1
|
Nascimento PA, Menezes IMNR, Confortin C, Micheletto J, Filipak Neto F, Oliveira Ribeiro CA, Peixoto RRA, Oliveira A. Bioaccessibility and bioavailability of essential and potentially toxic trace elements in potato cultivars: A comprehensive nutritional evaluation. Food Res Int 2024; 187:114431. [PMID: 38763681 DOI: 10.1016/j.foodres.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Among the most consumed foods in the world is potato, which occupies the first place as a non-grain commodity, demonstrating the importance of its assessment concerning the population's food safety. In this study, the nutrients Ca, Mg, K, P, Cu, Mn, Fe, and Zn and the potentially toxic trace elements Cd, Cr, and Pb were evaluated considering their total contents, bioaccessible and bioavailable fractions in different potato cultivars, in an unpublished approach in the literature. The in vitro standard gastrointestinal digestion method (INFOGEST) and a model of the intestinal epithelial barrier using the Caco-2 cell line were applied for investigate the presence of metals in potato. For the macroelements, the bioaccessibility (% w/w) varied in the ranges: K (57-72 %), P (59-76 %), Mg (83-103 %), and Ca (30-123 %), whereas for the microelements were: Cu (27-74 %) and Mn (4.22-12.02, 60-119 %). The potentially of trace toxic elements, Cd and Pb, were found in 75 % of the samples, however, all the concentration values were below the maximum levels allowed of 0.10 µg/g. Chromium was determined only in potato peels and has no maximum established level. The bioaccessible and bioavailable fractions of Cd, Cr, and Pb were below the limits of quantification of the spectrometric methods (LOQ - µg/L: 0.063 Cd, 0.65 Cr, and 0.44 Pb). The potato samples were considered safe for consumption regarding the presence of potentially toxic trace elements, with a remarkable nutritional contribution.
Collapse
Affiliation(s)
- P A Nascimento
- Chemistry Department, Federal University of Paraná, Brazil
| | | | - C Confortin
- Cell Biology Department, Federal University of Paraná, Brazil
| | - J Micheletto
- Mineral and Rock Analysis Laboratory Institute, Federal University of Paraná, Brazil
| | - F Filipak Neto
- Cell Biology Department, Federal University of Paraná, Brazil
| | | | - R R A Peixoto
- Chemistry Department, Federal University of Fluminense, Brazil
| | - A Oliveira
- Chemistry Department, Federal University of Paraná, Brazil.
| |
Collapse
|
2
|
Jensen MB, Jakobsen J, Jacobsen C, Sloth JJ, Ibarruri J, Bald C, Iñarra B, Bøknæs N, Sørensen ADM. Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries. Mar Drugs 2024; 22:162. [PMID: 38667779 PMCID: PMC11051196 DOI: 10.3390/md22040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals.
Collapse
Affiliation(s)
- Marie Bagge Jensen
- DTU Food, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.); (J.J.S.); (A.-D.M.S.)
| | - Jette Jakobsen
- DTU Food, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.); (J.J.S.); (A.-D.M.S.)
| | - Charlotte Jacobsen
- DTU Food, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.); (J.J.S.); (A.-D.M.S.)
| | - Jens J. Sloth
- DTU Food, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.); (J.J.S.); (A.-D.M.S.)
| | - Jone Ibarruri
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio-Bizkaia, Spain; (J.I.); (C.B.); (B.I.)
| | - Carlos Bald
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio-Bizkaia, Spain; (J.I.); (C.B.); (B.I.)
| | - Bruno Iñarra
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio-Bizkaia, Spain; (J.I.); (C.B.); (B.I.)
| | | | - Ann-Dorit Moltke Sørensen
- DTU Food, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.J.); (J.J.S.); (A.-D.M.S.)
