1
|
Li P, He X, Feng E, Wei J, Tu H, Chen T. Lactobacillus acidophilus JYLA-126 Ameliorates Obesity-Associated Metabolic Disorders by Positively Regulating the AMPK Signaling Pathway Through the Gut-Liver Axis. Probiotics Antimicrob Proteins 2025; 17:62-80. [PMID: 38051435 DOI: 10.1007/s12602-023-10190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Obesity is a chronic metabolic disease worldwide and is considered a major health problem in contemporary society. Lactobacillus acidophilus have demonstrated beneficial effects on obesity, but the specific mechanism of how it exerts beneficial effects has not been elucidated. Here, we found that L. acidophilus JYLA-126 had good biological properties for intestinal health, such as antioxidation, acid tolerance, bile salt tolerance, antimicrobial activity, and gut colonization. We further identified that supplementation of L. acidophilus JYLA-126 obese mice possessed a dose-dependent amelioration of body weight, intestinal imbalance, and metabolic disorders compared to HFD-induced mice. Mechanistically, the excellent slimming effect of L. acidophilus JYLA-126 was achieved mainly by reversing HFD-induced gut dysbiosis, inhibiting inflammatory factors and balancing the homeostasis of the gut-liver axis. Specifically, L. acidophilus JYLA-126 improved hepatic glycogen synthesis, lowered oxidative stress, and facilitated lipid metabolism by regulating AMPK signaling pathway-related protein expression to restore the overall metabolic level. Accordingly, L. acidophilus JYLA-126 promoted energy uptake efficiency in obese mice, resulting in significant expression of uncoupling protein 1 (UCP1) protein in brown adipose tissue (BAT), and markedly reduced the size of adipocytes. These findings indicate that the anti-obesity activity of L. acidophilus JYLA-126 correlates with activation of the AMPK signaling pathway through improved gut-liver interactions.
Collapse
Affiliation(s)
- Ping Li
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang, 330031, People's Republic of China
- National Engineering Research Center for Bioengineering Drugst and the Technologies, Institute of Translational Medicine, the First Affiliated Hospital, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xia He
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang, 330031, People's Republic of China
- National Engineering Research Center for Bioengineering Drugst and the Technologies, Institute of Translational Medicine, the First Affiliated Hospital, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Enxu Feng
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Jing Wei
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang, 330031, People's Republic of China
- National Engineering Research Center for Bioengineering Drugst and the Technologies, Institute of Translational Medicine, the First Affiliated Hospital, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Huaijun Tu
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Tingtao Chen
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang, 330031, People's Republic of China.
- National Engineering Research Center for Bioengineering Drugst and the Technologies, Institute of Translational Medicine, the First Affiliated Hospital, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
2
|
Zhou L, Gong L, Liu Z, Xiang J, Ren C, Xu Y. Probiotic interventions with highly acid-tolerant Levilactobacillus brevis strains improve lipid metabolism and gut microbial balance in obese mice. Food Funct 2025; 16:112-132. [PMID: 39621366 DOI: 10.1039/d4fo03417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Many studies have shown that specific lactic acid bacteria (LAB) strains can delay obesity, offering a viable alternative to medications and surgeries. However, the mining and development of highly effective LAB strains for obesity control is still limited. In this study, the naturally highly acid-tolerant and gamma-aminobutyric acid-producing Levilactobacillus brevis D17 and its glnR deletion strain were used to investigate their anti-obesity effects. In an 8-week mouse experiment, L. brevis D17 and its glnR-deletion strain D17ΔglnR significantly reduced weight gain by 28.4% and 29.1%, respectively, improving abnormal serum indicators and glucose metabolism caused by a high-fat diet. Furthermore, L. brevis D17 and its glnR-deletion strain D17ΔglnR successfully colonized in the gut. Both D17 and D17ΔglnR interventions significantly restored the relative abundance of Muribaculaceae, Ileibacterium valens, Lactobacillus, Faecalibaculum, Bifidobacterium globosum, Akkermansia muciniphila, and Romboutsia ilealis, whereas they significantly reduced potentially harmful bacteria like Leptogranulimonas, Flintibacter, and Alistipes. Additionally, L. brevis intervention effectively decreased the levels of primary bile acids and increased secondary bile acids in the gut, thus balancing bile acid metabolism. The transcriptional analysis suggested that D17 and D17ΔglnR interventions may activate the AMPK signaling pathway in the liver to inhibit lipogenesis, activate the cAMP pathway to promote lipolysis, and inhibit pro-inflammatory macrophage infiltration to block inflammatory responses. These results indicate that L. brevis D17 and its glnR-deletion mutant strain D17ΔglnR show great potential in combating obesity. Moreover, these results also provide insights into the underlying mechanism behind their anti-obesity properties.
