1
|
Zhao H, Xie M, He S, Lin S, Wang S, Liu X. Development of a Novel Nanoclay-Doped Hydrogel Adsorbent for Efficient Removal of Heavy Metal Ions and Organic Dyes from Wastewater. Gels 2025; 11:287. [PMID: 40277723 PMCID: PMC12026840 DOI: 10.3390/gels11040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Rapid industrialization has led to significant environmental challenges, particularly in wastewater treatment, where the removal of heavy metal ions and organic dyes is critical. This study presents the synthesis and characterization of a high-performance hydrogel adsorbent, (nanoclay)x@poly-γ-glutamic acid (γ-PGA)/polyethyleneimine (PEI) hydrogel adsorbent (denoted as NxPP, x = 0, 20, 40, 60, and 80), for the efficient removal of heavy metal ions (Cu2+, Fe3+, and Zn2+) and organic dyes (Methylene blue, as a typical example) from wastewater. The hydrogel was prepared using a one-pot method, combining γ-PGA and PEI with varying amounts of nanoclay. The N80PP hydrogel demonstrated exceptional adsorption capacities, achieving 224.37 mg/g for Cu2+, 236.60 mg/g for Fe3+, and 151.95 mg/g for Zn2+ within 30 min, along with 88.18 mg/g for Methylene blue within 5 h. The incorporation of nanoclay significantly enhanced the mechanical properties, with compressive strength reaching 560.49 kPa. The hydrogel exhibited excellent reusability, maintaining high adsorption capacity after five cycles. The adsorption kinetics followed a pseudo-second-order model, and the isotherms fit the Freundlich model, indicating a multilayer adsorption mechanism. This study highlights the potential of NxPP hydrogels as a versatile and sustainable solution for wastewater treatment.
Collapse
Affiliation(s)
- Hang Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mengmeng Xie
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Siyu He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Saishi Lin
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Xiuying Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Straathof AJJ, Janković T, Kiss AA. Distillation for in situ recovery of volatile fermentation products. Trends Biotechnol 2025:S0167-7799(24)00392-5. [PMID: 39855971 DOI: 10.1016/j.tibtech.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Many fermentation products inhibit their own microbial production, which complicates industrial-scale fermentation development for these products. When a product is volatile, this inhibition can be circumvented by removing product during fermentation through evaporation in a loop around the bioreactor. Microbes can survive this loop if its temperature is reduced using vacuum. Then, regrowing of microbes is not required. From a separation efficiency viewpoint, the evaporation loop should not use a single equilibrium stage, but a multistage vacuum distillation column. Such in situ product removal (ISPR) by vacuum distillation has hardly been recognized as an option, however. Costs for this product removal with subsequent purification are modest, even when product titers are low. A prerequisite is the use of advanced energy integration and heat pumping methods.
Collapse
Affiliation(s)
- Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Tamara Janković
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Anton A Kiss
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
3
|
Behera SK, Karthika S, Mahanty B, Meher SK, Zafar M, Baskaran D, Rajamanickam R, Das R, Pakshirajan K, Bilyaminu AM, Rene ER. Application of artificial intelligence tools in wastewater and waste gas treatment systems: Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122386. [PMID: 39260284 DOI: 10.1016/j.jenvman.2024.122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes. Additionally, the successful implementation of AI-controlled wastewater and waste gas treatment systems, along with real-time monitoring at the industrial scale are discussed.