| |
Collapse
|
3
|
Rongpipi S, Barnes WJ, Siemianowski O, Del Mundo JT, Wang C, Freychet G, Zhernenkov M, Anderson CT, Gomez EW, Gomez ED. Measuring calcium content in plants using NEXAFS spectroscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1212126. [PMID: 37662163 PMCID: PMC10468975 DOI: 10.3389/fpls.2023.1212126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
Calcium is important for the growth and development of plants. It serves crucial functions in cell wall and cell membrane structure and serves as a secondary messenger in signaling pathways relevant to nutrient and immunity responses. Thus, measuring calcium levels in plants is important for studies of plant biology and for technology development in food, agriculture, energy, and forest industries. Often, calcium in plants has been measured through techniques such as atomic absorption spectrophotometry (AAS), inductively coupled plasma-mass spectrometry (ICP-MS), and electrophysiology. These techniques, however, require large sample sizes, chemical extraction of samples or have limited spatial resolution. Here, we used near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the calcium L- and K-edges to measure the calcium to carbon mass ratio with spatial resolution in plant samples without requiring chemical extraction or large sample sizes. We demonstrate that the integrated absorbance at the calcium L-edge and the edge jump in the fluorescence yield at the calcium K-edge can be used to quantify the calcium content as the calcium mass fraction, and validate this approach with onion epidermal peels and ICP-MS. We also used NEXAFS to estimate the calcium mass ratio in hypocotyls of a model plant, Arabidopsis thaliana, which has a cell wall composition that is similar to that of onion epidermal peels. These results show that NEXAFS spectroscopy performed at the calcium edge provides an approach to quantify calcium levels within plants, which is crucial for understanding plant physiology and advancing plant-based materials.
Collapse
Affiliation(s)
- Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - William J. Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Oskar Siemianowski
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Joshua T. Del Mundo
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Guillaume Freychet
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Srivarathan S, Addepalli R, Adiamo OQ, Kodagoda GK, Phan ADT, Wright ORL, Sultanbawa Y, Osborne S, Netzel ME. Edible Halophytes with Functional Properties: In Vitro Protein Digestibility and Bioaccessibility and Intestinal Absorption of Minerals and Trace Elements from Australian Indigenous Halophytes. Molecules 2023; 28:molecules28104004. [PMID: 37241743 DOI: 10.3390/molecules28104004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Halophytes are considered emerging functional foods as they are high in protein, minerals, and trace elements, although studies investigating halophyte digestibility, bioaccessibility, and intestinal absorption are limited. Therefore, this study investigated the in vitro protein digestibility, bioaccessibility and intestinal absorption of minerals and trace elements in saltbush and samphire, two important Australian indigenous halophytes. The total amino acid contents of samphire and saltbush were 42.5 and 87.3 mg/g DW, and even though saltbush had a higher total protein content overall, the in vitro digestibility of samphire protein was higher than the saltbush protein. The in vitro bioaccessibility of Mg, Fe, and Zn was higher in freeze-dried halophyte powder compared to the halophyte test food, suggesting that the food matrix has a significant impact on mineral and trace element bioaccessibility. However, the samphire test food digesta had the highest intestinal Fe absorption rate, whereas the saltbush digesta exhibited the lowest (37.7 vs. 8.9 ng/mL ferritin). The present study provides crucial data about the digestive "fate" of halophyte protein, minerals, and trace elements and increases the understanding of these underutilized indigenous edible plants as future functional foods.
Collapse
Affiliation(s)
- Sukirtha Srivarathan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Jaffna, Ariviyal Nagar, Kilinochchi 44000, Sri Lanka
| | - Rama Addepalli
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Oladipupo Qudus Adiamo
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Gethmini Kavindya Kodagoda
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Olivia Renee Louise Wright
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Simone Osborne
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Michael Erich Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia
| |
Collapse
|
5
|
D’Imperio M, Montesano FF, Serio F, Santovito E, Parente A. Mineral Composition and Bioaccessibility in Rocket and Purslane after Zn Biofortification Process. Foods 2022; 11:484. [PMID: 35159634 PMCID: PMC8834000 DOI: 10.3390/foods11030484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Zinc (Zn) is an essential key nutrient in different biochemical and physiological processes. The nutritional deficit of this mineral element is estimated to affect the health of over 3 billion people worldwide. Several strategies are available to reduce the negative impact of mineral malnutrition; among them, biofortification is the practice of deliberately increasing the nutrients and healthy compounds in the edible parts of vegetables. This study aims to evaluate Zn bioaccessibility in biofortified and non-biofortified rocket and purslane using an in vitro gastrointestinal digestion process and measure the concentration of other mineral elements (Al, B, Ca, Fe, K, Mg, Mn, and Sr) released during the digestion process from rocket and purslane biofortified with Zn. The bioaccessible Zn in biofortified rocket and purslane ranged from 7.43 to 16.91 mg/kg, respectively. In addition, the daily intake, the RDA coverage (%), and the hazard quotient (HQ) for the intake of Zn (resulting from the consumption of 100 g of rocket and purslane) were calculated. The calculated HQ highlights the safety of these baby leaf vegetables. The study confirms that it is possible to obtain Zn-biofortified rocket and purslane with high Zn bioaccessibility by adopting an appropriate mineral plant nutrition solution enriched in Zn.
