1
|
Bui TQ, Dat TTH, Quy PT, Hai NTT, Thai NM, Phu NV, Tuan LV, Huynh LK, Li MS, Nhung NTA. Identification of potential anti-hyperglycemic compounds in Cordyceps militaris ethyl acetate extract: in vitro and in silico studies. J Biomol Struct Dyn 2025; 43:627-643. [PMID: 37997953 DOI: 10.1080/07391102.2023.2283156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Cordyceps militaris has been long known for valuable health benefits by folk experience and was recently reported with diabetes-tackling evidences, thus deserving extending efforts on screening for component-activity relationship. In this study, experiments were carried out to find the evidence, justification, and input for computations on the potential against diabetes-related protein structures: PDB-4W93, PDB-3W37, and PDB-4A3A. Liquid chromatography identified 14 bioactive compounds in the ethyl acetate extract (1-14) and quantified the contents of cordycepin (0.11%) and adenosine (0.01%). Bioassays revealed the overall potential of the extract against α-amylase (IC50 = 6.443 ± 0.364 mg.mL-1) and α-glucosidase (IC50 = 2.580 ± 0.194 mg.mL-1). A combination of different computational platforms was used to select the most promising candidates for applications as anti-diabetic bio-inhibitors, i.e. 1 (ground state: -888.49715 a.u.; dipole moment 3.779 Debye; DS ¯ -12.3 kcal.mol-1; polarizability 34.7 Å3; logP - 1.30), 10 (ground state: -688.52406 a.u.; dipole moment 5.487 Debye; DS ¯ -12.6 kcal.mol-1; polarizability 24.9 Å3; logP - 3.39), and 12 (ground state: -1460.07276 a.u.; dipole moment 3.976 Debye; DS ¯ -12.5 kcal.mol-1; polarizability 52.4 Å3; logP - 4.39). The results encourage further experimental tests on cordycepin (1), mannitol (10), and adenosylribose (12) to validate their in-practice diabetes-related activities, thus conducive to hypoglycemic applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Hue, Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Dak Lak, Vietnam
| | | | - Nguyen Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Nguyen Vinh Phu
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Le Van Tuan
- Department of Environmental Science, University of Sciences, Hue University, Hue City, Vietnam
| | - Lam K Huynh
- School of Chemical and Environmental Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Ho Chi Minh City, Vietnam
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| |
Collapse
|
2
|
Rehman AU, Khan AU, Sohaib M, Rehman H. Comparative Analysis of Nutritional Properties, Phytochemical Profile, and Antioxidant Activities between Red and Green Water Chestnut ( Trapa natans) Fruits. Foods 2024; 13:1883. [PMID: 38928824 PMCID: PMC11202977 DOI: 10.3390/foods13121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024] Open
Abstract
The present study explored the nutritional composition, phytochemicals analysis, and antioxidant capacity of two indigenous varieties of red and green water chestnut (WCN) fruit grown in Pakistan. Accordingly, this study was designed to investigate the proximate composition (moisture, ash, fiber, proteins, fat, and energy), physicochemical properties (pH, °Brix, and glycemic index), minerals, and vitamins. The methanolic extracts of WCN fruits were explored for phytochemicals (total phenolic and flavonoid content), and antioxidant potential was examined in vitro by 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity (DPPH) and Ferric reducing antioxidant power (FRAP). Quantitative determination of mineral (sodium, potassium, calcium, phosphorus, iron, manganese, copper, and zinc) and vitamin (vitamin C, vitamin B6, vitamin B2, vitamin B3, vitamin A, and β-Carotene) composition was also assessed. Based on the findings, the proximate compositions of WCN green and red varieties varied greatly as WCN green contained significantly higher protein (1.72%), fat (0.65%), dietary fiber (2.21%), moisture (70.23%), ash (1.16%), and energy content (112.8 Kcal) than WCN red. In WCN green, the macro-micromineral concentrations were significantly higher than WCN red. Among the minerals analyzed, potassium was the most abundant mineral found in both varieties. Levels of vitamin C, B6, A, and β-Carotene were significantly higher in WCN green. In this study, methanolic extract showed higher extraction efficiency than acetone, ethanol, and distilled water. WCN green had a significantly higher quantum of total phenolic (91.13 mg GAE/g) and total flavonoid (36.6 mg QE/g) and presented significantly higher antioxidant activity than the WCN red. This study showed that, among both varieties, WCN green extract has therapeutic potential against free radical mediated health conditions and suggested the potential use of this fruit as a source of natural antioxidants in nutraceuticals.