Collapse
Affiliation(s)
- Shishir Kumar Behera
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
| | - S Karthika
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600 025, Tamil Nadu, India
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology & Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Saroj K Meher
- Systems Science and Informatics Unit, Indian Statistical Institute, Bangalore, 560059, India
| | - Mohd Zafar
- Department of Applied Biotechnology, College of Applied Sciences & Pharmacy, University of Technology and Applied Sciences - Sur, P.O. Box: 484, Zip Code: 411, Sur, Oman
| | - Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam, 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Ravi Rajamanickam
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608002, Tamil Nadu, India
| | - Raja Das
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601, DA Delft, the Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601, DA Delft, the Netherlands
| |
Collapse
|
4
|
Wan H, Zhou Y, Shi S, Zhang B, Xu Q, Lu J. Sulfur Fluoride Exchange Enabled Polysufate Adsorbents: Flexible Group Embedded in Polymer Backbone Regulation Strategy for Organic Solvent Removal from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50045-50053. [PMID: 39279184 DOI: 10.1021/acsami.4c11576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Removal of organic solvents (such as chloroform, toluene, etc.) in trace amounts using adsorbents from water is a challenge due to their low removal efficiencies and poor selectivities. Herein, four polysulfates (P1-P4) with different flexible group embedded backbones were synthesized via a sulfur fluoride exchange (SuFEx) reaction, and their swelling behaviors in organic solvents were investigated. P1 with a flexible ethyl group on its backbone can selectively swell in aprotic organic solvents with medium and high polarities about 30-fold its original weight, which is much higher than that of P4 with rigid benzene on its backbone. Moreover, molecular dynamic (MD) simulation results showed that the swelling mechanism could be put down to the electrostatic and van der Waals forces between the polysulfates and organic solvents. Surprisingly, the polysulfates can be used to remove chloroform and toluene from water with removal efficiencies of up to 99.26 and 99.42%, respectively. Furthermore, the polysulfates also exhibited high selectivities and anti-interference performances toward chloroform in the presence of other pollutants and different acid/base environments. Our work provides a strategy to construct adsorbents with high efficiencies for removal of low concentrations of organic solvents from water.
Collapse
Affiliation(s)
- Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Youzhen Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shuai Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bing Zhang
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Kim SY, Shin MW, Oh KH, Bae YS. Large-Scale Computational Screening-Aided Development of High-Performance Adsorbent for Simultaneous Capture of Aromatic Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43565-43573. [PMID: 39129505 DOI: 10.1021/acsami.4c08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The development of an efficient adsorbent for the simultaneous capture of large amounts of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is an important and challenging issue. Here, through a stepwise screening of 10,142 metal-organic framework (MOF) structures from the computation-ready, experimental (CoRE) MOF database, 65 MOFs are proposed as promising adsorbent candidates for BTEX capture by considering the structures with accessible pore sizes for BTEX adsorption, sufficient hydrophobicity, high benzene selectivity (>0.2), and large total BTEX uptake (>3 mmol/g). Among the top-performing MOFs in terms of the BTEXmatrix (total BTEX uptake × benzene selectivity), EGUELUY01 was synthesized, and it exhibited large uptakes (≈5 mmol/g) for all BTEX components at concentrations of 1200-1500 ppm, which are superior to the BTEX uptake of the benchmark adsorbent, activated carbon. Moreover, some structure-property relationships required for BTEX adsorbents are provided through the obtained large-scale simulation data and machine learning analysis. The determined relationships will be useful for the future development of efficient BTEX adsorbents.
Collapse
Affiliation(s)
- Seo-Yul Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Min Woo Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Kwang Hyun Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Youn-Sang Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
6
|
Song Y. Solubility and Mass Transfer Performance of Ethane and n-Butane in Menthol and Decanoic Acid Deep Eutectic Solvent. ACS OMEGA 2024; 9:30935-30944. [PMID: 39035921 PMCID: PMC11256098 DOI: 10.1021/acsomega.4c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The absorption performance and mechanism of the deep eutectic solvent (DES), composed of menthol and decanoic acid, were investigated. The solubility of volatile organic compounds (VOCs) in the DES was studied through saturation solution experiments, wherein the solubility of ethane and n-butane increases with a decrease in temperature and increasing pressure. Henry's law constants of ethane and n-butane in the DES at 288.2 K were 2.089 and 0.136 MPa, respectively, demonstrating the high solubility for light hydrocarbons that surpasses or equals that of ionic liquids. The mass transfer and regeneration performance of the DES were investigated by using dynamic bubbling experiments. Results demonstrated that the removal rate of both ethane and n-butane increased as the gas flow rate decreased and the VOC concentration in the model gas increased. Specifically, the removal rate of ethane reached 99.50% at a temperature of 293.2 K, a VOC concentration VOC of 10,000 μmol/mol, and a gas flow rate of 30 mL/min, while the removal rate of n-butane was higher than that of ethane under the same conditions, achieving a removal rate exceeding 99.99%. Furthermore, no significant decrease in the removal rate for n-butane was observed during the four regeneration processes. Interaction energies between the VOC molecule and DES were calculated using the quantum chemistry method. It was found that the interactions between the VOC molecule and DES are primarily attributed to dispersion attractive effects which belong to weak interactions; therefore, the absorption of light hydrocarbon by the DES belongs to a physical process. The DES has been proven to be effective for the recovery of light hydrocarbons, providing a promising approach to address the key challenge in comprehensive treatment of VOCs in the petrochemical industry.
