/Zn) mine tailings were deposited at tailings impoundments without proper management, which have posed considerable risks to the local ecosystem and residents in mining areas worldwide. Therefore, the geochemical behaviors of potentially toxic elements (PTEs) in tailings were in-depth investigated in this study by a coupled use of batch kinetic tests, statistical analysis and mineralogical characterization. The results indicated that among these studied PTEs, Cd concentration fluctuated within a wide range of 0.83-6.91 mg/kg, and showed the highest spatial heterogeneity. The mean Cd concentrations generally increased with depth. Cd were mainly partitioned in the exchangeable and carbonate fractions. The release potential of PTEs from tailings was ranged as: Cd > Mn > Zn > Pb > As, Cd > Pb > Zn > Mn > As and Cd > Pb > Mn > Zn > As, respectively, under the assumed environmental scenarios, i.e. acid rain, vegetation restoration, human gastrointestinal digestion. The results from mineralogical characterization indicated that quartz, sericite, calcite and pyrite were typical minerals, cumulatively accounting for over 80% of the tailings. Sulfides (arsenopyrite, galena, and sphalerite), carbonates (calcite, dolomite, cerussite and kutnahorite), oxides (limonite) were identified as the most relevant PTEs-bearing phases, which significantly contributed to PTEs release from tailings. A combined result of statistical, geochemical and mineralogical approaches would be provided valuable information for the alteration characteristics and contaminant release of Pb/Zn mine tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Xiao-Cui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Li-Juan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Shu-Cheng Tu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jun-Hao Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Ruo-Nan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Zhang H, Kou J, Sun C, Wang P, Lin J, Li J, Jiang Y. Optimization of cemented paste backfill with carbon nanotubes as a sustainable treatment for lead-containing tailings. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Yue C, Liguo X, Zhiyun Z, Xiangling W. Modification of cemented paste backfill with calcined layered double hydroxides for lead-containing tailings disposal. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Grinding kinetics of lead–zinc tailing powders and its optimal particle size as a pozzolanic admixture in cement mortar. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Activation of Persulfate for Degrading Tetracycline Using the Leaching Residues of the Lead-Zinc Flotation Tailing. Polymers (Basel) 2022; 14:polym14142959. [PMID: 35890733 PMCID: PMC9316694 DOI: 10.3390/polym14142959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Inappropriate disposal of leaching residues from the lead-zinc tailings recovery process may result in environmental pollution. Its recycling and reuse remain a prevalent topic in environmental science and technology. It was roasted to prepare leaching residues-based materials (TLRS) in this work, and the TLRS were creatively used as the catalyst to active sodium persulfate (PS) to degrade organic pollutants. Degradation of tetracycline using the TLRS–PS system was evaluated, and the treating parameters were optimized. Roasting resulted in the exposure of active sites on TLRS surface, in which transition metals can donate electrons to PS to form SO4·−. SO4·− can further react with OH− to form ·OH. Formation of these radicals was confirmed by both quenching experiments and EPR analysis. Under optimized conditions, 85% of the TC can be degraded in 3.0 h, and ~50% of degraded TC was mineralized to CO2 and H2O. The performance of TLRS barely changed after four reuses, suggesting the chemical stability of TLRS. The presence of dissolved substance in the water matrix could weaken the performance of the TLRS–PS system. A mechanism of TC degradation was proposed based on the experimental results and literature. These preliminary results provide us new insight on the reuse of lead-zinc flotation tailings.
Collapse
|
11
|
Jiang S, Chen T, Zhang J, Duan LX, Yan B. Roasted modified lead-zinc tailings using alkali as activator and its mitigation of Cd contaminated: Characteristics and mechanisms. CHEMOSPHERE 2022; 297:134029. [PMID: 35231475 DOI: 10.1016/j.chemosphere.2022.134029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
To comprehensively reuse lead-zinc tailings, leaching residue (LR) of solid by-products was produced after the recovery of valuable metals. This study provided a "waste-ecology" strategy by a simple, inexpensive method of roasting prepared highly active silicon modified tailing (HAST) to eliminate the environment risk of LR, and investigates performance and mechanism of HAST as sorbents and passivators. The results indicated that HAST possesses high pH, abundant mineral content, microporous structure and high stability. The adsorption kinetic experiment revealed that chemisorption is the main reaction and the Qm of Cd via Langmuir model is 72.75 mg/g. As further demonstrated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis, the Cd was adsorbed onto the HAST surface successfully, with the main interaction mechanisms involving ion exchange, complexation, precipitation and electrostatic interaction. Besides, the soil incubation experiment results showed that HAST had positive effects on exchange fractions (Cd) converting to stable fractions in soil, which modifies Cd migration and transformation, HAST added into soil decreased the DTPA-Cd by 4.7%-8.1%, 5.9-9.8% and 9.1%-13.4%, respectively, in different stages, as compared with the control. Therefore, this study provides a novel strategy to address LR recycling, and the relevant, wastewater and soil treatment, which has high practicability for industrial applications.
Collapse
Affiliation(s)
- Shaojun Jiang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tao Chen
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Junhao Zhang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Lian Xin Duan
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bo Yan
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Geochemical Characteristics of Tailings from Typical Metal Mining Areas in Tibet Autonomous Region. MINERALS 2022. [DOI: 10.3390/min12060697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With the exploring and developing of mineral resources in the Tibet Autonomous Region for many years, a large number of tailings have been produced. A total of 17 tailings samples from borehole cores were collected from different tailings ponds in different regions of Tibet. The results showed that the mineral composition and content of tailings in each research area were different. Among them, quartz was the most abundant mineral in most tailings. The major elements of tailings mainly included Si, Al, Fe, Mg, Mn, Ca, Na, K and so on. S existed in different types of tailings. In the analysis of trace element composition, it was found that the content of some elements had approached the lowest industrial grade, which has potential recycling value, such as Mn, Zn, Pb and P. Through the detection of radioactive elements (Ra-226, Th-232 and K-40), it was shown that there were great differences among different types of tailings, and their different contents would bring potential hazards to the safety of the surrounding environment and human health. Similar results were found in the analysis of particle size characteristics of tailings. These results are of great significance for the future utilization and resource utilization of tailings pond.
Collapse
|
13
|
The Use of Tailings to Make Glass as an Alternative for Sustainable Environmental Remediation:
The Case of Osor, Catalonia, Spain. MINERALS 2020. [DOI: 10.3390/min10090819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tailings from the Osor fluorite mines release large amounts of potentially toxic elements into the environment. This work is a proposal to remove these waste materials and use them as a raw material in the manufacture of glass. The chemical composition of the tailings was determined by X-ray fluorescence and the mineralogy by X-ray diffraction. Waste materials have SiO2, Al2O3 and CaO contents suitable for a glass production, but Na as NaCO3 has to be added. Two glass formulations, with 80–90% of the residue and 10–20% Na2CO3, have been produced. The crystallization temperatures, obtained by differential thermal analysis, were 875 and 901 °C, and the melting temperatures were 1220 and 1215 °C for the G80-20 and G90-10 glasses, respectively. The transition temperatures of glass were 637 and 628 °C. The crystalline phases formed in the thermal treatment to produce devitrification were nepheline, plagioclase and diopside in the G80-20 glass, and plagioclase and akermanite-gehlenite in the G90-10 glass. The temperatures for the fixed viscosity points, the working temperatures and the coefficient of expansion were obtained. The chemical stability of the glass was tested and results indicate that the potentially toxic elements of the tailings were incorporated into the glass structure.
Collapse
|