Collapse
Affiliation(s)
| | | | | | | | - Angelo Parente
- Institute of Sciences of Food Production, CNR—National Research Council of Italy, Via Amendola 122/D, 70126 Bari, Italy; (M.D.); (F.F.M.); (F.S.); (E.S.)
| |
Collapse
|
6
|
Sarcocornia perennis: A Salt Substitute in Savory Snacks. Foods 2021; 10:foods10123110. [PMID: 34945661 PMCID: PMC8701967 DOI: 10.3390/foods10123110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/06/2023] Open
Abstract
Salt is the primary source of sodium in the human diet, and it is associated with hypertension and increased risk of heart disease and stroke. A growing interest in halophyte plants and food products containing this type of ingredient have been observed, to reduce the NaCl daily intake. In the present work, Sarcocornia perennis was incorporated as a food ingredient into crackers to replace the salt (NaCl) and to evaluate its impact on physical properties, water activity, nutritional composition, mineral profile, total phenolic compounds, antioxidant activity, and sensory evaluation. Concentrations of powder dried S. perennis from 1 to 10% were tested by replacing the initial salt content and adjusting the flour incorporation to the initial formulation. The incorporation of S. perennis had no relevant impact on cracker firmness, but it induced an increase in their crispness. Furthermore, the incorporation of this halophyte originated darker crackers, which was revealed by a decrease of L* and an increase of b* values. In terms of nutritional composition, the incorporation of S. perennis leads to the improvement of the snack's nutritional profile, namely in terms of phenolic compounds, antioxidant activity, and minerals, highlighting the high content in potassium, magnesium, and phosphor. Crackers with a content of 5% of S. perennis were sensorily well accepted and this level should be considered the limit of incorporation accepted by the panelists. However, by substituting 1% NaCl for an equal amount of S. perennis, it is possible to obtain a 70% reduction in sodium content, which is an important contribution to reducing the overall salt content of the diet.
Collapse
|
7
|
A Review on Sarcocornia Species: Ethnopharmacology, Nutritional Properties, Phytochemistry, Biological Activities and Propagation. Foods 2021; 10:foods10112778. [PMID: 34829059 PMCID: PMC8625059 DOI: 10.3390/foods10112778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/11/2023] Open
Abstract
Sarcocornia A. J. Scott is a halophytic edible succulent plant belonging to the Amaranthaceae family. To date, the genus includes 28 species distributed worldwide in saline environments, usually salt marshes. Sarcocornia (Scott) is similar to Salicornia (L.), which has a recognized commercial value in morphological and taxonomical traits. Species of both genera are commonly named samphire or glassworts in Europe, and their fleshy shoots are commercialized under their traditional names. Due to their nutritional, organoleptic and medicinal properties, Sarcocornia species have a high economic potential in various biotechnology sectors. Being highly tolerant to salt, they can be cultivated in saline conditions, and dissimilar to Salicornia, they are perennial, i.e., they can be harvested year-round. Therefore, Sarcocornia species are considered promising gourmet vegetables to be explored in the context of climate change, soil and water salinization and eco-sustainability. We hereby put together and reviewed the most relevant information on Sarcocornia taxonomy, morphology, nutritional and pharmacological properties, uses in ethnomedicine, potential applications in biotechnology, and propagation strategies.
Collapse
|
8
|
Coelho RC, Barsotti RCF, Maltez HF, Lopes Júnior CA, Barbosa HDS. Expanding information on the bioaccessibility and bioavailability of iron and zinc in biofortified cowpea seeds. Food Chem 2021; 347:129027. [PMID: 33482485 DOI: 10.1016/j.foodchem.2021.129027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023]
Abstract
This work presents new findings on the nutritional quality of recently introduced biofortified and non-biofortified cowpea cultivars as well as some common beans. ICP-MS was used for the measurements. Biofortified cowpea cultivars showed high levels of Fe and Zn, greater than 60 and 40 mg kg-1 dry weight, respectively. The in vitro digestion protocol enabled simultaneous evaluation of bioaccessibility and bioavailability. Fe levels in cowpea cultivars were ca. 2.5-fold higher than in common beans. Cowpea seeds also had higher Zn levels, reaching 50.1% bioaccessibility and 44.2% bioavailability. Cooking improved the availability of micronutrients in bean seeds. The cooked biofortified Aracê cowpea showed a high Zn bioavailability above 60%. Consumption of 50 g of Aracê would contribute 27% and 48% of the Fe and Zn DRI for 1-3-year-old children. The new cowpea cultivars biofortified are a potential vehicle for improving the Fe and Zn status in groups in which the micronutrient deficiency is prevalent.