Collapse
Affiliation(s)
- Yunfei Song
- State
Key Laboratory of Chemical Safety, Qingdao, Shandong 266000, China
- SINOPEC
Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong 266000, China
| |
Collapse
|
7
|
Chen X, Wang X, Jia Z, Yang C, Liu Z, Wei Y, Wang M, Liang M. Weakened Mn-O bond in Mn-Ce catalysts through K doping induced oxygen activation for boosting benzene oxidation at low temperatures. J Colloid Interface Sci 2024; 666:88-100. [PMID: 38583213 DOI: 10.1016/j.jcis.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
K-doped Mn-Ce solid solution catalysts were synthesized using a combination of coprecipitation and hydrothermal methods, demonstrating excellent performance in benzene oxidation. The catalyst K1Ce5Mn5 exhibited comparable activity to noble metal catalysts, achieving a 90 % benzene conversion at approximately 194 ℃. Durable tests under dry and moist conditions revealed that the catalyst could maintain its activity for 50 h at 218 ℃ and 236 ℃, respectively. Characterization results indicated that the catalyst's enhanced activity resulted from the weakened Mn-O bonding caused by the introduction of K+, facilitating the activation of oxygen and its involvement in the reaction. CeOx, the main crystalline phase of Mn-Ce solid solutions, provided abundant oxygen vacancies for capturing and activating oxygen molecules for the weakened Mn-O structures. This conclusion was further supported by partial density of state analysis from density functional theory computations, revealing that the introduction of K+ weakened the orbital hybridization of Mn3d and O2p. Finally, in situ diffuse reflectance infrared Fourier-transform spectroscopy (in situ DRIFTS) studies on Ce5Mn5 and K1Ce5Mn5 catalysts suggested that the introduction of K+ promoted the conversion of adsorbed benzene. Furthermore, intermediate products were transformed more rapidly for K1Ce5Mn5 compared to Ce5Mn5.
Collapse
Affiliation(s)
- Xi Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China; Shanxi Institute of Eco-Environmental Planning and Technology, Taiyuan 030009, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Ziliang Jia
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Chao Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yuexing Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mengxue Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Meisheng Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China.
| |
Collapse
|
8
|
Baskaran D, Dhamodharan D, Behera US, Byun HS. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. ENVIRONMENTAL RESEARCH 2024; 251:118472. [PMID: 38452912 DOI: 10.1016/j.envres.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| | - Duraisami Dhamodharan
- Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd, University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea.
| |
Collapse
|
9
|
Damiri Z, Jafari S, Yousefinejad S, Kazemian H. Enhanced adsorption of toluene on thermally activated ZIF-67: Characterization, performance, and modeling insights. Heliyon 2024; 10:e30745. [PMID: 38765099 PMCID: PMC11098846 DOI: 10.1016/j.heliyon.2024.e30745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
The zeolitic imidazolate framework-67 (ZIF-67) has been explored for the dynamic adsorption of toluene vapor. We synthesized ZIF-67 through a straightforward room-temperature process and characterized it using XRD, FT-IR, DLS, and SEM techniques. The synthesized ZIF-67 possessed a Brunauer-Emmett-Teller (BET) surface area of 1578.7 m2/g and 0.76 μm particle size. Thermal activation under various conditions revealed that ZIF-67, activated in dry air at 250 °C, demonstrated optimal adsorption efficacy. Its adsorption capacity, time of breakthrough, and time of equilibration were 414.5 mg/g, 420 min, and 795 min, respectively. We investigated the impact of diverse operational parameters on adsorption through breakthrough curve analysis. An increase in the toluene concentration from 100 to 1000 ppm enhanced the adsorption capacity from 171 to 414 mg/g, while breakthrough time decreased from 1260 min to 462 min, respectively. Our findings show that increasing relative humidity from 0 to 70 % reduced 53.7 % in adsorption capacity and 46.3 % in breakthrough time. The competitive adsorption of toluene and ethylbenzene revealed that ZIF-67 had a higher selectivity for toluene adsorption. A 98 % adsorbent's regeneration efficiency at the first cycle reveals its reusability. The experimental data were successfully fitted to the Yan, Thomas, and Yoon-Nelson models to describe the adsorption process. The statistical validation of the model parameters confirms their reliability for estimating adsorption parameters, thus facilitating the design of fixed-bed adsorption columns for practical applications.