Collapse
Affiliation(s)
- Liping Zhou
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Luchan Gong
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Zhihao Liu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Jinfeng Xiang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Cong Ren
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| |
Collapse
|
3
|
Wang Q, Peng J, Tian Y, Li J, Cai J, Qin W. Evaluation of the Decreased Cholesterol Potential of Levilactobacillus brevis M-10 Isolated from Spontaneously Fermented Sour Porridge in Mice with High-Cholesterol Levels. Curr Microbiol 2024; 82:24. [PMID: 39614913 DOI: 10.1007/s00284-024-03974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025]
Abstract
Excessive cholesterol levels can lead to hypercholesterolemia, which is related to cardiovascular diseases (CVDs), and CVDs are a serious threat to human health. Therefore, lowering cholesterol levels is necessary, and diet intervention is safer than drugs are. The cholesterol-lowering effect of Levilactobacillus brevis M-10 isolated from spontaneously fermented millet sour porridge was investigated in fifty C57BL/6N male mice. After a 4-week intervention, the food intake, weight gains and organ indices were calculated; the lipid contents in the serum, liver, and feces were determined; the histopathology of the liver tissues was observed; the expression of metabolism-related genes was determined; and short-chain fatty acid (SCFA) levels in the droppings were monitored. The results showed that administration of a high dose of L. brevis M-10 (1 × 1010 CFU/mL) significantly reduced food intake, suppressed weight gain; prevented excessive liver growth; and reduced the total serum cholesterol, triglycerides, low-density lipoproteins; and total hepatic cholesterol and triglyceride contents (P < 0.05) in high-cholesterol mice. Moreover, a high dose of L. brevis M-10 significantly promoted the fecal excretion of cholesterol and triglycerides (P < 0.05) and alleviated liver damage induced by a high-cholesterol diet. Furthermore, a high dose of L. brevis M-10 significantly downregulated the cholesterol metabolism-related gene expression of NPC1L1, ACAT2, HMG-CoA, and SREBP2 but upregulated the gene expression of ABCG5, CYP7A1, and LXR-α (P < 0.05). Additionally, a high dose of L. brevis M-10 significantly increased SCFA contents, including those of acetic acid, propionic acid and n-butyric acid (P < 0.05). These findings could provide support for the use of L. brevis M-10 in the application of functional foods to alleviate hypercholesterolemia.
Collapse
Affiliation(s)
- Qi Wang
- Nutritional Department, Shanxi Traditional Chinese Medical Hospital, Bingzhou, Taiyuan, 030012, Shanxi, China
- School of Life Science, Shanxi University, Nanzhonghuan, Taiyuan, 030031, Shanxi, China
| | - Jiawei Peng
- School of Life Science, Shanxi University, Nanzhonghuan, Taiyuan, 030031, Shanxi, China
| | - Ye Tian
- Shanxi Provincial People's Hospital, Shuangta, Taiyuan, 030001, Shanxi, China
| | - Jianhua Li
- China Institute of Radiation Protection, Keji, Taiyuan, 036000, Shanxi, China
| | - Jin Cai
- Institute of Applied Chemistry, Shanxi University, Wucheng, Taiyuan, 030006, Shanxi, China
| | - Wenjun Qin
- Nutritional Department, Shanxi Traditional Chinese Medical Hospital, Bingzhou, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
4
|
Rangel-Torres BE, García-Montoya IA, Rodríguez-Tadeo A, Jiménez-Vega F. The Symbiosis Between Lactobacillus acidophilus and Inulin: Metabolic Benefits in an Obese Murine Model. Probiotics Antimicrob Proteins 2024; 16:26-34. [PMID: 36443558 DOI: 10.1007/s12602-022-10012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Obesity is defined as having an excess of adipose tissue and is associated with the development of diabetes, hypertension, and atherosclerosis, which are the main causes of death worldwide. Research shows that probiotics and prebiotics reduce the metabolic alterations caused by high-fat diets. Therefore, this work evaluated the effect of the incorporation of Lactobacillus acidophilus (probiotic) and inulin (prebiotic) in the diet through obesity markers (biochemical, anthropometric, and molecular markers) in an obese murine model. Four treatments were administered: (1) hypocaloric diet (HD), (2) HD + L. acidophilus, (3) HD + inulin, and (4) DH supplemented with L. acidophilus + inulin for 8 weeks. After treatment, glucose, triglycerides, total cholesterol, HDL-C, and LDL-C in plasma were determined. In addition, the total body weight and adipose tissue were taken to calculate the body mass index. Following RNA extraction from adipose tissue, the expression of PPAR gamma, PPAR alpha, and transforming growth factor beta 1 (TGF1β) was evaluated by semiquantitative PCR. All treatments showed an improvement in biochemical markers compared to the values of the obese model (p < 0.05). Optimal values for blood glucose (133.2 ± 14.3 mg/dL), triglycerides (71 ± 4.6 mg/dL), total cholesterol (48.9 ± 6 mg/dL), HDL-C (40.9 ± 4.8 mg/dL), and LDL-C (8.4 ± 1.7 mg/dL) were obtained in the mixed treatment. Regarding fat mass index (FMI), prebiotic treatment caused the greatest reduction. On the other hand, mixed treatment increased the gene expression of PPARα and TGF1β in adipose tissue with DH with L. acidophilus and inulin treatment. This work demonstrates that the use of L. acidophilus and inulin as a complementary treatment is a viable alternative for prevention and action as a complementary treatment for obesity given the reduction in biochemical parameters and anthropometric indices; these reductions were greater than those found in the classic treatment of obesity due to the induction of the expression of genes related to lipid metabolism and anti-inflammatory cytokines, which contribute to reducing the high levels of glucose, triglycerides, and cholesterol caused by obesity.