Collapse
Affiliation(s)
- Ronaldo Cunha Coelho
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Roberto Carlos Fernandes Barsotti
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, 09210-580 Santo André, SP, Brazil; Núcleo de Ciências Químicas e Bromatológicas, Centro de Laboratório Regional de Santos, Instituto Adolfo Lutz (IAL), 11015-020 Santos, SP, Brazil
| | - Heloisa França Maltez
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, 09210-580 Santo André, SP, Brazil
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Herbert de Sousa Barbosa
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| |
Collapse
|
9
|
El-Said GF, El-Sadaawy MM, Shobier AH, Ramadan SE. Human Health Implication of Major and Trace Elements Present in Commercial Crustaceans of a Traditional Seafood Marketing Region, Egypt. Biol Trace Elem Res 2021; 199:315-328. [PMID: 32277398 DOI: 10.1007/s12011-020-02126-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/20/2020] [Indexed: 12/29/2022]
Abstract
The present study focused on the distribution of some major and trace elements (S (as SO42-), Na, K, B, Ca, Mg, F, Li, Al, Fe, Zn, Cu, Mn, Ni, Co, Cd, and Pb) in both flesh (Fl) and total cephalon/exoskeleton (C/E) tissues of selected crustacean species obtained from an Egyptian traditional seafood marketing region. The sequence of studied elements in (Fl) and (C/E) tissues in descending orders was S (as SO42-) > Na > K > B > Mg > Ca > Li > F > Al > Zn > Fe > Cu > Pb > Ni > Mn > Co > Cd, and S (as SO42-) > Na > B > K > Mg > Ca > F > Li > Al > Fe > Cu > Zn > Mn > Pb > Ni > Co > Cd, respectively. Both length-weight relationship and Fulton's condition factor showed the physical and biological statuses of the crustaceans. Ion quotient calculations of the studied tissues pointed to their importance in decreasing hypertension, preeclampsia, and heart disease. Human health risk due to the consumption of the crustacean species was determined using some guideline limits, metal pollution index (MPI), estimated daily intake (EDI), health comparison values (CVs), dietary intake (DRI-ULs), target hazard quotient (THQ), total target hazard quotient (TTHQ), and provisional tolerable weekly intake (%PTWI). MPI values of cephalon/exoskeleton tissues were greater than those of the flesh with ranges between 11.4-24.0 and 4.6-14.3, respectively. Interestingly, the calculations of TTHQ of toddler and adult were lesser than one and not expected to pose any risk concern to human from crustaceans' consumption.
Collapse
Affiliation(s)
- Ghada F El-Said
- Marine Pollution Lab, Division of Marine Environment, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Manal M El-Sadaawy
- Marine Pollution Lab, Division of Marine Environment, National Institute of Oceanography and Fisheries, Alexandria, Egypt.
| | - Aida H Shobier
- Marine Pollution Lab, Division of Marine Environment, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Sherif E Ramadan
- Taxonomy and Biodiversity of Aquatic Biota Lab, Division of Marine Environment, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| |
Collapse
|
10
|
Sánchez-Gavilán I, Rufo L, Rodríguez N, de la Fuente V. On the elemental composition of the Mediterranean euhalophyte Salicornia patula Duval-Jouve (Chenopodiaceae) from saline habitats in Spain (Huelva, Toledo and Zamora). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2719-2727. [PMID: 32889657 DOI: 10.1007/s11356-020-10663-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
A complete survey is presented on the inorganic composition of the euhalophyte annual succulent species Salicornia patula (Chenopodiaceae), including materials from the Iberian Peninsula, littoral-coastal Tinto River basin areas (SW Spain: Huelva province), and mainland territories (NW and central Spain: Zamora and Toledo provinces). The aim of this contribution is to characterize the elemental composition of the selected populations and their soils and compare the relationship between them and the macro- and micronutrient plant intake; all these nutrients may allow this species to be considered an edible plant. Using analytical techniques such as ICP-MS (inductively coupled plasma mass spectrometry), our results revealed high values of Na and K followed by Ca, Mg, Fe and Sr in stems. These data demonstrate the importance of annual halophytic species as edible plants and their potential uses in phytoremediation procedures involving soils with certain heavy metals (Pb, Sr, As, Cu, Zn).