Collapse
Affiliation(s)
- Zabiholah Damiri
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Jafari
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada
| |
Collapse
|
10
|
Kafle SR, Adhikari S, Shrestha R, Ban S, Khatiwada G, Gaire P, Tuladhar N, Jiang G, Tiwari A. Advancement of membrane separation technology for organic pollutant removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2290-2310. [PMID: 38747950 DOI: 10.2166/wst.2024.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/11/2024] [Indexed: 05/25/2024]
Abstract
In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.
Collapse
Affiliation(s)
- Saroj Raj Kafle
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA; Equally contributed to this work
| | - Sangeet Adhikari
- School of Sustainable Engineering and the Built Environment, Tempe, AZ 85281, USA; Equally contributed to this work
| | - Rakesh Shrestha
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Sagar Ban
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Gaurav Khatiwada
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Pragati Gaire
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Nerisha Tuladhar
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Guangming Jiang
- School of Civil, Mining, and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Ananda Tiwari
- University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland; Department of Health Security, Water Microbiology laboratory, Finnish Institute for Health and Welfare, Kuopio, Finland; Equally contributed to this work. E-mail:
| |
Collapse
|
11
|
Mondal SK, Aina P, Rownaghi AA, Rezaei F. Cooperative and Bifunctional Adsorbent-Catalyst Materials for In-situ VOCs Capture-Conversion. Chempluschem 2024; 89:e202300419. [PMID: 38116915 DOI: 10.1002/cplu.202300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Volatile organic compounds (VOCs) are gases that are emitted into the air from products or processes and are major components of air pollution that significantly deteriorate air quality and seriously affect human health. Different types of metals, metal oxides, mixed-metal oxides, polymers, activated carbons, zeolites, metal-organic frameworks (MOFs) and mixed-matrixed materials have been developed and used as adsorbent or catalyst for diversified VOCs detection, removal, and destruction. In this comprehensive review, we first discuss the general classification of VOCs removal materials and processes and outline the historical development of bifunctional and cooperative adsorbent-catalyst materials for the removal of VOCs from air. Subsequently, particular attention is devoted to design of strategies for cooperative adsorbent-catalyst materials, along with detailed discussions on the latest advances on these bifunctional materials, reaction mechanisms, long-term stability, and regeneration for VOCs removal processes. Finally, challenges and future opportunities for the environmental implementation of these bifunctional materials are identified and outlined with the intent of providing insightful guidance on the design and fabrication of more efficient materials and systems for VOCs removal in the future.
Collapse
Affiliation(s)
- Sukanta K Mondal
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
| | - Peter Aina
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| | - Ali A Rownaghi
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| |
Collapse
|
12
|
Ren Y, Guan X, Peng Y, Gong A, Xie H, Chen S, Zhang Q, Zhang X, Wang W, Wang Q. Characterization of VOC emissions and health risk assessment in the plastic manufacturing industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120730. [PMID: 38574705 DOI: 10.1016/j.jenvman.2024.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 μg/m3, 344.8 μg/m3, and 22.6 μg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.
Collapse
Affiliation(s)
- Yuchao Ren
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xu Guan
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Yanbo Peng
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China.