Collapse
Affiliation(s)
- Aniq Ur Rehman
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Azmat Ullah Khan
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Muhammad Sohaib
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan;
| |
Collapse
|
3
|
Saeed RA, Khan MI, Butt MS, Faisal MN. Phytochemical screening of Prunus avium for its antioxidative and anti-mutagenic potential against DMBA-induced hepatocarcinogenesis. Front Nutr 2023; 10:1132356. [PMID: 37266135 PMCID: PMC10231329 DOI: 10.3389/fnut.2023.1132356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Scope Prunus avium fruit is the richer source of phenolics known to exert anticancer and anti-invasive activities. The study aimed at elucidating antiproliferative and chemo-preventive potential of sweet cherries (P. avium) against the in vivo hepatocarcinoma model. Methods and results The quantification of ultrasound-assisted extract (UAE) of P. avium depicted anthocyanins, ferulic acid, gallic acid, quercetin, syringic acid and p- and m-coumaric acids as major phytochemicals. The hepatocarcinoma (HCC) was induced in rats through intraperitoneal administration of DMBA (20 mg/kg B.W) once a week for the period of eight weeks. The intragastric administration of P. avium UAE, as cotreatment (500 mg/Kg B.W) to treatment group, significantly (p < 0.01) attenuated the raised serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) as well as total oxidative stress (TOS) and enhanced total antioxidant capacity TAOC in contrast to diseased rats. Moreover, microscopic examination of hepatic tissues confirmed the pleomorphism, nests of neoplastic hepatocytes and necrosis in HCC-bearing rats as compared to extract-fed rats, where these necrotic changes were suppressed. Besides, qRT-PCR analysis of hepatic tissues demonstrated the higher mRNA expression of CHEK1, CHEK2 and P21/CDKN1α genes, while downexpression of ATM gene in extract fed rats, further denoting the anti-mutagenic potential. Conclusion Consequently, the polyphenol-rich sweet cherries UAE exhibited antiproliferative and chemo-preventive potential by reducing tumor biomarkers, serum transaminases and oxidative stress, as well as enhancing antioxidant status. It further upregulated the downstream targets of ATM signaling cascade.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology, and Pharmacology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Itodo JI, Ayo JO, Rekwot IP, Aluwong T, Allam L, Ibrahim S. Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks. WORLD RABBIT SCIENCE 2022. [DOI: 10.4995/wrs.2022.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The study investigated the comparative influence of different extraction solvents on spermiogram, hormonal profiles and antioxidant activities in rabbit bucks. Adult New Zealand White rabbit bucks (n=18), with average live weight of 1.2±0.03 kg and aged 10-18 mo were fed ad libitum on a commercial diet. They were administered five different Azanza garckeana (AG) fruit pulp extracts at 500 mg/kg via oral gavage, comprising control group (Con), crude (AG Cr), methanol (AG M), n-hexane (AG H), ethyl acetate (AG E)and aqueous (AG AQ) for four weeks. The extracts improved the spermiogram in rabbit bucks administered methanol (AG M) and the reaction time was significantly (P<0.05) lower in AG E group when compared to other groups. The ejaculate volume, sperm motility, pH and sperm concentration were significantly (P<0.05) higher in the AG M group when compared to the other groups. There was a significant (P<0.05) increase in concentrations of blood testosterone, follicle-stimulating hormone and luteinising hormone in methanol extract group (AG M). While the glutathione and malondialdehyde concentrations were (P<0.05) lower, catalase and superoxide dismutase activities were significantly (P<0.05) higher in the groups administered methanol extract (AG M). It was concluded that AG M extracts of AG pulp elicited the best response in spermiogram, hormonal concentrations and antioxidant activities in New Zealand White rabbit bucks. Its use as the extraction solvent is recommended.
Collapse
|
5
|
El-Abid H, Amaral C, Cunha SC, Correia-da-Silva G, Fernandes JO, Moumni M, Teixeira N. Anti-cancer properties of hydroethanolic extracts of Juniperus oxycedrus L. in breast cancer cells. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Qadir A, Khan N, Arif M, Warsi MH, Ullah SNMN, Yusuf M. GC–MS analysis of phytoconstituents present in Trigonella foenumgraecum L. seeds extract and its antioxidant activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
8
|
Phytochemical Insights into Ficus sur Extracts and Their Biological Activity. Molecules 2022; 27:molecules27061863. [PMID: 35335228 PMCID: PMC8949149 DOI: 10.3390/molecules27061863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
This study focused on the biological evaluation and chemical characterisation of Ficus sur Forssk. (F. sur) (Family: Moraceae). The methanolic and aqueous extracts’ phytochemical profile, antioxidant, and enzyme inhibitory properties were investigated. The aqueous stem bark extract yielded the highest phenolic content (115.51 ± 1.60 mg gallic acid equivalent/g extract), while the methanolic leaves extract possessed the highest flavonoid content (27.47 ± 0.28 mg Rutin equivalent/g extract). In total, 118 compounds were identified in the tested extracts. The methanolic stem bark extract exhibited the most potent radical scavenging potential against 2,2-diphenyl-1 picrylhydrazyl and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (475.79 ± 6.83 and 804.31 ± 4.52 mg Trolox equivalent/g extract, respectively) and the highest reducing Cu2+ capacity (937.86 ± 14.44 mg Trolox equivalent/g extract). The methanolic stem bark extract substantially depressed tyrosinase (69.84 ± 0.35 mg kojic acid equivalent/g extract), α-amylase (0.77 ± 0.01 mmol acarbose equivalent/g extract), acetylcholinesterase and butyrylcholinesterase (2.91 ± 0.07 and 6.56 ± 0.34 mg galantamine equivalent/g extract, respectively) enzymes. F. sur extracts were tested for anticancer properties and antiviral activity towards human herpes virus type 1 (HHV-1). Stem bark infusion and methanolic extract showed antineoplastic activity against cervical adenocarcinoma and colon cancer cell lines, whereas leaf methanolic extract exerted moderate antiviral activity towards HHV-1. This investigation yielded important scientific data on F. sur which might be used to generate innovative phytopharmaceuticals.
