1
|
Batarfi WA, Yunus MHM, Hamid AA, Lee YT, Maarof M. Hydroxytyrosol: A Promising Therapeutic Agent for Mitigating Inflammation and Apoptosis. Pharmaceutics 2024; 16:1504. [PMID: 39771483 PMCID: PMC11728517 DOI: 10.3390/pharmaceutics16121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammation and apoptosis are interrelated biological processes that have a significant impact on the advancement and growth of certain chronic diseases, such as cardiovascular problems, neurological conditions, and osteoarthritis. Recent research has emphasized that focusing on these mechanisms could result in novel therapeutic approaches that aim to decrease the severity of diseases and enhance patient outcomes. Hydroxytyrosol (HT), which is well-known for its ability to prevent oxidation, has been identified as a possible candidate for regulating both inflammation and apoptosis. In this review, we will highlight the multifaceted benefits of HT as a therapeutic agent in mitigating inflammation, apoptosis, and associated conditions. This review provides a comprehensive overview of the latest in vitro and in vivo research on the anti-inflammatory and antiapoptotic effects of HT and the mechanisms by which it works. Based on these studies, it is strongly advised to use HT as a bioactive ingredient in pharmaceutical products intended for mitigating inflammation, as well as those with apoptosis applications.
Collapse
Affiliation(s)
- Wafa Ali Batarfi
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
- Department of Basic Medical Sciences, Hadhramout University College of Medicine, Al-Mukalla, Yemen
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
2
|
Zodio S, Serreli G, Melis MP, Franchi B, Boronat A, de la Torre R, Deiana M. Protective effect of hydroxytyrosol and tyrosol metabolites in LPS-induced vascular barrier derangement in vitro. Front Nutr 2024; 11:1350378. [PMID: 38706564 PMCID: PMC11066181 DOI: 10.3389/fnut.2024.1350378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction The maintenance of endothelial barrier function is essential for vasal homeostasis and prevention of cardiovascular diseases. Among the toxic stimuli involved in the initiation of atherosclerotic lesions, Gram negative lipopolysaccharide (LPS) has been reported to be able to trigger endothelial dysfunction, through the alteration of barrier permeability and inflammatory response. Hydroxytyrosol (HT) and tyrosol (Tyr), the major phenolic compounds of extra virgin olive oil (EVOO), as wells as their circulating sulphated and glucuronidated metabolites have been shown to exert anti-inflammatory effects at endothelial level. Methods In this study we investigated the protective effects of HT and Tyr metabolites on LPS-induced alteration of permeability in Human Umbilical Vein Endothelial Cells (HUVEC) monolayers and examined underlying signaling pathways, focusing on tight junction (TJ) proteins, mitogen-activated protein kinase (MAPK) and NOD-, LRR-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Results It was shown that LPS-increased permeability in HUVEC cells was due to the alteration of TJ protein level, following the activation of MAPK and NLRP3. HT and Tyr sulphated and glucuronidated metabolites were able to limit the effects exerted by LPS, acting as signaling molecules with an efficacy comparable to that of their precursors HT and Tyr. Discussion The obtained results add a further piece to the understanding of HT and Tyr metabolites mechanisms of action in vascular protection.
Collapse
Affiliation(s)
- Sonia Zodio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Melis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Benedetta Franchi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Boronat
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, Barcelona, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
The Effect of Hydroxytyrosol in Type II Epithelial-Mesenchymal Transition in Human Skin Wound Healing. Molecules 2023; 28:molecules28062652. [PMID: 36985625 PMCID: PMC10058891 DOI: 10.3390/molecules28062652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Skin wound healing is a multiphase physiological process that involves the activation of numerous types of cells and is characterized by four phases, namely haemostasis, inflammatory, proliferative, and remodeling. However, on some occasions this healing becomes pathological, resulting in fibrosis. Epithelial mesenchymal transition (EMT) is an important process in which epithelial cells acquire mesenchymal fibroblast-like characteristics. Hydroxytyrosol (HT) is a phenolic compound extracted from olive oil and has been proven to have several health benefits. The aim of this study was to determine the effect of HT in type II EMT in human skin wound healing via cell viability, proliferation, migration, and proteins expression. Human dermal fibroblasts (HDF) isolated from skin samples were cultured in different concentrations of HT and EMT model, induced by adding 5 ng/mL of transforming growth factor-beta (TGF-β) to the cells. HT concentrations were determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells’ migrations were evaluated using scratch and transwell migration assay. Protein expressions were evaluated via immunocytochemistry. The result showed that HT at 0.2% and 0.4% significantly increased the proliferation rate of HDF (p < 0.05) compared to control. Scratch assay after 24 h showed increased cell migration in cells treated with 0.4% HT (p < 0.05) compared to the other groups. After 48 h, both concentrations of HT showed increased cell migration (p < 0.05) compared to the TGF-β group. Transwell migration revealed that HT enhanced the migration capacity of cells significantly (p < 0.05) as compared to TGF-β and the control group. In addition, HT supplemented cells upregulate the expression of epithelial marker E-cadherin while downregulating the expression of mesenchymal marker vimentin in comparison to TGF-β group and control group. This study showed that HT has the ability to inhibit EMT, which has potential in the inhibition of fibrosis and persistent inflammation related to skin wound healing.