Collapse
Affiliation(s)
- Brian Eduardo Rangel-Torres
- Departamento Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Isui Abril García-Montoya
- Departamento Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Alejandra Rodríguez-Tadeo
- Departamento de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Florinda Jiménez-Vega
- Departamento Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México.
| |
Collapse
|
5
|
Lu J, Zhu D, Lu J, Liu J, Wu Z, Liu L. Dietary supplementation with low and high polymerization inulin ameliorates adipose tissue inflammation via the TLR4/NF-κB pathway mediated by gut microbiota disturbance in obese dogs. Res Vet Sci 2022; 152:624-632. [DOI: 10.1016/j.rvsc.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
|
6
|
Sun R, Niu H, Sun M, Miao X, Jin X, Xu X, Yanping C, Mei H, Wang J, Da L, Su Y. Effects of Bacillus subtilis natto JLCC513 on Gut Microbiota and Intestinal Barrier Function in obese Rats. J Appl Microbiol 2022; 133:3634-3644. [PMID: 36036228 DOI: 10.1111/jam.15797] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/23/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to investigate the effects of Bacillus subtilis natto JLCC513(JLCC513)on gut microbiota, inflammation and intestinal barrier function in high-fat-diet (HFD) rats. METHODS AND RESULTS Sprague-Dawley (SD) rats were fed HFD for 16 weeks, and treated with JLCC513 in 9th weeks. The oral administration of JLCC513 decreased body weight, and reduced the inflammation level in HFD rats. Pathologically, JLCC513 prevented the detachment of ileal villus and increased the villus height in rat. Mechanistically, Western blot analysis showed that the protein levels of tight junction (TJ) proteins involved in intestinal barrier function, including zonula occludens-1 (ZO-1), occludin and claudin-1, were increased after JLCC513 treatment. Meanwhile, JLCC513 treatment also decreased the protein levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3), indicating inhibition of the TLR4/NF-κB/NLRP3 pathway. Furthermore, fecal analysis showed that JLCC513 increased the abundance of Lactobacillus and Oscillospira and the ratio of Firmicutes/Bacteroidetes (F/B), and decreased the levels of Blautia and C_Clostridium. CONCLUSIONS JLCC513 alleviated intestinal barrier dysfunction by inhibiting TLR4/NF-κB/NLRP3 pathway and regulating gut microbiota disorders. SIGNIFICANCE AND IMPACT OF STUDY Our study might provide new treatment strategies for the obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ruiyue Sun
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China.,Department of Food Science and Engineering, Agricultural College, Yanbian University, Yanji, 133000, Jilin, China
| | - Honghong Niu
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Mubai Sun
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Xinyu Miao
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Xin Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130033, Jilin, China
| | - Xifei Xu
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China.,Department of Food Science and Engineering, Agricultural College, Yanbian University, Yanji, 133000, Jilin, China
| | - Chi Yanping
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Hua Mei
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Jinghui Wang
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Li Da
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Ying Su
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| |
Collapse
|
7
|
Lu M, Sun J, Zhao Y, Zhang H, Li X, Zhou J, Dang H, Zhang J, Huang W, Qi C, Li D. Prevention of High-Fat Diet-Induced Hypercholesterolemia by Lactobacillus reuteri Fn041 Through Promoting Cholesterol and Bile Salt Excretion and Intestinal Mucosal Barrier Functions. Front Nutr 2022; 9:851541. [PMID: 35369106 PMCID: PMC8967143 DOI: 10.3389/fnut.2022.851541] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Lactobacillus reuteri Fn041 (Fn041) is a probiotic isolated from immunoglobulin A coated microbiota in the human breast milk of Gannan in China with a low incidence of hypercholesterolemia. This study aims to explore the role and mechanism of Fn041 in preventing hypercholesterolemia caused by a high-fat diet in mice. Methods C57BL/6N mice were fed a low-fat diet or a high-fat diet and gavage with Fn041 and Lactobacillus rhamnosus GG (LGG) for 8 weeks. Results Both Fn041 and LGG prevented the occurrence of hypercholesterolemia, liver and testicular fat accumulation. In addition, a high-fat diet causes intestinal dysbiosis and mucosal barrier damage, which is associated with hypercholesterolemia. Fn041 prevented the high-fat diet-induced reduction in alpha diversity of intestinal microbiota and intestinal mucosal barrier damage. Fn041 treatment significantly increased fecal total cholesterol and total bile acids. Conclusions Fn041 prevented hypercholesterolemia by enhancing cholesterol excretion and mucosal barrier function.
Collapse
Affiliation(s)
- Mengyao Lu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Yuning Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Haowen Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xinyue Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Hongyang Dang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jidong Zhang
- Department of Cardiology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Wenjing Huang
- Department of Paediatrics, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- *Correspondence: Ce Qi
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- Duo Li
| |
Collapse
|
8
|
Song W, Song C, Li L, Wang T, Hu J, Zhu L, Yue T. Lactobacillus alleviated obesity induced by high-fat diet in mice. J Food Sci 2021; 86:5439-5451. [PMID: 34859434 DOI: 10.1111/1750-3841.15971] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Obesity is closely related to dyslipidaemia, diabetes and other metabolic syndromes. Long-term consumption of a high-fat diet (HFD) is an important risk factor that can lead to obesity. In the current research, three Lactobacillus strains, namely, Loigolactobacillus coryniformis subsp. torquens T3 (T3), Lacticasebacillus paracasei subsp. paracasei M5 (M5), and Lacticaseibacillus paracasei subsp. paracasei X12 (X12), were tested to determine their inhibitory effects on HFD-induced obesity. The results showed that M5, T3, and X12 significantly decreased the body weight gain, Lee's index and adipose index. T3 showed significant effects on reducing serum TG levels to 0.92 mmol/ml and increasing HDL-C levels to 2.18 mmol/ml. The M5 treatment significantly reduced the serum TG level and leptin content to 1.11 mmol/ml and 3.7 ng/ml, respectively, and it increased the HDL-C level and adiponectin content to 2.35 mmol/ml and 7 ng/ml, respectively. M5 and T3 dramatically ameliorated hepatic steatosis in HFD-treated mice by reducing the liver index, lipid droplet number in the liver and TC levels in the liver. Gene expression of PPAR-γ and TNF-α was notably downregulated and FAS was upregulated by T3 and M5 treatment. Additionally, administration of M5 and T3 modified the diversity of the gut microbiota with increased OTU number, ACE index, and Chao1, and decreased the Shannon index and the Bacteroidetes /Firmicutes ratio. Overall, our results indicate that Lactobacillus may be used to prevent obesity and gut dysbiosis. PRACTICAL APPLICATION: Lactobacillus from traditional Chinese foods showed strong anti-obesity effects on high-fat diet-fed mice through the regulation of adipocytokines. Additionally, administration of certain Lactobacilli modified the diversity of the gut microbiota. The results indicate that Lactobacillus may be promising functional materials in healthy foods.