Collapse
Affiliation(s)
- Irene Sánchez-Gavilán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain
| | - Lourdes Rufo
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Nuria Rodríguez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Vicenta de la Fuente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain.
| |
Collapse
|
11
|
Pohl P, Dzimitrowicz A, Lesniewicz A, Welna M, Szymczycha-Madeja A, Cyganowski P, Jamroz P. Room temperature solvent extraction for simple and fast determination of total concentration of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen by FAAS along with assessment of the bioaccessible fraction of these elements using in vitro gastrointestinal digestion. J Trace Elem Med Biol 2020; 60:126479. [PMID: 32142959 DOI: 10.1016/j.jtemb.2020.126479] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Bee pollen is recognized to be a source of different nutrients, including minerals. As a food supplement, its quality and safety due to concentrations of essential macro- and microelements, and harmful trace elements has to be verified. Fast and simple element analysis of bee-collected pollen can be regarded as an important part of its quality assurance and control. The present study aimed at developping a new method for determination of selected elements (Ca, Cu, Fe, Mg, Mn, Zn) of bee pollen based on solvent extraction and completely avoiding a high temperature treatment with concentrated reagents. In addition, in vitro gastrointestinal digestion was used to assess bioavailability of elements from this food supplement. METHODS Bee pollen samples were dried and pulverized. Total concentrations of Ca, Cu, Fe, Mg, Mn, and Zn were determined by flame atomic absorption spectrometry (FAAS) in sample solutions obtained by wet digestion (WD) in concentrated HNO3 or alternatively by solvent extraction (SE) with diluted solutions of HNO3. Gastrointestinal digestion was mimicked using simulated solutions of gastric and intestinal juices followed by determination of Ca, Cu, Fe, Mg, Mn and Zn concentrations in the bioaccessible fraction by FAAS. RESULTS A new simple and fast method for determination of total concentrations of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen was developed and validated. The method combined room temperature, two-hour SE with 0.5 mol L-1 HNO3 with FAAS measurements versus simple standard solutions. It provided precision within 1-5 % and trueness better than 8%, and was shown to be suitable for fast analysis of different polyfloral bee pollens. In vitro gastrointestinal digestion revealed that elements were well (70-85 % for Ca, Mg) and fairly (27-43 % for Cu, Fe, Mn, and Zn) bioaccessible from bee pollen. By pouring with water and swelling overnight, bioaccessibility of studied elements from such prepared bee pollen was increased on average by less than 15 % (Mn), 20 % (Ca, Cu, Fe, Zn) or 30 % (Mn). CONCLUSIONS Avoiding long-lasting, high-temperature wet digestion with concentrated reagents, the proposed sample treatment along with FAAS provided precise and true results of total concentrations of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen. The method was simple and fast, and enabled to analyze a higher number of samples. Simulated gastrointestinal digestion of bee pollen have shown for the first time that Ca and Mg are the most bioaccessible from this bee product. Bioaccessibility of Cu, Fe, Mg, and Zn from bee pollen are close to or lower than 40 %.
Collapse
Affiliation(s)
- Pawel Pohl
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Anna Lesniewicz
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Maja Welna
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Anna Szymczycha-Madeja
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Piotr Cyganowski
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Polymer and Carbonaceous Materials, Wybrzeze St. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Piotr Jamroz
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
12
|
|
13
|
The drying process of Sarcocornia perennis: impact on nutritional and physico-chemical properties. Journal of Food Science and Technology 2020; 57:4443-4458. [PMID: 33087958 DOI: 10.1007/s13197-020-04482-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
The Sarcocornia genus is an extreme salt-tolerant plant that can be cultivated in saline habitats almost worldwide. To preserve Sarcocornia perennis, convective drying experiments were conducted and their effects on the physico-chemical properties and phenolic content of the plant were studied using conventional and vibrational spectroscopy techniques. The drying process of Sarcocornia perennis at temperatures of 40 °C, 50 °C, 60 °C and 70 °C revealed three periods of convective drying process with drying times ranging between 4.5 and 24.9 h, respectively to higher and lower temperatures. The heating-up period can be neglected as compared with the drying process, and the duration of constant rate period, as a percentage of the total drying time, ranged between 34 and 20% respectively at 40 °C and 70 °C. The Modified Page model was proposed to describe the drying process at the different temperatures. From a nutritional point of view, this halophyte plant may be considered as a good source of fibres, phenolic compounds and natural minerals, such as sodium, potassium, calcium and magnesium. The convective drying, in the temperature range currently used, was found to preserve the colour, nutritional characteristics and phytochemical value of Sarcocornia perennis. These results were confirmed by FTIR-ATR and highlight the potential use of the dried plant in novel food products.