Collapse
|
4
|
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023; 28:molecules28041861. [PMID: 36838850 PMCID: PMC9966213 DOI: 10.3390/molecules28041861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Collapse
|
5
|
Noguera-Navarro C, Montoro-García S, Orenes-Piñero E. Hydroxytyrosol: Its role in the prevention of cardiovascular diseases. Heliyon 2023; 9:e12963. [PMID: 36704293 PMCID: PMC9871206 DOI: 10.1016/j.heliyon.2023.e12963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
In recent years, non-pharmacology treatments and their effectiveness have gained popularity due to their beneficial properties in the prevention of cardiovascular diseases. Phenolic compounds intake provides a natural means of improving in vivo antioxidant status. Thus, the purpose of this review is to discuss the potential benefits of hydroxytyrosol (HT), a phenolic compound with powerful antioxidant and anti-inflammatory properties, in preventing and reducing cardiovascular risk factors, concretely atherosclerosis. Closer inspection of the studies showed a significant improvement of lipid profile, antioxidant capacity and inflammatory state. A note of caution is due in vitro studies because the lack of validated approaches difficult the goodness of fit with the in vivo and clinical research. However, animal and clinical studies were very encouraging, determining HT supplementation useful on inflammation, oxidative stress, endothelial function and cardiovascular diseases in general.
Collapse
Affiliation(s)
- Clara Noguera-Navarro
- Izpisua Lab, HiTech, Sport and Health Innovation Hub, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Silvia Montoro-García
- Izpisua Lab, HiTech, Sport and Health Innovation Hub, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain,Corresponding author.
| |
Collapse
|
6
|
Illesca P, Valenzuela R, Espinosa A, Echeverría F, Soto-Alarcón S, Ortiz M, Campos C, Vargas R, Videla LA. The metabolic dysfunction of white adipose tissue induced in mice by a high-fat diet is abrogated by co-administration of docosahexaenoic acid and hydroxytyrosol. Food Funct 2021; 11:9086-9102. [PMID: 33026007 DOI: 10.1039/d0fo01790f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nutritional interventions are promising tools for the prevention of obesity. The n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) docosahexaenoic acid (DHA) modulates immune and metabolic responses while the antioxidant hydroxytyrosol (HT) prevents oxidative stress (OS) in white adipose tissue (WAT). OBJECTIVE The DHA plus HT combined protocol prevents WAT alterations induced by a high-fat diet in mice. Main related mechanisms. METHODS Male C57BL/6J mice were fed a control diet (CD; 10% fat, 20% protein, and 70% carbohydrates) or a high fat diet (HFD) (60% fat, 20% protein, and 20% carbohydrates) for 12 weeks, without and with supplementation of DHA (50 mg kg-1 day-1), HT (5 mg kg-1 day-1) or both. Measurements of WAT metabolism include morphological parameters, DHA content in phospholipids (gas chromatography), lipogenesis, OS and inflammation markers, mitochondrial activity and gene expression of transcription factors SREBP-1c, PPAR-γ, NF-κB (p65) and Nrf2 (quantitative polymerase chain reaction and enzyme-linked immunosorbent assay). RESULTS The combined DHA and HT intervention attenuated obesity development, suppressing the HFD-induced inflammatory and lipogenic signals, increasing antioxidant defenses, and maintaining the phospholipid LCPUFA n-3 content and mitochondrial function in WAT. At the systemic level, the combined intervention also improved the regulation of glucose and adipokine homeostasis. CONCLUSION The combined DHA and HT protocol appears to be an important nutritional strategy for the treatment of metabolic diseases, with abrogation of obesity-driven metabolic inflammation and recovery of a small-healthy adipocyte phenotype.