Collapse
|
9
|
Gonçalves AC, Costa AR, Flores-Félix JD, Falcão A, Alves G, Silva LR. Anti-Inflammatory and Antiproliferative Properties of Sweet Cherry Phenolic-Rich Extracts. Molecules 2022; 27:268. [PMID: 35011501 PMCID: PMC8747005 DOI: 10.3390/molecules27010268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cherries have largely been investigated due to their high content in phenolics in order to fully explore their health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-inflammatory potential of phenolic-targeted fractions of the Saco cherry, using RAW 264.7 macrophages stimulated with lipopolysaccharide. Additionally, the cytotoxic effects on gastric adenocarcinoma (AGS), neuroblastoma (SH-SY5Y) and normal human dermal fibroblast (NHDF) cells were evaluated, as well as the ability to protect these cellular models against induced oxidative stress. The obtained data revealed that cherry fractions can interfere with cellular nitric oxide (NO) levels by capturing NO radicals and decreasing inducible nitric oxide synthase and cyclooxygenase-2 expression. Furthermore, it was observed that all cherry fractions exhibited dose-dependent cytotoxicity against AGS cells, presenting cytotoxic selectivity for these cancer cells when compared to SH-SY5Y and NHDF cells. Regarding their capacity to protect cancer cells against oxidative injury, in most assays, the total cherry extract was the most effective. Overall, this study reinforces the idea that sweet cherries can be incorporated into new pharmaceutical products, smart foods and nutraceuticals.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal;
| | - Ana R. Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
| | - José D. Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
10
|
Valorisation of Prunus avium L. By-Products: Phenolic Composition and Effect on Caco-2 Cells Viability. Foods 2021; 10:foods10061185. [PMID: 34070252 PMCID: PMC8225088 DOI: 10.3390/foods10061185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Prunus avium L. by-products, such as stems, leaves, and flowers, are used in folk medicine to prevent and treat some diseases. However, their phenolic composition and in vitro bioactivities against tumor cells are poorly known. In this work, we compared the phenolic profile and the biological potential of aqueous infusions and hydroethanolic extracts of P. avium leaves, stems, and flowers from Saco cultivar, collected from the Fundão region (Portugal). Among the fifty-two phenolic compounds tentatively identified by HPLC-DAD-ESI/MSn, the hydroxycinnamic acids were the most abundant. Both extracts of stems revealed a higher activity against DPPH•. Meanwhile, hydroethanolic extracts from stems and flowers and aqueous infusions of flowers were the most effective in inhibiting the growth of the human epithelial colorectal adenocarcinoma (Caco-2) cells at concentrations above 200 μg/mL. More detailed knowledge about the phenolic composition and health-promoting properties of Portuguese P. avium by-products allows for increasing the biological and commercial value of these bio-wastes, which may have a positive impact on food and pharmaceutical industries, as on the valorization of the local economy.
Collapse
|
11
|
Chen JY, Yen GC, Tsai NT, Lin JA. Risk and Benefit of Natural and Commercial Dark Brown Sugars as Evidenced by Phenolic and Maillard Reaction Product Contents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:767-775. [PMID: 33400521 DOI: 10.1021/acs.jafc.0c04795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Products of dark brown sugar (DBS) from different production processes and raw materials may bring different risks and benefits to human health. Therefore, this study was aimed to evaluate the quality of natural and commercial DBS products. Results showed that physicochemical properties, including pH value, turbidity, and browning degree have no significant difference between natural and commercial DBS products. Total flavonoid content of natural DBS was found to be significantly higher than that of commercial DBS (p < 0.05). Notably, the levels of harmful Maillard reaction products in natural DBS were significantly lower than that in commercial DBS as evidenced by analyses of methylglyoxal and fluorescent advanced glycation end products (p < 0.05). However, the amount of acrylamide in natural DBS was significantly higher than that in commercial DBS. In conclusion, this study provides useful information for risk-benefit assessment of DBS products, which is helpful for food safety management.
Collapse
Affiliation(s)
- Jui-Yi Chen
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Nien-Ting Tsai
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
12
|
Phytochemical Analysis and Evaluation of Antioxidant and Biological Activities of Extracts from Three Clauseneae Plants in Northern Thailand. PLANTS 2021; 10:plants10010117. [PMID: 33429942 PMCID: PMC7826859 DOI: 10.3390/plants10010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 11/25/2022]
Abstract
This study established the DNA barcoding sequences (matK and rbcL) of three plant species identified in the tribe Clauseneae, namely Clausena excavata, C. harmandiana and Murraya koenigii. The total phenolic and total flavonoid contents, together with the biological activities of the derived essential oils and methanol extracts, were also investigated. Herein, the success of obtaining sequences of these plant using two different barcode genes matK and rbcL were 62.5% and 100%, respectively. Both regions were discriminated by around 700 base pairs and these had resemblance with those of the Clausenae materials earlier deposited in Genbank at a 99–100% degree of identity. Additionally, the use of matK DNA sequences could positively confirm the identity as monophyletic. The highest total phenolic and total flavonoid content values (p < 0.05) were observed in the methanol extract of M. koenigii at 43.50 mg GAE/g extract and 66.13 mg QE/g extract, respectively. Furthermore, anethole was detected as the dominant compound in C. excavata (86.72%) and C. harmandiana (46.09%). Moreover, anethole (26.02%) and caryophyllene (21.15%) were identified as the major phytochemical compounds of M. koenigii. In terms of the biological properties, the M. koenigii methanol extract was found to display the greatest amount of antioxidant activity (DPPH; IC50 95.54 µg/mL, ABTS value 118.12 mg GAE/g extract, FRAP value 48.15 mg GAE/g extract), and also revealed the highest α-glucosidase and antihypertensive inhibitory activities with percent inhibition values of 84.55 and 84.95. Notably, no adverse effects on human peripheral blood mononuclear cells were observed with regard to all of the plant extracts. Furthermore, M. koenigii methanol extract exhibited promise against human lung cancer cells almost at 80% after 24 h and 90% over 48 h.