| | - Anbao Gong
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Huan Xie
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Shurui Chen
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Qingzhu Zhang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Xin Zhang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qiao Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
13
|
Tang W, Han T, Liu W, He J, Liu J. Pectic oligosaccharides: enzymatic preparation, structure, bioactivities and application. Crit Rev Food Sci Nutr 2024; 65:2117-2133. [PMID: 38481101 DOI: 10.1080/10408398.2024.2328175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Pectic oligosaccharides have become novel bioactive components. However, the comprehensive preparation methods, structural features, bioactivities and application of them lack a systematic review. Here, we focused on the enzymatic preparation of pectic oligosaccharides, and attempted to outline relationships among the enzymolysis condition, structure, bioactivities and application of pectic oligosaccharides. Pectic oligosaccharides were characterized by the oligosaccharides with units of →4)-α-GalpA-(1→4)-α-GalpA-(1→ or →4)-α-GalpA-(1→2)-α-Rhap-(1→. Enzymatic method was the most suitable approach for pectic oligosaccharides preparation that was significantly affected by the enzyme's type, time and concentration. Besides, pectic oligosaccharides possessed various bioactivities including prebiotic, anti-glycosylation, antioxidant, anticancer and lipid metabolism-regulation activities, which were closely associated with the molecular weight, the structure of side chain and the monosaccharide composition. Especially, many pectic oligosaccharides with low molecular weight demonstrated high prebiotic activities, and those with arabinogalactan side chains exhibited strong anticancer activities. Moreover, pectic oligosaccharides have been used in food preservatives, dairy product additives and food processing aids. Nevertheless, the industrial application, novel technology exploration, and structure-bioactivity relationship of pectic oligosaccharides remain a demanding and significant task for future work.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tiao Han
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
14
|
Kang M, Han J, Kim Y, Kim S, Kang S. Data-driven autonomous operation of VOCs removal system. Sci Rep 2024; 14:5953. [PMID: 38467736 PMCID: PMC10928095 DOI: 10.1038/s41598-024-56502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Removal of volatile organic compounds (VOCs) from the air has been an important issue in many industrial fields. Traditionally, the operation of VOCs removal systems has relied on fixed operating conditions determined by domain experts based on their expertise and intuition. In practice, this manual operation cannot respond immediately to changes in the system environment. To facilitate the autonomous operation of the system, the operating conditions should be optimized properly in real time to adapt to the changes in the system environment. Recently, optimization frameworks have been widely applied to real-world industrial systems across various domains using different approaches. The primary motivation for this study is the effective implementation of an optimization framework targeting a VOCs removal system. In this paper, we present a data-driven autonomous operation method for optimizing the operating conditions of a VOCs removal system to enhance the overall performance. An optimization problem is formulated with the decision variables denoting the parameters associated with the operating condition, the environmental variables representing the measurements for the system environment, the constraints specifying the control ranges of the parameters, and the objective function representing the system performance as determined by the operating conditions and environment. Using the previous operation data from the system, a neural network is trained to model the system performance as a function of the decision and environmental variables to approximate the objective function. For the current state of the system environment, the optimal operating condition is derived by solving the optimization problem. A case study of a targeted VOCs removal system demonstrates that the proposed method effectively optimizes the operating conditions for improved system performance without intervention from domain experts.
Collapse
Affiliation(s)
- Myeonginn Kang
- Department of Industrial Engineering, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jongmin Han
- Department of Industrial Engineering, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Yangjoon Kim
- Department of Industrial Engineering, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea
- Shinsung E&G Co. Ltd., Gwacheon, 13840, Republic of Korea
| | - Seongcheon Kim
- Department of Industrial Engineering, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea
- Shinsung E&G Co. Ltd., Gwacheon, 13840, Republic of Korea
| | - Seokho Kang