Collapse
Affiliation(s)
- Wei Song
- Department of Food Science and Technology, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Research Center of Food Safety Risk Assessment and Control, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Chen Song
- Department of Food Science and Technology, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150000, China.,National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150000, China
| | - Li Li
- Department of Food Science and Technology, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150000, China.,National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150000, China
| | - Tianyi Wang
- Department of Food Science and Technology, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150000, China.,National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150000, China
| | - Jinhong Hu
- Department of Food Science and Technology, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Research Center of Food Safety Risk Assessment and Control, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Lina Zhu
- Department of Food Science and Technology, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Research Center of Food Safety Risk Assessment and Control, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- Department of Food Science and Technology, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.,Research Center of Food Safety Risk Assessment and Control, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
9
|
Lactobacillus reuteri FYNLJ109L1 Attenuating Metabolic Syndrome in Mice via Gut Microbiota Modulation and Alleviating Inflammation. Foods 2021; 10:foods10092081. [PMID: 34574191 PMCID: PMC8469823 DOI: 10.3390/foods10092081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is caused by an excessive energy intake in a long-term, high-fat and/or high-sugar diet, resulting in obesity and a series of related complications, which has become a global health concern. Probiotics intervention can regulate the gut microbiota and relieve the systemic and chronic low-grade inflammation, which is an alternative to relieving metabolic syndrome. The aim of this work was to explore the alleviation of two different Lactobacillusreuteri strains on metabolic syndrome. Between the two L. reuteri strains, FYNLJ109L1 had a better improvement effect on blood glucose, blood lipid, liver tissue damage and other related indexes than NCIMB 30242. In particular, FYNLJ109L1 reduced weight gain, food intake and fat accumulation. Additionally, it can regulate the gut microbiota, increase IL-10, and reduce IL-6 and tumor necrosis factor-α (TNF-α), as well as liver injury, and further reduce insulin resistance and regulate lipid metabolism disorders. In addition, it could modulate the gut microbiota, particularly a decreased Romboutsia and Clostridium sensu stricto-1, and an increased Acetatifactor. The results indicated that FYNLJ109L1 could improve metabolic syndrome significantly via alleviating inflammation and gut microbiota modulation.
Collapse
|
10
|
Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G. Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. J Nutr 2021; 151:1703-1716. [PMID: 33982127 DOI: 10.1093/jn/nxab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The rate of obesity is rapidly increasing and has become a health and economic burden worldwide. As recent studies have revealed that the gut microbiota is closely linked to obesity, researchers have used various approaches to modulate the gut microbiota to treat the condition. Dietary composition and energy intake strongly affect the composition and function of the gut microbiota. Intestinal microbial changes alter the composition of bile acids and fatty acids and regulate bacterial lipopolysaccharide production, all of which influence energy metabolism and immunity. Evidence also suggests that remodeling the gut microbiota through intake of probiotics, prebiotics, fermented foods, and dietary plants, as well as by fecal microbiota transplantation, are feasible methods to remediate obesity.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haojue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Hongyan Dai
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Xianyi Lu
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| |
Collapse
|
11
|
Wang G, Zhu G, Chen C, Zheng Y, Ma F, Zhao J, Lee YK, Zhang H, Chen W. Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Benef Microbes 2021; 12:267-281. [PMID: 34109894 DOI: 10.3920/bm2020.0148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulation on gut microbiota and short-chain fatty acids (SCFAs) are believed to be a pathway to suppress the development of metabolic syndrome. In this study, three Lactobacillus strains derived from the human gut were investigated for their effects on alleviation of metabolic disorders. These strains were individually administered to metabolic disorder rats induced by high-fat-high-sucrose (HFHS) diet. Each strain exhibited its own characteristics in attenuating the impaired glucose-insulin homeostasis, hepatic oxidative damage and steatosis. Correlation analysis between SCFAs and host metabolic parameters suggested that Lactobacillus protective effects on metabolic disorders are partly mediated by recovery of SCFAs production, especially the faecal acetic acid. Correspondingly, it indicated that probiotics restore the gut microbiota dysbiosis in different extent, thereby protect against metabolic disorders in a manner that is associated with microbiota, but not totally reverse the changed composition of microbiota to the normal state. Thus, Lactobacillus strains partly protect against diet-induced metabolic syndrome by microbiota modulation and acetate elevation.