Collapse
|
13
|
Zheng YF, Li DY, Sun J, Cheng JM, Chai C, Zhang L, Peng GP. Comprehensive Comparison of Two Color Varieties of Perillae Folium Using Rapid Resolution Liquid Chromatography Coupled with Quadruple-Time-of-Flight Mass Spectrometry (RRLC-Q/TOF-MS)-Based Metabolic Profile and in Vivo/ in Vitro Anti-Oxidative Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14684-14697. [PMID: 33237758 DOI: 10.1021/acs.jafc.0c05407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Perillae Folium (PF), which is extensively used as a dietary vegetable and medicinal herb, contains two varietal forms corresponding to purple perilla leaf (Perilla frutescens var. crispa) and green perilla leaf (Perilla frutescens var. frutescens). However, the components and efficacy of different PF varieties remain underexplored so far. In the present work, a nontargeted rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q/TOF-MS)-based metabolomics approach was developed to investigate the difference in the chemical compositions between green PF and purple PF. A total of 71 compounds were identified or tentatively identified, among which 7 phenolic acids, 10 flavonoids, and 9 anthocyanins were characterized as differential metabolites. In addition, heatmap visualization and ultraperformance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-TQ-MS/MS)-based quantitative analysis revealed that flavonoids and anthocyanins especially had higher contents in purple PF. Furthermore, the anti-oxidative activities of two varietal PFs were evaluated in vivo zebrafish and in vitro human umbilical vein endothelial cells (HUVECs). The results showed that the purple PF had more pronounced anti-oxidative activities than did the green PF, which may be due to the presence of anthocyanins and a higher concentration of flavonoids in its phytochemical profile. The outcome of the present study is expected to provide useful insight on the comprehensive utilization of a PF resource.
Collapse
Affiliation(s)
- Yun-Feng Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Dan-Yang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jie Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jian-Ming Cheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Chuan Chai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Li Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Guo-Ping Peng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
14
|
Gonçalves AC, Bento C, Nunes AR, Simões M, Alves G, Silva LR. Multitarget protection of Pterospartum tridentatum phenolic-rich extracts against a wide range of free radical species, antidiabetic activity and effects on human colon carcinoma (Caco-2) cells. J Food Sci 2020; 85:4377-4388. [PMID: 33118618 DOI: 10.1111/1750-3841.15511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Pterospartum tridentatum is an edible endemic plant common in Portugal. Its flowers are used in culinary and are part of the popular medicine owing to its therapeutic properties. In this study, P. tridentatum flower infusion and hydroethanolic extracts were characterized concerning their phenolic composition and biological potential. By high-performance liquid chromatography method coupled to a diode array detector analysis were detected 13 phenolics. Genistein was the major one. Concerning the biological potential, the hydroethanolic extract was the most active against 2,2-diphenyl-1-picrylhydrazyl● and also as α-glucosidase inhibitor, while the infusion proved to be a remarkable free radical scavenger. Concerning human epithelial colorectal adenocarcinoma (Caco-2) cells, it was observed that both extracts displayed dose-dependent cytotoxicity on the viability of Caco-2 cells, presenting cytotoxic selectivity for these cancer cells when compared to the NHDF normal cell line. Additionally, they also showed protective effects against oxidative stress induced by tert-butyl hydroperoxide on Caco-2 cells. The obtained results suggest that these extracts may be interesting to enrich nutraceutical, pharmaceutical and food industries; however, more studies need to be done for their inclusion in pharmaceutical preparations and/or food additives. PRACTICAL APPLICATION: Pterospartum tridentatum is an endemic plant commonly used in folk medicine due to its depurative and hypoglycaemic properties. For this reason, we decided to determine the phenolic content of infusion and hydroethanolic extracts of P. tridentatum and their biological potential. The obtained results proved that P. tridentatum extracts are a rich source of bioactive compounds and possess great antioxidant and antidiabetic activities, ability to protect human erythrocytes against oxidative damage, inhibiting hemolysis, hemoglobin oxidation, and lipid peroxidation, and to interfere with Caco-2 cells growth and to protect these cells when subject to tert-butyl hydroperoxide oxidative stress conditions.
Collapse
Affiliation(s)
- Ana Carolina Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6201-506, Portugal
| | - Catarina Bento
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6201-506, Portugal
| | - Ana R Nunes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6201-506, Portugal
| | - Manuel Simões
- LEPABE - Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6201-506, Portugal
| | - Luís R Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6201-506, Portugal
| |
Collapse
|
15
|
Moreira R, Fernandes F, Valentão P, Pereira DM, Andrade PB. Echium plantagineum L. honey: Search of pyrrolizidine alkaloids and polyphenols, anti-inflammatory potential and cytotoxicity. Food Chem 2020; 328:127169. [PMID: 32485580 DOI: 10.1016/j.foodchem.2020.127169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/04/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
For a long time, honey has been recognized for its health-promoting properties and, consequently, has been used in traditional medicine worldwide. Apart from the beneficial bioactive compounds found in this food (e.g. polyphenols), molecules with potentially harmful effects may also be present, such as pyrrolizidine alkaloids. Aiming the quality assessment of honeys produced from Echium plantagineum L., a species known for its content in pyrrolizidine alkaloids, this work was focused in the search of these alkaloids and of polyphenols in one monofloral and two multifloral honeys, using chromatographic techniques. Additionally, their cytotoxicity and anti-inflammatory potential were assessed in cellular models. Several polyphenols were determined, but no pyrrolizidine alkaloid was detected in the analysed honey samples. Honey extracts exhibited capacity to decrease NO levels in lipopolysaccharide-stimulated murine macrophage-like cells (RAW 264.7) up to 40% at concentrations of 0.25 mg/mL. Therefore, this work highlights the health benefits of these honey samples.