- Department of Industrial Engineering, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Wang X, Chen D, Jia Y, Jiang Z, Li K, Chaianansutcharit S, Reubroycharoen P, Guo L. Preparation of nano-MFI zeolites doped with Al/Ti and their performance in VOC sorption. Dalton Trans 2024; 53:4781-4789. [PMID: 38363199 DOI: 10.1039/d3dt04314b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Highly crystalline nano-MFI-type zeolites containing different elements were synthesized, and the sorption effects of the elements on volatile organic compounds (VOCs) were investigated. The results showed that the optimal toluene and acetone breakthrough time of the synthesized zeolites was 2.1 and 1.9 times as long as that of the commercial zeolite, respectively. For a weakly polar toluene molecule, MFI zeolites (aluminum-free) showed better adsorption properties than aluminum-containing zeolites. For the highly polar acetone molecule, zeolites with a Si/Al ratio of 87 showed the highest adsorption capacity, which was 7% higher than that of the all-silica zeolite and 1.4 times that of the commercial zeolite. Furthermore, MFI zeolites with Ti replacing part of Al proved to have better performance for highly polar molecules. In the adsorption process of VOCs, in addition to internal diffusion, diffusion on the external surface of the zeolite also played a remarkable role, and the adsorption data of all samples fitted better with the pseudo-first-order model. This study may provide a reliable structure-performance relationship for the synthesis of nanosized zeolite-based adsorbents and their use in the industrial recovery/treatment of VOCs.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Donghang Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongsheng Jia
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongyu Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kongzhai Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | | | - Prasert Reubroycharoen
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
16
|
Açin Ok R, Kutluay S. Designing novel perlite-Fe 3O 4@SiO 2@8-HQ-5-SA as a promising magnetic nanoadsorbent for competitive adsorption of multicomponent VOCs. CHEMOSPHERE 2023; 338:139636. [PMID: 37495054 DOI: 10.1016/j.chemosphere.2023.139636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Volatile organic compounds (VOCs), which emerge as multicomponent pollutants through many industrial processes, pose a serious threat to human health and the eco-environment due to their volatility, toxicity and dispersion. Hence, the study of competitive adsorption of multicomponent VOCs is of practical and scientific importance. Herein, the perlite-supported Fe3O4@SiO2@8-hydroxyquinoline-5-sulfonic acid (perlite-Fe3O4@SiO2@8-HQ-5-SA) was designed as a novel magnetic nanoadsorbent by a simple strategy and employed for the competitive adsorption of multicomponent toluene, ethylbenzene and xylene in the vapor-phase targeted as VOCs. The successfully prepared perlite-Fe3O4@SiO2@8-HQ-5-SA was characterized by means of SEM, EDX, FT-IR, VSM and BET analyses. Adsorption capacities of 558 mg/g, 680 mg/g and 716 mg/g were achieved for single component toluene, ethylbenzene and xylene, respectively. It was concluded that the adsorption capacities for both binary and ternary components were significantly decreased compared to single component adsorption. The competitive adsorption capacity order of the binary and ternary component VOCs was xylene > ethylbenzene > toluene due to their competitive dominance. The rate-limiting kinetic analysis indicated that the adsorption rates were determined by both the film diffusion and intraparticle diffusion. The analysis of the error metrics demonstrated that the three-parameter isotherm models better described the adsorption data compared to the two-parameter models. In particular, the Toth model provided the closest fit to the experimental equilibrium data. The thermodynamic analysis indicated the spontaneous nature and probability (ΔG° <0), exothermic (ΔH° <0), physical (ΔH° <20 kJ/mol) and a declination in the degree of randomness (ΔS° <0) of the adsorption processes. The reuse efficiency of perlite-Fe3O4@SiO2@8-HQ-5-SA for toluene, ethylbenzene and xylene decreased to only by 88.91%, 88.07% and 87.16% after five recycles. The perlite-Fe3O4@SiO2@8-HQ-5-SA has a significant adsorptive potential compared to other adsorbents reported in the literature, thus it could be recommended as a promising nanoadsorbent for VOCs in industrial processes.
Collapse
Affiliation(s)
- Rahime Açin Ok
- Department of Chemical Engineering, Faculty of Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Chemical Engineering, Faculty of Engineering, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
17
|
Abstract
Condensable gases are the sum of condensable and volatile steam or organic compounds, including water vapor, which are discharged into the atmosphere in gaseous form at atmospheric pressure and room temperature. Condensable toxic and harmful gases emitted from petrochemical, chemical, packaging and printing, industrial coatings, and mineral mining activities seriously pollute the atmospheric environment and endanger human health. Meanwhile, these gases are necessary chemical raw materials; therefore, developing green and efficient capture technology is significant for efficiently utilizing condensed gas resources. To overcome the problems of pollution and corrosion existing in traditional organic solvent and alkali absorption methods, ionic liquids (ILs), known as "liquid molecular sieves", have received unprecedented attention thanks to their excellent separation and regeneration performance and have gradually become green solvents used by scholars to replace traditional absorbents. This work reviews the research progress of ILs in separating condensate gas. As the basis of chemical engineering, this review first provides a detailed discussion of the origin of predictive molecular thermodynamics and its broad application in theory and industry. Afterward, this review focuses on the latest research results of ILs in the capture of several important typical condensable gases, including water vapor, aromatic VOCs (i.e., BTEX), chlorinated VOC, fluorinated refrigerant gas, low-carbon alcohols, ketones, ethers, ester vapors, etc. Using pure IL, mixed ILs, and IL + organic solvent mixtures as absorbents also briefly expanded the related reports of porous materials loaded with an IL as adsorbents. Finally, future development and research directions in this exciting field are remarked.