Collapse
Affiliation(s)
- G Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - G Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - C Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - Y Zheng
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - F Ma
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - J Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R
| | - Y-K Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China P.R
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China P.R
| |
Collapse
|
12
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Zheng F, Wang Z, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Lactobacillus rhamnosus FJSYC4-1 and Lactobacillus reuteri FGSZY33L6 alleviate metabolic syndrome via gut microbiota regulation. Food Funct 2021; 12:3919-3930. [PMID: 33977963 DOI: 10.1039/d0fo02879g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome, which includes a series of metabolic disorders such as hyperglycemia, hyperlipidemia, insulin resistance and obesity, has become a catastrophic disease worldwide. Accordingly, probiotic intervention is a new strategy to alleviate metabolic syndrome, which can adjust the gut microbiota to a certain extent. The aim of the current work was to explore the alleviation of metabolic syndrome by Lactobacillus reuteri and L. rhamnosus. Two L. reuteri and two L. rhamnosus strains were administered to mice with a high-fat diet for 12 weeks. All Lactobacillus strains tested significantly slowed weight gain in the mice. Among four strains, L. reuteri FGSZY33L6 and L. rhamnosus FJSYC4-1 showed the strongest ability to relieve blood glucose disorders, blood lipid disorders, tissue damage, and particularly gut microbiota disorders. Thus, our findings indicate that these strains can regulate the gut microbiota and produce short-chain fatty acids (SCFAs), which can induce satiety hormones, inhibit food intake and increase satiety, and thus improve metabolic syndrome.
Collapse
Affiliation(s)
- Fuli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhi Wang
- Department of Cardiopulmonary Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China.
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China and APC Microbiome Ireland, University College Cork, Cork, Ireland and Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
14
|
Mu J, Tan F, Zhou X, Zhao X. Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice. Food Funct 2021; 11:8707-8723. [PMID: 32945305 DOI: 10.1039/d0fo01823f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we used a HFD/F to induce NAFLD in mice and intervened with CQPC06 to determine the preventive effect of CQPC06 on NAFLD and its potential regulatory mechanism. C57BL/6J mice were fed with LFD, HFD/F, HFD/F supplemented with CQPC06, and HFD/F supplemented with LDBS for 8 weeks to test the properties of the probiotic. Biochemical and molecular biology methods were used to determine the levels of related indexes in mouse serum, liver tissue, epididymal fat, small intestine tissue, and feces. The results showed that CQPC06 exhibited satisfactory probiotic properties, significantly inhibited mouse weight gain, and decreased the liver index and serum lipid levels, including ALT, AKP, AST, TC, TG, LDL-C, LPS, and HDL-C levels. The HOMA-IR index calculated based on the blood glucose levels and serum insulin levels showed that the HOMA-IR index of NAFLD mice treated with CQPC06 significantly decreased. From the molecular biology level, CQPC06 significantly increased the mRNA and protein expression of PPAR-α, CYP7A1, CPT1, and LPL in NAFLD mouse livers, and decreased the expression of PPAR-γ and C/EBP-α. Furthermore, CQPC06 enhanced the expression of ZO-1, occludin, and claudin-1 in the small intestine of NAFLD mice, and decreased the expression of CD36. CQPC06 decreased the level of Firmicutes and increased the levels of Bacteroides and Akkermansia in the feces of NAFLD mice, and the ratio of Firmicutes/Bacteroides was significantly decreased. CQPC06 is highly resistant in vitro and survived in the gastrointestinal tract and exerted its probiotic effect, altered the intestinal microecology of NAFLD mice, and played an important role in NAFLD prevention through the unique anatomical advantages of the gut-liver axis. There was a clear preventive effect with high concentrations of CQPC06 and it was stronger than that of l-carnitine.
Collapse
Affiliation(s)
- Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China and College of Food Science, Southwest University, Chongqing 400715, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela 838, Philippines
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
15
|
Yu P, Ke C, Guo J, Zhang X, Li B. Lactobacillus plantarum L15 Alleviates Colitis by Inhibiting LPS-Mediated NF-κB Activation and Ameliorates DSS-Induced Gut Microbiota Dysbiosis. Front Immunol 2020; 11:575173. [PMID: 33123156 PMCID: PMC7566170 DOI: 10.3389/fimmu.2020.575173] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have suggested that the Lactobacillus plantarum bacteria strain could be effective in ulcerative colitis (UC) management. However, its effects are strain-specific and the related mechanisms for its attenuating effects on UC remain unclear. This study aimed to elucidate the underlying mechanisms for the protective effect of L. plantarum on UC. Firstly, 15 L. plantarum strains were screened for potential probiotic characteristics with good tolerance to simulated human gastrointestinal transit and adhesion. Secondly, the inflammatory response of selected strains to the Caco-2 cells induced by lipopolysaccharide (LPS) was measured. Finally, an in vivo mouse model induced by dextran sulfate sodium (DSS) was used to assess the beneficial effects and likely action mechanisms the successfully screened in vitro strain, L. plantarum L15. In vitro results showed that L. plantarum L15 possessed the highest gastrointestinal transit tolerance, adhesion and reduction of pro-inflammatory abilities compared to the other screened strains. In vivo, high dose of L. plantarum L15 supplementation increased the body weight, colon length and anti-inflammatory cytokine production. Pro-inflammatory cytokine production, disease activity index (DAI) levels and myeloperoxidase (MPO) parameters decreased using this strain. In addition, L. plantarum L15 alleviated the histopathological changes in colon, modulated the gut microbiota, and decreased LPS secretion. The activities of this strain down-regulated the expression of TLR4 and MyD88 genes as well as genes associated with NF-κB signaling pathway. Our findings present L. plantarum L15 as a new probiotic, with promising application for UC management.