Collapse
|
14
|
de Oliveira Gonçalves T, Filbido GS, de Oliveira Pinheiro AP, Pinto Piereti PD, Dalla Villa R, de Oliveira AP. In vitro bioaccessibility of the Cu, Fe, Mn and Zn in the baru almond and bocaiúva pulp and, macronutrients characterization. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
R. Saple S, E. Raval S, V. Vaidya V. Mineral Composition and Bioaccessibility in Asteracantha longifolia (L.) Nees. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2020. [DOI: 10.18311/ajprhc/2021/27448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Babaahmadifooladi M, Jacxsens L, Van de Wiele T, Laing GD. Gap analysis of nickel bioaccessibility and bioavailability in different food matrices and its impact on the nickel exposure assessment. Food Res Int 2019; 129:108866. [PMID: 32036919 DOI: 10.1016/j.foodres.2019.108866] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/05/2019] [Accepted: 11/24/2019] [Indexed: 02/08/2023]
Abstract
The metal nickel is well known to cause nickel allergy in sensitive humans by prolonged dermal contact to materials releasing (high) amounts of nickel. Oral nickel exposure via water and food intake is of potential concern. Nickel is essential to plants and animals and can be naturally found in food products or contamination may occur across the agro-food chain. This gap analysis is an evaluation of nickel as a potential food safety hazard causing a risk for human health. In the first step, the available data regarding the occurrence of nickel and its contamination in food and drinks have been collected through literature review. Subsequently, a discussion is held on the potential risks associated with this contamination. Elevated nickel concentrations were mostly found in plant-based foods, e.g. legumes and nuts in which nickel of natural origin is expected. However, it was observed that dedicated and systematic screening of foodstuffs for the presence of nickel is currently still lacking. In a next step, published studies on exposure of humans to nickel via foods and drinks were critically evaluated. Not including bioaccessibility and/or bioavailability of the metal may lead to an overestimation of the exposure of the body to nickel via food and drinks. This overestimation may be problematic when the measured nickel level in foods is high and bioaccessibility and/or bioavailability of nickel in these products is low. Therefore, this paper analyzes the outcomes of the existing dietary intake and bioaccessibility/bioavailability studies conducted for nickel. Besides, the available gaps in nickel bioaccessibility and/or bioavailability studies have been clarified in this paper. The reported bioaccessibility and bioavailability percentages for different food and drinks were found to vary between <LOD and 83% and between 0 and 30% respectively. This indicates that of the total nickel contained in the foodstuffs only a fraction can be absorbed by the intestinal epithelium cells. This paper provides a unique critical overview on nickel in the human diet starting from factors affecting its occurrence in food until its absorption by the body.
Collapse
Affiliation(s)
- Mehrnoosh Babaahmadifooladi
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
17
|
Pedron T, Freire BM, Castro CE, Ribal LF, Batista BL. Availability of arsenic in rice grains by in vitro and in vivo (humans) assays. J Trace Elem Med Biol 2019; 56:184-191. [PMID: 31494482 DOI: 10.1016/j.jtemb.2019.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/17/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Rice grains are consumed by approximately half of the world's population. This cereal has higher arsenic (As) concentrations in grains than wheat or barley. Arsenic determination in food and/or in vitro studies are important for risk assessment; however, it is not enough to assess the real human exposure. METHOD In vitro bioaccessibility was carried out in husked-rice using gastric and intestinal solutions similar to humans. Also, As naturally found in husked-rice was evaluated by in vivo bioavailability in humans. For this purpose, diets from the 1st and 2nd days were free of foods known to be high in As; 3rd and 4th days the diets were composed by rice and water and; 5th and 6th the diet was similar the 1st and 2nd days. During all experimentation, a representative aliquot of each meal, blood and urine were collected for total As (t-As) determination. Arsenic species were determined in the urine. RESULTS t-As in husked rice varied from 157.3 ± 30.6 to 240.2 ± 85.2 μg kg-1. The in vitrobioaccessible fractions ranged from 91 to 94%. Inorganic As (i-As) ranged from 99.7 ± 11.2 to 159.5 ± 29.4 μg kg-1. For the in vivo assay, t-As concentrations in the woman and man blood were about 3 μg mL-1 from the 1st to 6th day. Arsenic from the rice ingested was excreted by urine about 72 h after ingestion. The t-As and dimethyl As (DMA) in urine ranged from 3.59 to 47.17 and 1.02 to 2.55 μg g-1 creatinine for the volunteers, indicating a two-fold DMA-increase in urine after ingestion of husked-rice. CONCLUSION After rice ingestion, As was quickly metabolized. The higher As concentrations were found in urine 72 h after rice ingestion. The main As-specie found in urine was DMA, indicating that methylation of As from rice followed by urine excretion is the main biological pathway for As excretion.