Collapse
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
18
|
Yuan Y, Lei S, Jin X, Wang C, Zhai Z, Zhao C, Zhou C. Fe(II)/LXQ-10 bifunctional resin materials for boosting synergistic adsorption/oxidation of benzene in industrial waste gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90772-90786. [PMID: 37462872 DOI: 10.1007/s11356-023-28759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/08/2023] [Indexed: 08/24/2023]
Abstract
A series of adsorption/oxidation bifunctional material with different Fe(II) loading amounts was prepared by using ultrahigh crosslinking adsorption resin (LXQ-10) as a carrier and FeCl2 as an impregnating solution. The bifunctional material was characterized by BET, SEM, XRD, XPS, and EPR. The effects of Fe loading, reaction temperature, and space velocity on benzene adsorption efficiency were investigated using self-made experimental equipment to explore the optimal reaction condition. The adsorption results were fitted and analyzed by using four typical models: the quasi-first-order kinetic model, the quasi-second-order kinetic model, Elovich's kinetic model, and the Weber and Morris kinetic model. The quasi-first-order kinetic model had the highest R2 value (0.998) and the best applicability. The fitting effect of the Freundlich equation (R2 = 0.997) was better than that of the Langmuir equation (R2 = 0.919). Furthermore, the effects of Fe loading, H2O2 concentration, benzene inlet concentration, and temperature on the catalytic oxidation efficiency of benzene were studied. The catalytic oxidation efficiency of 3-Fe(II)/LXQ-10 was maintained at about 95% at a temperature of 303 K and an H2O2 concentration of 150 mmol/L. Compared with the adsorption efficiency, the catalytic oxidation efficiency of bifunctional resin materials in a heterogeneous Fenton system was remarkably improved and had excellent stability. A possible migration and transformation path during benzene removal was proposed according to the results of the analysis of GC-MS intermediates. This study provided a novel process for the adsorption and oxidative degradation of VOCs.
Collapse
Affiliation(s)
- Ying Yuan
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Siyuan Lei
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Xi'an Thermal Power Research Institute Co. Ltd. (Suzhou Branch), Suzhou, 215153, Jiangsu, China
| | - Xinyu Jin
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chunyu Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ziyi Zhai
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chaoyue Zhao
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Changsong Zhou
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
19
|
Azizi M, Abdulrahman YJ, Abdessamad NH, Azzaz AA, Naguib DM. Valorization and characterization of bio-oil from Salvadora persica seed for air pollutant adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53397-53410. [PMID: 36854946 DOI: 10.1007/s11356-023-25566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Salvadora persica (SP) is an important medicinal plant. Numerous articles have been conducted on the leaf, the roots, and the stem of the plant, but there is little information about the seed. Thus, the present work tries to identify the chemical composition of SP seed bio-oil and investigates its use as an adsorbent for cyclohexane removal. This study extracted bio-oil from seeds using different polar and non-polar organic solvents. Two techniques have been used to determine the chemical composition of the bio-oil extracted: FTIR and GC-MS. Results show that the extracted bio-oil presented 13 new major organic bio-compounds in n-hexane and ethanol SP seed extracts. Moreover, the analytical results showed that the two extracts are complex and contained thiocyanic acid, benzene, 3-pyridine carboxaldehyde, benzyl nitrile, ethyl tridecanoate, ethyl oleate, and dodecanoic acid ethyl ester. Additionally, each technique of analysis showed that the extracted bio-oils from SP seeds are rich in non-polar compounds. Indeed, the major fatty acids obtained are pentadecylic acid, myristic acid, lauric acid, oleic acid, margaric acid, and tricosanoic acid. This work provides guidelines for identifying these compounds, among others, and offers a platform for using SP seeds as a herbal alternative for various chemical, industrial, and medical applications. Furthermore, the capacity of SP extracts for air pollution treatment, namely, the removal of cyclohexane in batch mode, was investigated. Results showed that cyclohexane adsorption could be a chemical process involving both monolayer and multilayer adsorption mechanisms. The pores and the grooves on the surface of the SP bio-oil extract helped in adsorbing the cyclohexane with an outstanding maximum removal capacity of about 674.23 mg/g and 735.75 mg/g, respectively, for the ethanol and hexane SP extracts, which is superior to many other recent adsorbents.
Collapse
Affiliation(s)
- Mohamed Azizi
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia.