Collapse
Affiliation(s)
- Peng Yu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jiaxin Guo
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Gan Y, Chen H, Zhou XR, Chu LL, Ran WT, Tan F, Zhao X. Regulating effect of Lactobacillus plantarum CQPC03 on lipid metabolism in high-fat diet-induced obesity in mice. J Food Biochem 2020; 44:e13495. [PMID: 32989790 DOI: 10.1111/jfbc.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023]
Abstract
Probiotics are regard as safety approaches for preventing and treating some chronic diseases. This study investigated the regulating effect of Lactobacillus plantarum CQPC03 (LP-CQPC03) on lipid metabolism in high-fat diet (HFD)-induced obesity in mice. The results showed that administration of LP-CQPC03 at a concentration of 1.0 × 109 CFU/kg body weight inhibits HFD-induced obesity and improves lipid metabolism in the liver and serum. LP-CQPC03 intervention attenuated obesity-induced hepatic tissue damage, led decreases in hepatic triglyceride (42.02 mmol/gprot), total cholesterol (3.85 mmol/gprot), and LDL-C (1.03 mmol/gprot), and an increase in HDL-C (1.07 mmol/gprot). The same tendencies were observed in serum of HFD-fed mice. LP-CQPC03 intervention led a decrease in serum levels of aspartic transaminase, alanine transaminase, and alkaline phosphatase. LP-CQPC03 alleviated inflammation by increasing the level of interleukin (IL)-4 and IL-10, and decreasing the levels of pro-inflammatory factors, including IL-6, IL-1β, tumor necrosis factor-α, and interferon-γ. LP-CQPC03 also increased activities of SOD and GSH-Px in liver significantly and dropped the hepatic malondialdehyde (MDA) level from 3.39 nmol/gprot to 1.90 nmol/gprot. RT-qPCR results showed that the lipid metabolism-improving effect of LP-CQPC03 was performed by upregulating the expression of carnitine palmitoyltransferase 1, lipoprotein lipase, catalase, and superoxide dismutase 1. This study indicates that L. plantarum CQPC03 might be a potential probiotic that can help mitigate the adverse effects of excessive lipids on the liver, and prevent or alleviate high-energy intake-related obesity. PRACTICAL APPLICATIONS: Intaking high-energy foods is a potential risk of lipid metabolic disorder. Therefore, it is necessary to seek an effective and safe approach for preventing the obesity-related disease. This study found that LP-CQPC03 limited the rate of increase in body weight of mice fed on HFD, maintained normal hepatic tissue morphology, and exhibited a strong regulating effect on lipid metabolism. And the threshold concentration of LP-CQPC03 for the lipid-lowering effect was 1.0 × 109 CFU/kg body weight. Therefore, LP-CQPC03 is a potential probiotic for preventing or alleviating high-energy intake-related obesity.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Hong Chen
- Department of Clinical Nutrition, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College (The Six People's Hospital of Chongqing), Chongqing, China
| | - Xian-Rong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ling-Ling Chu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Wan-Ting Ran
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
17
|
Weight-Reducing Effect of Lactobacillus plantarum ZJUFT17 Isolated from Sourdough Ecosystem. Nutrients 2020; 12:nu12040977. [PMID: 32244807 PMCID: PMC7230932 DOI: 10.3390/nu12040977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus plantarum ZJUFT17 (T17) is a potential probiotic bacterium isolated from Chinese traditional sourdough. The purpose of this study was to investigate its weight-reducing effects in mice fed a high-fat diet (HFD) and further to elucidate possible mechanisms. Male C57BL/6J mice fed HFD were given T17 (2–4 × 108 cfu) intragastrically for 10 weeks. The results showed that the administration of T17 significantly suppressed HFD-induced body weight gain, alleviated HFD-induced increase in serum lipids and decreased energy intake. The serum levels of obesity-related metabolic signaling molecules, including insulin, adiponectin, lipopolysaccharide (LPS) and the cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α, were markedly improved. The 16S rRNA gene sequencing revealed that T17 administration dramatically modulated the gut microbiota, suppressing pathogenic and pro-inflammatory microbes and stimulating the microbes favoring anti-obesity. The weight-reducing efficacy of T17 may be explained by its ability to ameliorate systemic inflammation and insulin resistance mediated by gut microbiota. This study revealed that T17 could ameliorate obesity and the concomitant metabolic syndrome in mice and that the lactic acid bacteria in the sourdough ecosystem may also possess anti-obesity/weight-reducing properties.
Collapse
|
18
|
Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutr Res 2019; 67:78-89. [DOI: 10.1016/j.nutres.2019.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/17/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
|
19
|
Lactobacillus sakei
Alleviates High‐Fat‐Diet‐Induced Obesity and Anxiety in Mice by Inducing AMPK Activation and SIRT1 Expression and Inhibiting Gut Microbiota‐Mediated NF‐κB Activation. Mol Nutr Food Res 2019; 63:e1800978. [DOI: 10.1002/mnfr.201800978] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/20/2018] [Indexed: 12/18/2022]
|
20
|
Ejtahed HS, Angoorani P, Soroush AR, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, Larijani B. Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Kim WG, Kim HI, Kwon EK, Han MJ, Kim DH. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota. Food Funct 2018; 9:4255-4265. [PMID: 30010169 DOI: 10.1039/c8fo00252e] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long-term exposure to ethanol simultaneously causes gastrointestinal inflammation, liver injury, and steatosis. In the present study, we investigated the effects of Bifidobacterium longum LC67, Lactobacillus plantarum LC27, and their mixture (LM) against ethanol-induced steatosis in mice. Exposure to ethanol caused liver damage: it increased ALT, AST, TG, TC, and lipopolysaccharide levels in the blood and induced NF-κB activation in the liver. Oral administration of LC27, LC67, or LM in mice reduced ethanol-induced ALT, AST, TG, and TC levels in the blood and liver. These also suppressed ethanol-induced NF-κB activation and α-smooth muscle actin expression in the liver and increased ethanol-suppressed AMPK activation. Treatment with LC27, LC67, or LM increased ethanol-suppressed alcohol dehydrogenase and acetaldehyde dehydrogenase activities in the liver, as well as tight junction protein expression in the liver and colon. Moreover, treatment with LC27, LC67, or LM restored the ethanol-disturbed gut microbiota composition, such as the increased population of Proteobacteria, and inhibited fecal and blood lipopolysaccharide levels. These inhibited NF-κB activation and increased tight junction protein expression in ethanol- or lipopolysaccharide-stimulated Caco-2 cells. These findings suggest that LC27, LC67, and LM can alleviate alcoholic steatosis by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota.