Collapse
Affiliation(s)
- Rute Moreira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| | - Fátima Fernandes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Dhull SB, Kaur M, Sandhu KS. Antioxidant characterization and in vitro DNA damage protection potential of some Indian fenugreek ( Trigonella foenum- graecum) cultivars: effect of solvents. Journal of Food Science and Technology 2020; 57:3457-3466. [PMID: 32728292 DOI: 10.1007/s13197-020-04380-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Indian fenugreek cultivars were characterized for their antioxidant properties and bioactive compounds were quantified using high performance liquid chromatography (HPLC). The extraction efficiencies were compared for two extraction solvents [aqueous ethanol (50%) and methanol]. The bioactive properties studied were total phenolic content (TPC), total flavonoids content (TFC), condensed tannin content (CTC), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS+), 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, total antioxidant capacity (TAC), and reducing power activity (RPA). Aqueous ethanol extracts showed higher TPC, TFC, ABTS+, TAC and RPA as compared to methanol. However, methanolic extracts showed higher CTC and DPPH activity. Higher TPC [45.3 and 45.4 mg gallic acid equivalents (GAE)/g dry weight basis (dwb)], DPPH (93.0 and 93.2%), ABTS+ (98.3 and 98.5%), RPA [40.9 and 44.9 mg quercetin equivalents (QE)/g dwb], were observed for cv.RMT-143 and cv.RMT-365, respectively. TFC (20.5 mg catechin equivalents (CE)/g dwb) and CTC (9.3 mg CE/g dwb) were found the highest for cv. Kasoori methi. Quantification of phenolic compounds using HPLC revealed higher amount of gallic acid (in Kasoori methi), ascorbic and p-coumaric acid (HM-57), benzoic and cinnamic acid (RMT-143) and catechol (only in RMT-365). Significant (p < 0.05) protection against in vitro plasmid deoxyribonucleic acid (DNA) (pBR322) oxidative damage was observed for fenugreek extracts.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| |
Collapse
|
17
|
Mazumder K, Biswas B, Raja IM, Fukase K. A Review of Cytotoxic Plants of the Indian Subcontinent and a Broad-Spectrum Analysis of Their Bioactive Compounds. Molecules 2020; 25:E1904. [PMID: 32326113 PMCID: PMC7221707 DOI: 10.3390/molecules25081904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer or uncontrolled cell proliferation is a major health issue worldwide and is the second leading cause of deaths globally. The high mortality rate and toxicity associated with cancer chemotherapy or radiation therapy have encouraged the investigation of complementary and alternative treatment methods, such as plant-based drugs. Moreover, over 60% of the anti-cancer drugs are molecules derived from plants or their synthetic derivatives. Therefore, in the present review, an attempt has been made to summarize the cytotoxic plants available in the Indian subcontinent along with a description of their bio-active components. The review covers 99 plants of 57 families as well as over 110 isolated bioactive cytotoxic compounds, amongst which at least 20 are new compounds. Among the reported phytoconstituents, artemisinin, lupeol, curcumin, and quercetin are under clinical trials, while brazilin, catechin, ursolic acid, β-sitosterol, and myricetin are under pharmacokinetic development. However, for the remaining compounds, there is little or no information available. Therefore, further investigations are warranted on these subcontinent medicinal plants as an important source of novel cytotoxic agents.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
- School of Biomedical Sciences, Charles Sturt University, Boorooma St, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
| | - Iqbal Mahmud Raja
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Anti-Inflammatory, Antioxidant, and Microbiota-Modulating Effects of Camellia Oil from Camellia brevistyla on Acetic Acid-Induced Colitis in Rats. Antioxidants (Basel) 2020; 9:antiox9010058. [PMID: 31936300 PMCID: PMC7022941 DOI: 10.3390/antiox9010058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Altering the microbiota by the daily diet is highly associated with improved human health. Studies confirms the gastrointestinal protective and anti-inflammatory effects of camellia oil; however, the benefits in gut microbiota remain unclear. Camellia oils of Camellia oleifera (PCO) and C. brevistyla (TCCO) were used to evaluate probiotic growth in vitro. In addition, the protective effects of camellia oils in the acetic acid (AA)-induced colitis rat model were investigated. In vitro fermentation study showed the proliferation of Lactobacillus spp. and Bifidobacterium spp. from human intestinal microbiota was increased after TCCO treatment. Moreover, the rats pretreated with TCCO exhibited significantly less AA-induced colonic injury and hemorrhage, higher serum immunoglobulin G 1 (IgG 1) levels, lower malondialdehyde levels, and lower inflammatory cytokine production in the colon tissue compared with those in the PCO group. Surprising, the protective effect against acetic acid-induced colitis by TCCO was similar to sulfasalazine (positive control) treatment. Moreover, TCCO increased the richness and diversity of probiotics in gut microbiota. TCCO alleviated AA-induced colitis by modulating gut microbiota, reducing oxidative stress and suppressing inflammatory responses.