- Laboratory Desalination and Water Treatment Valorisation (LaDVEN), Water Research and Technologies Center (WRTC), BP 273, 8020, Soliman, Tunisia.
| | - Yousif Jumaa Abdulrahman
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- College of Science Elobied, University of Kordofan, El Obeid, Sudan
| | - NourEl-Houda Abdessamad
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- Laboratory of Wastewater and Environment, Center for Water Research and Technologies (CWRT), BP 273-8020, Soliman, Tunisia
| | - Ahmed Amine Azzaz
- Environnements Dynamiques Et Territoires de La Montagne, Université Savoie Mont-Blanc, EDYTEM, Boulevard de La Mer Caspienne, 73370, Le Bourget-du-Lac, France
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University (BU), Qilwah, Saudi Arabia
| |
Collapse
|
20
|
Kumar R, Verma V, Thakur M, Singh G, Bhargava B. A systematic review on mitigation of common indoor air pollutants using plant-based methods: a phytoremediation approach. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1-27. [PMID: 37359395 PMCID: PMC10005924 DOI: 10.1007/s11869-023-01326-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/10/2023] [Indexed: 06/28/2023]
Abstract
Environmental pollution, especially indoor air pollution, has become a global issue and affects nearly all domains of life. Being both natural and anthropogenic substances, indoor air pollutants lead to the deterioration of the ecosystem and have a negative impact on human health. Cost-effective plant-based approaches can help to improve indoor air quality (IAQ), regulate temperature, and protect humans from potential health risks. Thus, in this review, we have highlighted the common indoor air pollutants and their mitigation through plant-based approaches. Potted plants, green walls, and their combination with bio-filtration are such emerging approaches that can efficiently purify the indoor air. Moreover, we have discussed the pathways or mechanisms of phytoremediation, which involve the aerial parts of the plants (phyllosphere), growth media, and roots along with their associated microorganisms (rhizosphere). In conclusion, plants and their associated microbial communities can be key solutions for reducing indoor air pollution. However, there is a dire need to explore advanced omics technologies to get in-depth knowledge of the molecular mechanisms associated with plant-based reduction of indoor air pollutants.
Collapse
Affiliation(s)
- Raghawendra Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Gurpreet Singh
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
21
|
Chen X, Jia Z, Liu Z, Wang X, Liang M. Strong metal-support interactions between atomically dispersed Ru and CrO x for improved durability of chlorobenzene oxidation. RSC Adv 2023; 13:3255-3264. [PMID: 36756428 PMCID: PMC9890632 DOI: 10.1039/d2ra07650k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023] Open
Abstract
In this work, two single-atom catalysts (SACs) with atomically dispersed RuO2 supported on CrO x were successfully synthesized with a simple reduction strategy for the efficient catalytic oxidation of chlorobenzene (CB). With characterizations like Cs-corrected STEM, XPS, H2-TPR, and O2-TPD, the structure-activity relationship is addressed. The noble metal precursor Ru3+ was anchored with different oxygen species and exposed facets based on the physicochemical properties of catalyst supports. Based on the analysis results, the Ru3+ precursor could be mainly anchored into the surface lattice oxygen of Cr2O3-M over high-index facets (223) and adsorbed oxygen of Cr2O3-P over low-index facets (104), where the precursor Ru3+ was all oxidized to RuO2 when being anchored with the oxygen species of Cr2O3-M and Cr2O3-P, respectively according to XPS analysis. There is a stronger metal-support interaction (SMSI) between Ru ions and the surface lattice oxygen of Cr2O3-M, according to H2-TPR and O2-TPD characterizations. Further, the catalytic performance for CB combustion at a high space velocity of 120 000 mL (g-1 h-1) was tested, and 1RuCr2O3-M performed better than 1RuCr2O3-P in both durability and activity. This could be attributed to the SMSI between single-atom Ru and the lattice oxygen of the 1RuCr2O3-M catalyst and the abundant active sites from the exposed high-index facets. The study provided a novel synthesis strategy for Ru-based SACs with SMSI effect, and the good durability of the catalyst (1RuCr2O3-M) extended the great potential for practical application.
Collapse
Affiliation(s)
- Xi Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Ziliang Jia
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Meisheng Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| |
Collapse
|
22
|
de Mello R, Motheo AJ, Sáez C, Rodrigo MA. Treatment of benzene contaminated gas streams by combining adsorption and electrochemical oxidation processes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Total oxidation of benzene over cerium oxide-impregnated two-dimensional MWW zeolites obtained by environmental synthesis using Brazilian rice husk silica agro-industrial waste. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|