Collapse
Affiliation(s)
- Won-Gyeong Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | | | | | | | | |
Collapse
|
22
|
Jang SE, Jeong JJ, Kim JK, Han MJ, Kim DH. Simultaneous Amelioratation of Colitis and Liver Injury in Mice by Bifidobacterium longum LC67 and Lactobacillus plantarum LC27. Sci Rep 2018; 8:7500. [PMID: 29760423 PMCID: PMC5951891 DOI: 10.1038/s41598-018-25775-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Disturbances in the gut microbiota composition are associated with chronic inflammatory diseases of the intestine and the liver. In a preliminary study, Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 could inhibit Escherichia coli growth and lipopolysaccharide-induced NF-κB activation linked to gut inflammation. Here, we investigated their effects on 2,4,6-trinitrobenzesulfonic acid (TNBS)-induced colitis and liver damage in mice. First, oral administration of LC27 or LC67 (1 × 109 CFU/mouse) inhibited TNBS-induced colon shortening [F(5,30) = 100.66, P < 0.05] and myeloperoxidase activity [F(5,30) = 56.48, P < 0.05]. These probiotics restored TNBS-induced disturbance of gut microbiota, leading to the suppression of Proteobacteria to Bacteroidetes ratio and fecal and blood lipopolysaccharide levels. Second, LC27 and LC67 inhibited TNBS-induced NF-κB activation, reversed TNBS-suppressed tight junction protein expression, and restored Th17/Treg balance. Also, treatment with LC27 or LC67 significantly decreased TNBS-induced alanine transaminase [ALT, F(5,30) = 3.50, P < 0.05] and aspartate transaminase [AST, F(5,30) = 12.81, P < 0.05] levels in the blood, as well as t-butylhydroperoxide-induced ALT and AST levels. Finally, the mixture of LC27 and LC67 (0.5 × 109 CFU/mouse, respectively) synergistically attenuated TNBS- or t-butylhydroperoxide-induced colitis and liver damage. The capability of LC27 and LC67 to reverse TNBS-mediated microbiota shift and damage signals suggests that these probiotics may synergistically attenuate colitis and liver injury by alleviating gut microbiota imbalance.
Collapse
Affiliation(s)
- Se-Eun Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 130-701, Korea.,Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Korea
| | - Jin-Ju Jeong
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 130-701, Korea
| | - Jeon-Kyung Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 130-701, Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 130-701, Korea.
| |
Collapse
|
23
|
Kwon EK, Kang GD, Kim WK, Han MJ, Kim DH. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate ethanol-induced gastritis and hepatic injury in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Lim SM, Jang HM, Jeong JJ, Han MJ, Kim DH. Lactobacillus johnsonii CJLJ103 attenuates colitis and memory impairment in mice by inhibiting gut microbiota lipopolysaccharide production and NF-κB activation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
25
|
Lim SM, Kim DH. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota. Nutr Res 2017; 41:86-96. [PMID: 28479226 DOI: 10.1016/j.nutres.2017.04.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Gut microbiota play essential roles in the regulation of human metabolism via symbiotic interactions with the host. Prolonged consumption of high-fat diet (HFD) elevates the Firmicutes to Bacteroidetes ratio and lipopolysaccharide (LPS) production by gut microbiota, thereby increasing the probability of developing metabolic and immune disorders such as obesity and colitis. The use of probiotics with anti-inflammatory properties has been suggested to counteract this effect. Here, we tested whether Bifidobacterium adolescentis IM38, which inhibited nuclear factor-kappa B (NF-κB) activation in Caco-2 cells and peritoneal macrophages and inhibited Escherichia coli LPS production, exerted an anticolitic effect in mice with HFD-induced obesity. Oral administration of IM38 (2×109CFU/mouse per day) for 6 weeks in mice with HFD-induced obesity inhibited whole-body and epididymal fat weight gain. IM38 also increased HFD-suppressed expression of interleukin (IL)-10 and tight junction proteins but significantly downregulated HFD-induced NF-κB activation and tumor necrosis factor expression in the colon. IM38 inhibited differentiation into helper T17 cells and reduced IL-17 levels in the colon of mice with HFD-induced obesity but increased HFD-suppressed differentiation into regulatory T cells and IL-10 levels. Furthermore, treatment with IM38 lowered the HFD-induced LPS levels in blood and colonic fluid, as well as the Proteobacteria to Bacteroidetes ratio in gut microbiota. Therefore, we suggest that IM38 can inhibit HFD-induced LPS production in gut microbiota through the regulation of Proteobacteria to Bacteroidetes ratio and NF-κB activation in the colon, which ultimately attenuates colitis. Thus, IM38 may be a suitable ingredient of functional foods designed for treating or preventing colitis.
Collapse
Affiliation(s)
- Su-Min Lim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
26
|
Dahiya DK, Renuka, Puniya M, Shandilya UK, Dhewa T, Kumar N, Kumar S, Puniya AK, Shukla P. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol 2017; 8:563. [PMID: 28421057 PMCID: PMC5378938 DOI: 10.3389/fmicb.2017.00563] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed.