Collapse
|
19
|
Akif Açıkgöz M. Evaluation of Phytochemical Compositions and Biological Properties of
Achillea gypsicola
at Different Phenological Stages. Chem Biodivers 2019; 16:e1900373. [DOI: 10.1002/cbdv.201900373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
|
20
|
A Comprehensive Assessment of Bioactive Metabolites, Antioxidant and Antiproliferative Activities of Cyclocarya paliurus (Batal.) Iljinskaja Leaves. FORESTS 2019. [DOI: 10.3390/f10080625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja is an indigenous and multifunction tree species in China, but it is mainly used in pharmaceutical and nutraceutical ingredients. To make a comprehensive evaluation on its bioactive metabolites, antioxidant and antitumor potentials of C. paliurus leaves, the leaf samples were collected from 15 geographic locations (natural populations) throughout its distribution areas. High-performance liquid chromatography (HPLC) and colorimetric methods were used to detect the contents of bioactive metabolites. The antioxidant activity was evaluated by 2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and reducing power assays. The antiproliferative activity on different cancer cell types was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Contents of bioactive metabolites, and antioxidant and antiproliferative activities in the extracts were significantly affected by solvent and population. In most cases, the contents of flavonoids and triterpenoids, and the antioxidant and antiproliferative activities in the ethanol extracts were higher than the water extracts. The best scavenging capacity of DPPH (IC50 = 0.34 mg/mL) and ABTS (IC50 = 0.50 mg/mL) radical occurred in the ethanol extracts of S15 and S7 population respectively, while the strongest reducing power (EC50 = 0.71 mg/mL) was achieved in the ethanol extracts of S14 population. The antiproliferation effects of C. paliurus extracts on cancer cells varied with different cell types. The HeLa cell was the most sensitive to C. paliurus extracts, and their IC50 values of the ethanol extracts varied from 0.13 to 0.42 mg/mL among C. paliurus populations. Redundancy analysis showed that total polyphenol had the greatest contribution to the antioxidant activity, but total flavonoid was mostly responsible for the antiproliferation effects. These results would provide important scientific evidences not only for developing C. paliurus as a potent antioxidant and antitumor reagent, but also for obtaining the higher yield of bioactive compounds in the C. paliurus plantation.
Collapse
|
21
|
Abas ASM, Naguib DM. Effect of germination on anticancer activity of Trigonella foenum seeds extract. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J FOOD QUALITY 2019. [DOI: 10.1155/2019/8178294] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Severinia buxifolia (Rutaceae) is a promising source of bioactive compounds since it has been traditionally used for the treatment of various diseases. The present study aimed at evaluating the impact of different solvents on extraction yields, phytochemical constituents and antioxidants, and in vitro anti-inflammatory activities of S. buxifolia. The results showed that the used solvents took an important role in the yield of extraction, the content of chemical components, and the tested biological activities. Methanol was identified as the most effective solvent for the extraction, resulting in the highest extraction yield (33.2%) as well as the highest content of phenolic (13.36 mg GAE/g DW), flavonoid (1.92 mg QE/g DW), alkaloid (1.40 mg AE/g DW), and terpenoids (1.25%, w/w). The extract obtained from methanol exhibited high capacity of antioxidant (IC50 value of 16.99 μg/mL) and in vitro anti-inflammatory activity (i.e., albumin denaturation: IC50 = 28.86 μg/mL; antiproteinase activity: IC50 = 414.29 μg/mL; and membrane stabilization: IC50 = 319 μg/mL). The antioxidant activity of the S. buxifolia extract was found to be 3-fold higher than ascorbic acid, and the anti-inflammatory activity of S. buxifolia extract was comparable to aspirin. Therefore, methanol is recommended as the optimal solvent to obtain high content of phytochemical constituents as well as high antioxidants and in vitro anti-inflammatory constituents from the branches of S. buxifolia for utilization in pharmacognosy.
Collapse
|
23
|
Oyinloye BE, Adekiya TA, Aruleba RT, Ojo OA, Ajiboye BO. Structure-Based Docking Studies of GLUT4 Towards Exploring Selected Phytochemicals from Solanum xanthocarpum as a Therapeutic Target for the Treatment of Cancer. Curr Drug Discov Technol 2019; 16:406-416. [PMID: 30068281 DOI: 10.2174/1570163815666180801152110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In recent years, there has been an exponential increase in the global burden of cancer which has been associated with several factors including environmental influence, aging, diet, infectious agents, hormonal imbalance and chronic inflammation, among others. Cancerous cells utilize more glucose for its proliferation and survival than normal cells. Thus, the regulation of glucose consumption of cancerous cells through the inhibition of glucose transporter-4-protein (GLUT4) encoded by solute carrier family-2-member-4-gene (Slc2a4) by selected phytochemicals from Solanum xanthocarpum may serve as a new therapeutic candidate for the treatment of cancer. METHODS The seven identified potential inhibitors of GLUT4 from Solanum xanthocarpum were retrieved from PubChem database. Examination of their drug-likeness, toxicity prediction and molecular docking studies of these compounds with GLUT4 were carried out using online tools such as Molinspiration, PreADMET V.2.0 and Patchdock server. RESULTS The findings revealed that, five out of the seven compounds fulfil oral drugability of Lipinski's rule of five (RO5) while two slightly meet the criteria of RO5. Conversely, five of the compounds are predicted to be mutagen while the remaining two are predicted to be safe for the body. Additionally, stigmasterol glucoside has higher binding-affinity (7590) with GLUT4 when compared to doxorubicin (6600) the control. CONCLUSION These findings suggest that stigmasterol glucoside from Solanum xanthocarpum could be a promising therapeutic agent with better therapeutic efficacy than doxorubicin in the treatment of cancer via the inhibition of GLUT4.