Collapse
Affiliation(s)
- Paola Illesca
- Laboratory of Studies of Metabolic Diseases Related to Nutrition, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Sandra Soto-Alarcón
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Macarena Ortiz
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Cristian Campos
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Oliverio M, Nardi M, Di Gioia ML, Costanzo P, Bonacci S, Mancuso S, Procopio A. Semi-synthesis as a tool for broadening the health applications of bioactive olive secoiridoids: a critical review. Nat Prod Rep 2020; 38:444-469. [PMID: 33300916 DOI: 10.1039/d0np00084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: 2005 up to 2020Olive bioactive secoiridoids are recognized as natural antioxidants with multiple beneficial effects on human health. Nevertheless, the study of their biological activity has also disclosed some critical aspects associated with their application. Firstly, only a few of them can be extracted in large amounts from their natural matrix, namely olive leaves, drupes, oil and olive mill wastewater. Secondly, their application as preventive agents and drugs is limited by their low membrane permeability. Thirdly, the study of their biological fate after administration is complicated by the absence of pure analytical standards. Accordingly, efficient synthetic methods to obtain natural and non-natural bioactive phenol derivatives have been developed. Among them, semi-synthetic protocols represent efficient and economical alternatives to total synthesis, combining efficient extraction protocols with efficient catalytic conversions to achieve reasonable amounts of active molecules. The aim of this review is to summarize the semi-synthetic protocols published in the last fifteen years, covering 2005 up to 2020, which can produce natural olive bioactive phenols scarcely available by extractive procedures, and new biophenol derivatives with enhanced biological activity. Moreover, the semi-synthetic protocols to produce olive bioactive phenol derivatives as analytical standards are also discussed. A critical analysis of the advantages offered by semi-synthesis compared to classical extraction methods or total synthesis protocols is also performed.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Pham LB, Wang B, Zisu B, Truong T, Adhikari B. Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105944] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Molecular Action of Hydroxytyrosol in Wound Healing: An In Vitro Evidence-Based Review. Biomolecules 2020; 10:biom10101397. [PMID: 33008084 PMCID: PMC7600962 DOI: 10.3390/biom10101397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023] Open
Abstract
Hydroxytyrosol (HT) is an essential molecule isolated from the phenolic fraction of olive (Olea europaea). HT has been implicated for its health-stimulating effect mainly due to its antioxidative capacity. The current review summarises and discusses the available evidence, related to HT activities in wound healing enhancement. The literature search of related articles published within the year 2010 to 2020 was conducted using Medline via Ebscohost, Scopus, and Google Scholar databases. Studies were limited to in vitro research regarding the role of HT in wound closure, including anti-inflammation, antimicrobial, antioxidative, and its direct effect to the cells involved in wound healing. The literature search revealed 7136 potentially relevant records were obtained from the database search. Through the screening process, 13 relevant in vitro studies investigating the role of HT in wound repair were included. The included studies reported a proangiogenic, antioxidative, antiaging, anti-inflammatory and antimicrobial effect of HT. The current in vitro evidence-based review highlights the cellular and molecular action of HT in influencing positive outcomes toward wound healing. Based on this evidence, HT is a highly recommended bioactive compound to be used as a pharmaceutical product for wound care applications.