Collapse
Affiliation(s)
- Dinesh K Dahiya
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research - Rajasthan University of Veterinary and Animal Sciences at BikanerJaipur, India
| | - Renuka
- Department of Biochemistry, Basic Medical Science, South Campus, Panjab UniversityChandigarh, India
| | - Monica Puniya
- Food Safety Management System Division, Food Safety and Standards Authority of IndiaNew Delhi, India
| | - Umesh K Shandilya
- Animal Biotechnology Division, National Bureau of Animal Genetic ResourcesKarnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of HaryanaMahendergarh, India
| | - Nikhil Kumar
- Department of Life Sciences, Shri Venkateshwara UniversityJP Nagar, India
| | - Sanjeev Kumar
- Department of Life Science, Central Assam UniversitySilchar, India
| | - Anil K Puniya
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India.,Dairy Microbiology Division, ICAR-National Dairy Research InstituteKarnal, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
27
|
Lim SM, Jeong JJ, Jang SE, Han MJ, Kim DH. A mixture of the probiotic strains Bifidobacterium longum CH57 and Lactobacillus brevis CH23 ameliorates colitis in mice by inhibiting macrophage activation and restoring the Th17/Treg balance. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Lin YC, Chen YT, Hsieh HH, Chen MJ. Effect of Lactobacillus mali APS1 and L. kefiranofaciens M1 on obesity and glucose homeostasis in diet-induced obese mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
29
|
Mishra AK, Dubey V, Ghosh AR. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism 2016; 65:48-65. [PMID: 26683796 DOI: 10.1016/j.metabol.2015.10.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022]
Abstract
Obesity is one of the major challenges for public health in 21st century, with 1.9 billion people being considered as overweight and 600 million as obese. There are certain diseases such as type 2 diabetes, hypertension, cardiovascular disease, and several forms of cancer which were found to be associated with obesity. Therefore, understanding the key molecular mechanisms involved in the pathogenesis of obesity could be beneficial for the development of a therapeutic approach. Hormones such as ghrelin, glucagon like peptide 1 (GLP-1) peptide YY (PYY), pancreatic polypeptide (PP), cholecystokinin (CCK) secreted by an endocrine organ gut, have an intense impact on energy balance and maintenance of homeostasis by inducing satiety and meal termination. Glucose and energy homeostasis are also affected by lipid sensing in which different organs respond in different ways. However, there is one common mechanism i.e. formation of esterified lipids (long chain fatty acyl CoAs) and the activation of protein kinase C δ (PKC δ) involved in all these organs. The possible role of gut microbiota and obesity has been addressed by several researchers in recent years, indicating the possible therapeutic approach toward the management of obesity by the introduction of an external living system such as a probiotic. The proposed mechanism behind this activity is attributed by metabolites produced by gut microbial organisms. Thus, this review summarizes the role of various physiological factors such as gut hormone and lipid sensing involved in various tissues and organ and most important by the role of gut microbiota in weight management.
Collapse
Affiliation(s)
- Alok Kumar Mishra
- Centre for Infectious Diseases and Control, School of BioSciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Vinay Dubey
- Centre for Infectious Diseases and Control, School of BioSciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Asit Ranjan Ghosh
- Centre for Infectious Diseases and Control, School of BioSciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
30
|
Lim SM, Jeong JJ, Woo KH, Han MJ, Kim DH. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr Res 2015; 36:337-348. [PMID: 27001279 DOI: 10.1016/j.nutres.2015.12.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022]
Abstract
A high-fat diet (HFD) induces obesity and the associated increases in blood glucose and inflammation through changes in gut microbiota, endotoxemia, and increased gut permeability. To counteract this, researchers have suggested that the use of probiotics that suppress production of proinflammatory lipopolysaccharide (LPS). Here, we tested whether Lactobacillus sakei OK67, which inhibits gut microbiota LPS production selected from among the lactic acid bacteria isolated from kimchi, exerted antihypoglycemic or anti-inflammatory effects in HFD-fed mice. Mice were randomly divided into 2 groups and fed an HFD or a low-fat diet for 4 weeks. These groups were further subdivided; 1 subgroup was treated with L sakei OK67 and fed the experimental diet for 4.5 weeks, whereas the other subgroup was fed the experimental diet alone. L sakei OK67 treatment lowered HFD-elevated LPS levels in blood and colonic fluid and significantly decreased HFD-elevated fasting blood glucose levels and the area under the curve in an oral glucose tolerance test. L sakei OK67 treatment inhibited HFD-induced body and epididymal fat weight gains, suppressed HFD-induced tumor necrosis factor-α and interleukin-1β expression and nuclear factor-κB activation in the colon, and significantly increased HFD-suppressed interleukin-10 and tight junction protein expression in the colon. Oral administration of L sakei OK67 significantly downregulated HFD-induced expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, and tumor necrosis factor-α in adipose tissue. In addition, L sakei OK67 treatment strongly inhibited nuclear factor-κB activation in LPS-stimulated peritoneal macrophages. We report that L sakei OK67 ameliorates HFD-induced hyperglycemia and obesity by reducing inflammation and increasing the expression of colon tight junction proteins in mice.
Collapse
Affiliation(s)
- Su-Min Lim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Korea
| | - Jin-Ju Jeong
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Korea; Department of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Kyung Hee Woo
- Department of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, 130-701 Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Korea; Department of Pharmacy, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
31
|
Qiao Y, Sun J, Xia S, Li L, Li Y, Wang P, Shi Y, Le G. Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|