Collapse
Affiliation(s)
- Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwa Dlangezwa 3886, South Africa
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado- Ekiti 360001, Nigeria
| | - Tayo Alex Adekiya
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwa Dlangezwa 3886, South Africa
| | - Raphael Taiwo Aruleba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwa Dlangezwa 3886, South Africa
| | - Oluwafemi Adeleke Ojo
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado- Ekiti 360001, Nigeria
| | - Basiru Olaitan Ajiboye
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado- Ekiti 360001, Nigeria
| |
Collapse
|
24
|
BARROS BÁRBARAR, BARBOZA BRUNORAFAEL, RAMOS BÁRBARAA, MOURA MAIARACDE, COELHO LUANAC, NAPOLEÃO THIAGOHENRIQUE, CORREIA MARIATEREZAS, PAIVA PATRÍCIAMARIAG, CRUZ FILHO IRANILDOJOSÉDA, SILVA TÚLIODIEGODA, LIMA CLÁUDIAS, MELO CRISTIANEMDE. Saline extract from Malpighia emarginata DC leaves showed higher polyphenol presence, antioxidant and antifungal activity and promoted cell proliferation in mice splenocytes. ACTA ACUST UNITED AC 2019; 91:e20190916. [DOI: 10.1590/0001-3765201920180358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022]
|
25
|
Cheng YT, Lin JA, Jhang JJ, Yen GC. Protocatechuic acid-mediated DJ-1/PARK7 activation followed by PI3K/mTOR signaling pathway activation as a novel mechanism for protection against ketoprofen-induced oxidative damage in the gastrointestinal mucosa. Free Radic Biol Med 2019; 130:35-47. [PMID: 30326282 DOI: 10.1016/j.freeradbiomed.2018.10.415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
Oxidative stress contributes to the progression of non-steroidal anti-inflammatory drug (NSAID)-induced gastrointestinal (GI) cell apoptosis. In our previous study, we reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a protective role against ketoprofen-induced GI mucosal oxidative injury. Recent reports suggest that Nrf2 could exhibit antioxidative and antiapoptosis responses through up-regulation of DJ-1 (PARK7). In the current study, we proposed that induction of DJ-1 expression by protocatechuic acid (PCA) might provide a potential therapeutic approach for treating oxidative stress-associated GI ulcer diseases. The results indicated that PCA increased mRNA expression of glutathione peroxidase and heme oxygenase-1 through up-regulation of DJ-1 followed by Nrf2 translocation. Furthermore, PCA protected Int-407 cells against ketoprofen-induced oxidative stress by regulating the DJ-1, PI3K, and mTOR pathways. Pretreatment with PCA inhibited mitochondrial ROS generation, up-regulated the mitochondrial membrane potential, and down-regulated pro-apoptotic Bax as well as downstream caspase-8, caspase-9, and caspase-3 activity, and reversed impaired DJ-1 and anti-apoptotic Bcl-2 protein expression in Int-407 cells induced by ketoprofen. Similar to the in vitro results, SD rats treated with PCA before administration of ketoprofen exhibited decreased caspase-3 protein expression as well as oxidative damage, and impairment of the antioxidant system and DJ-1 protein expression in the GI mucosa were reversed. The administration of lansoprazole, a type of proton pump inhibitor (PPI), strongly inhibited ketoprofen-induced GI mucosal injuries via up-regulation of DJ-1, indicating that DJ-1 is essential for the dietary antioxidant- and PPI drug-mediated mechanism of ulcer therapy. These results suggest that DJ-1 could be a novel target for protection against ketoprofen-induced GI ulcers due to its antioxidant and anti-apoptosis characteristics.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jhih-Jia Jhang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| |
Collapse
|
26
|
Thakur RS, Ahirwar B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. J Food Drug Anal 2019; 27:231-239. [PMID: 30648576 PMCID: PMC9298615 DOI: 10.1016/j.jfda.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Trigonella foenum graecum L. is a dietary herb used in traditional medicine system. In this study, we investigated the cytotoxicity, antitumor, antimetastatic and antiangiogenic effect of the steroidal compound, ethyl iso-allocholate isolated from T. foenum graecum L. seeds against A549 lung cancer cells in vitro and in vivo. Among all the isolated compounds, the ethyl iso-allocholate rendered the highest cytotoxicity potential. It showed least percentage cell viability in trypan blue assay and lowest nuclei count in hoechst staining. The caspase glo assay and western blot analysis showed the significant caspase 3 cleavage, indicating caspase dependent apoptosis. Consistent with the in vitro data, ethyl iso-allocholate showed highest percentage tumor growth inhibition i.e. 80 ± 5% in zebrafish, equivalent to doxorubicin. It significantly reduced angiogenesis to 5 ± 0.8% (**P < 0.01), compared to negative control group which was 60 ± 2%. The ethyl iso-allocholate showed 55 ± 3% inhibition in liver metastasis. To investigate the safety of the compounds on normal tissues, the percentage mortality was examined. The ethyl iso-allocholate showed zero percent mortality of zebrafish. These results indicate that the steroidal derivative isolated from T. foenum-graecum seeds induces caspase dependent apoptosis in cancer cells and reduces tumor growth, metastasis and angiogenesis in vivo, as well as it is safe on the normal tissues. The in vitro and in vivo anticancer studies suggest that the cytotoxic compound ethyl iso-allocholate has potential application in pharmaceutical industry.