Collapse
Affiliation(s)
- Tatiana Pedron
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Bruna Moreira Freire
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Carlos Eduardo Castro
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Luiz Felipe Ribal
- Center of Engineering, Modeling and Applied Social Sciences of the Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
18
|
Nandillon R, Lahwegue O, Miard F, Lebrun M, Gaillard M, Sabatier S, Battaglia-Brunet F, Morabito D, Bourgerie S. Potential use of biochar, compost and iron grit associated with Trifolium repens to stabilize Pb and As on a multi-contaminated technosol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109432. [PMID: 31306919 DOI: 10.1016/j.ecoenv.2019.109432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Vegetation cover can be used in the phytomanagement of polluted areas by adding value to abandoned sites and reducing the dispersion of pollutants by erosion. Appropriate amendments, that allow both efficient plant growth and the immobilization of contaminants in the soil must be chosen in order to optimize the efficiency of this process. We used a mining technosol mainly contaminated by arsenic (1068 mg kg-1) and lead (23387 mg kg-1) to study the effect of three amendments (biochar, compost and iron grit) on (i) physico-chemical properties of the soil and soil pore water, (ii) metal(loid) mobility, bioavailability and bioaccessibility (CaCl2 and Simple Bioaccessibility Extraction Test (SBET)), and (iii) the capability of Trifolium repens to germinate and grow. All the amendments used increased the pH and electrical conductivity of the SPW, resulting in a 90% decrease in the concentration of lead in the soil pore water (SPW). We also demonstrated a decrease in Pb phytoavailability. The amendments allowed the establishment of a plant cover, although the addition of iron grit alone did not allow any clover germination. For the Pontgibaud technosol, the combination of the three amendments resulted in a significant decrease in As and Pb concentrations in clover tissues, mainly in the aerial organs. The amendments also made it possible for some of them to halve the phytoavailable fraction of arsenic. However, for compost, both the As concentrations in the SPW, and the bioavailable fraction of As increased. All the amendments used had contrasting effects on the bioaccessible fractions of metal(loid)s. The most efficient amendment combination was the addition of 5% biochar and 5% compost.
Collapse
Affiliation(s)
- R Nandillon
- University of Orléans, INRA USC1328, LBLGC EA1207, Orléans, France; IDDEA, Environmental Consulting Engineering, Olivet, France; BRGM, ISTO, UMR7327, Orléans, France
| | - O Lahwegue
- University of Orléans, INRA USC1328, LBLGC EA1207, Orléans, France
| | - F Miard
- University of Orléans, INRA USC1328, LBLGC EA1207, Orléans, France
| | - M Lebrun
- University of Orléans, INRA USC1328, LBLGC EA1207, Orléans, France; University of Molise, Dipartimento di Bioscienze e Territorio, 86090, Pesche, Italy
| | - M Gaillard
- IDDEA, Environmental Consulting Engineering, Olivet, France
| | - S Sabatier
- IDDEA, Environmental Consulting Engineering, Olivet, France
| | | | - D Morabito
- University of Orléans, INRA USC1328, LBLGC EA1207, Orléans, France.
| | - S Bourgerie
- University of Orléans, INRA USC1328, LBLGC EA1207, Orléans, France
| |
Collapse
|
19
|
|
20
|
Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem 2018; 265:308-315. [DOI: 10.1016/j.foodchem.2018.05.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 11/24/2022]
|
21
|
Souza MMDE, Silva BDA, Costa CSB, Badiale-Furlong E. Free phenolic compounds extraction from Brazilian halophytes, soybean and rice bran by ultrasound-assisted and orbital shaker methods. AN ACAD BRAS CIENC 2018; 90:3363-3372. [PMID: 30517215 DOI: 10.1590/0001-3765201820170745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
In several countries halophytes are commercially cultivated in low saline or even irrigated with seawater, as well as with saline aquaculture effluent, like a sea asparagus Sarcocornia ambigua, that show a biotechnological potential for bioactive compounds production. However, their recovery from matrix is sometimes inefficient because the lignocellulosic materials difficult the solvent action when drastic conditions are not applied. The ultrasound-assisted extraction (UAE) was optimized by a central composite rotational design for recovery free phenolic compounds (FPC) from the sea asparagus S. ambigua. Optimum conditions were validated and compared with orbital shaker extraction for S. ambigua, other Brazilian halophytes (Apium graveolens, Myrsine parvifolia, Paspalum vaginatum, and Schinus terebinthifolius), soybean and rice bran. Except for P. vaginatum, soybean and rice bran, UAE yielded 18-29% higher FPC than that of the orbital shaker. Besides this analytical performance UAE method optimized is faster than the orbital shaker, providing shorter exposure of the analyst to the extractor solvent and applicable in matrices with different compositions. It was also demonstrated that halophytes species showed to be good natural sources of FPC in a better way as soybean and rice bran. This work was the first to report FPC in M. parvifolia and P. vaginatum.