Collapse
|
27
|
Antioxidant Status, Antidiabetic Properties and Effects on Caco-2 Cells of Colored and Non-Colored Enriched Extracts of Sweet Cherry Fruits. Nutrients 2018; 10:nu10111688. [PMID: 30400658 PMCID: PMC6266284 DOI: 10.3390/nu10111688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/21/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
This study aimed to compare three different extracts of Saco sweet cherry, namely the non-colored fraction, colored fraction, and total extract concerning phenolic composition, antioxidant and antidiabetic potential, and erythrocytes’ protection and effects on Caco-2 cells. Twenty-two phenolic compounds were identified using high-performance liquid chromatography with diode-array detection. Hydroxycinnamic acids were the most predominant in both the non-colored fraction and total extract, while cyanidin-3-O-rutinoside was the main anthocyanin found in the colored fraction. The total extract was the most effective against 1,1-diphenyl-2-picrylhydrazyl, nitric oxide, and superoxide radicals, and in the inhibition of α-glucosidase enzyme. The colored fraction revealed the best activity against hemoglobin oxidation and hemolysis. Regarding to Caco-2 cells, the colored extract exhibited the highest cytotoxic effects, while the total extract was the most efficient in protecting these cells against oxidative damage induced by tert-butyl hydroperoxide.
Collapse
|
28
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
29
|
Sitarek P, Synowiec E, Kowalczyk T, Śliwiński T, Skała E. An In Vitro Estimation of the Cytotoxicity and Genotoxicity of Root Extract from Leonurus sibiricus L. Overexpressing AtPAP1 against Different Cancer Cell Lines. Molecules 2018; 23:molecules23082049. [PMID: 30115821 PMCID: PMC6222913 DOI: 10.3390/molecules23082049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 12/22/2022] Open
Abstract
As the current cancer treatment success rate is not sufficient, interest has grown in plants as possible sources of anti-cancer compounds. One such plant with a broad spectrum of activity is Lenourus sibiricus of the family Lamiaceae. This study investigates for the first time both the genotoxic and cytotoxic activities of TR (transformed) and AtPAP1 TR (with over-expression of transcriptional factor) root extracts of Lenourus sibiricus against various cancer cell lines (CCRF-CEM, K-562 and A549). Both tested extracts showed a cytotoxic effect on CCRF-CEM and K-562 cell lines, but strongest activity was observed for the AtPAP1 TR extract. No cytotoxic effect was observed against the A549 cell line in the tested concentration range, and it was found that both tested extracts may induce apoptosis by decreasing mitochondrial membrane potential and inducing nDNA damage lesion in the TP53 region and mtDNA in ND1 (mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1) and ND5 (mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 5) regions in K-562 and CCRF-CEM. Our results confirmed that TR and AtPAP1 TR root extracts from L. sibiricus are cytotoxic and genotoxic against different model cell lines (CCRF-CEM and K-562). However, the observed genotoxicity of both extracts needs to be confirmed by additional studies. These preclinical observations support the use of L. sibiricus with other pharmacological purposes.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Łódź, Banacha 12/13, 90-237 Łódź, Poland.
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
30
|
Evaluation of the Antidiabetic Activity and Chemical Composition of Geranium collinum Root Extracts-Computational and Experimental Investigations. Molecules 2017; 22:molecules22060983. [PMID: 28608836 PMCID: PMC6152703 DOI: 10.3390/molecules22060983] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
The root of Geranium collinum Steph is known in Tajik traditional medicine for its hepatoprotective, antioxidant, and anti-inflammatory therapeutic effects. The present study was conducted to evaluate of potential antidiabetic, antioxidant activities, total polyphenolic and flavonoid content from the different extracts (aqueous, aqueous-ethanolic) and individual compounds isolated of the root parts of G. collinum. The 50% aqueous-ethanolic extract possesses potent antidiabetic activity, with IC50 values of 0.10 μg/mL and 0.09 μg/mL for the enzymes protein-tyrosine phosphatase (1B PTP-1B) and α-glucosidase, respectively. Phytochemical investigations of the 50% aqueous-ethanolic extract of G. collinum, led to the isolation of ten pure compounds identified as 3,3',4,4'-tetra-O-methylellagic acid (1), 3,3'-di-O-methylellagic acid (2), quercetin (3), caffeic acid (4), (+)-catechin (5), (-)-epicatechin (6), (-)-epigallocatechin (7), gallic acid (8), β-sitosterol-3-O-β-d-glucopyranoside (9), and corilagin (10). Their structures were determined based on 1D and 2D NMR and mass spectrometric analyses. Three isolated compounds exhibited strong inhibitory activity against PTP-1B, with IC50 values below 0.9 μg/mL, more effective than the positive control (1.46 μg/mL). Molecular docking analysis suggests polyphenolic compounds such as corilagin, catechin and caffeic acid inhibit PTP-1B and β-sitosterol-3-O-β-d-gluco-pyranoside inhibits α-glucosidase. The experimental results suggest that the biological activity of G. collinum is related to its polyphenol contents. The results are also in agreement with computational investigations. Furthermore, the potent antidiabetic activity of the 50% aqueous-ethanolic extract from G. collinum shows promise for its future application in medicine. To the best of our knowledge, we hereby report, for the first time, the antidiabetic activity of G. collinum.
Collapse
|