Collapse
Affiliation(s)
- Manuel M DE Souza
- Laboratório de Biotecnologia de Halófitas/BTH, Instituto de Oceanografia/IO, Universidade Federal do Rio Grande/FURG, Av. Itália Km 8, 96203-900 Rio Grande, RS, Brazil
| | - Bibiana DA Silva
- Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Universidade Federal do Rio Grande/FURG, Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos/EQA, Av. Itália Km 8, 96203-900 Rio Grande, RS, Brazil
| | - César S B Costa
- Laboratório de Biotecnologia de Halófitas/BTH, Instituto de Oceanografia/IO, Universidade Federal do Rio Grande/FURG, Av. Itália Km 8, 96203-900 Rio Grande, RS, Brazil
| | - Eliana Badiale-Furlong
- Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Universidade Federal do Rio Grande/FURG, Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos/EQA, Av. Itália Km 8, 96203-900 Rio Grande, RS, Brazil
| |
Collapse
|
22
|
Leroux IN, Ferreira APSDS, Paniz FP, Pedron T, Salles FJ, da Silva FF, Maltez HF, Batista BL, Olympio KPK. Lead, Cadmium, and Arsenic Bioaccessibility of 24 h Duplicate Diet Ingested by Preschool Children Attending Day Care Centers in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081778. [PMID: 30126211 PMCID: PMC6121652 DOI: 10.3390/ijerph15081778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Abstract
Lead, known as a metal with high neurotoxicity to children, cadmium, which is a carcinogenic and bioaccumulative contaminant, and arsenic, a class 1 carcinogenic according to the International Agency for Research on Cancer, are toxic elements (TEs) whose relevant route of exposure may be diet. We determined the bio-accessible fraction of lead, cadmium, and arsenic from the diet of preschool children from two day care centers (DCC). A cross-sectional study was conducted with 64 one–four-year-old children from two DCCs where the 24-h duplicate diet samples were collected. The diet samples were analyzed by ICP-MS for lead, cadmium, and arsenic total concentrations (n = 64) and their bio-accessibility were analyzed for a subsample (n = 10). The dietary intake (DI) mean for lead, cadmium, and arsenic were 0.18 ± 0.11 µg kg−1 bw, 0.08 ± 0.04 µg kg−1 bw, and 0.61 ± 0.41 µg kg−1 bw, respectively. All DI calculated for TEs, considering total intake, were found lower than the tolerable limits (TL) (European Union, or World Health Organization, WHO, when applicable) except for one child’s Pb intake. Bio-accessibilities ranged between 0% to 93%, 0% to 103%, and 0% to 69%, for lead, cadmium, and arsenic, respectively. Although DI for TEs has been found lower than TL, these reference values have been recently decreased or withdrawn since it was for lead and arsenic whose TL were withdrawn by WHO.
Collapse
Affiliation(s)
- Isabelle Nogueira Leroux
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Ana Paula Sacone da Silva Ferreira
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Fernanda Pollo Paniz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Tatiana Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Fernanda Junqueira Salles
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Fábio Ferreira da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
- Agilent Technologies, Alameda Araguaia, 1142 Alphaville Industrial, Barueri 6455000, Brazil.
| | - Heloisa França Maltez
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Kelly Polido Kaneshiro Olympio
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| |
Collapse
|
23
|
Effect of cooking on the bioaccessibility of essential elements in different varieties of beans ( Phaseolus vulgaris L.). J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.07.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
In vitro bioaccessibility study of As, Cd, Cu, Fe, Ni, Pb and Zn from raw edible artichoke heads ( Cynara cardunculus L. subsp. Cardunculus). Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Mir-Marqués A, Cervera ML, de la Guardia M. Mineral analysis of human diets by spectrometry methods. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|