Collapse
|
10
|
Menichini D, Alrais M, Liu C, Xia Y, Blackwell SC, Facchinetti F, Sibai BM, Longo M. Maternal Supplementation of Inositols, Fucoxanthin, and Hydroxytyrosol in Pregnant Murine Models of Hypertension. Am J Hypertens 2020; 33:652-659. [PMID: 32179885 DOI: 10.1093/ajh/hpaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Myoinositol (M) and D-chiro-inositol (D) are insulin sensitizer compounds, while fucoxanthin (F) and hydroxytyrosol (H) are antioxidant substances. We aim to investigate if the combination of these compounds, will improve the vascular responses in pregnant mouse models of hypertension: a genetic model, transgenic heterozygous mice lacking endothelial nitric oxide synthase gene (eNOS-/+); and environmental, wild-type (WT) mice. Those mouse models will allow a better understanding of the genetic/environmental contribution to hypertension in pregnancy. METHODS eNOS-/+ and WT female were fed high fat diet for 4 weeks, then at 7-8 weeks of age were mated with WT male. On gestational day (GD) 1, they were randomly allocated to receive MDFH treatment or water as control: eNOS-/+ MDFH (n = 13), eNOS-/+ (n = 13), WT-MDFH (n = 14), and WT (n = 20). Systolic blood pressure (SBP) was obtained at GD 18, then dams were sacrificed; fetuses and placentas collected, and 2 mm segments of carotid arteries isolated for vascular responses using the wire-myograph system. Responses to phenylephrine (PE), with/without the NOS inhibitor (N-nitro-l-arginine methyl ester (l-NAME)), and to acetylcholine (Ach) and sodium nitroprussiate (SNP) were performed. RESULTS SBP decreased in eNOS-/+ and WT dams after MDFH supplementation. In eNOS-/+, MDFH lower the contractile response to PE and l-NAME and improved Ach vasorelaxation. In WT dams, MDFH treatment did not affect PE response; MDFH treatment lowered the vascular PE response after incubation with l-NAME. No differences were seen in SNP relaxation in both models. CONCLUSIONS MDFH decreased SBP in both genetically and environmentally hypertensive dams and improved vascular responses mostly in the eNOS-/+ dams.
Collapse
Affiliation(s)
- Daniela Menichini
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- International Doctorate School in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mesk Alrais
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, UTHealth, Houston, Texas, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, UTHealth, Houston, Texas, USA
| | - Sean C Blackwell
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Baha M Sibai
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Monica Longo
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
11
|
Franconi F, Campesi I, Romani A. Is Extra Virgin Olive Oil an Ally for Women's and Men's Cardiovascular Health? Cardiovasc Ther 2020; 2020:6719301. [PMID: 32454893 PMCID: PMC7212338 DOI: 10.1155/2020/6719301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Noncommunicable diseases are long-lasting and slowly progressive and are the leading causes of death and disability. They include cardiovascular diseases (CVD) and diabetes mellitus (DM) that are rising worldwide, with CVD being the leading cause of death in developed countries. Thus, there is a need to find new preventive and therapeutic approaches. Polyphenols seem to have cardioprotective properties; among them, polyphenols and/or minor polar compounds of extra virgin olive oil (EVOO) are attracting special interest. In consideration of numerous sex differences present in CVD and DM, in this narrative review, we applied "gender glasses." Globally, it emerges that olive oil and its derivatives exert some anti-inflammatory and antioxidant effects, modulate glucose metabolism, and ameliorate endothelial dysfunction. However, as in prescription drugs, also in this case there is an important gender bias because the majority of the preclinical studies are performed on male animals, and the sex of donors of cells is not often known; thus a sex/gender bias characterizes preclinical research. There are numerous clinical studies that seem to suggest the benefits of EVOO and its derivatives in CVD; however, these studies have numerous limitations, presenting also a considerable heterogeneity across the interventions. Among limitations, one of the most relevant in the era of personalized medicine, is the non-attention versus women that are few and, also when they are enrolled, sex analysis is lacking. Therefore, in our opinion, it is time to perform more long, extensive and lessheterogeneous trials enrolling both women and men.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
| | - Ilaria Campesi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
- Dipartimento di Scienze Biomediche, Università Degli Studi di Sassari, 07100 Sassari, Italy
| | - Annalisa Romani
- Laboratorio PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis), DiSIA Università Degli Studi di Firenze, 50019 Florence, Italy
- Laboratorio di Qualità Delle Merci e Affidabilità di Prodotto, Università Degli Studi di Firenze, 59100 Florence, Italy
| |
Collapse
|
12
|
Valenzuela R, Videla LA. Impact of the Co-Administration of N-3 Fatty Acids and Olive Oil Components in Preclinical Nonalcoholic Fatty Liver Disease Models: A Mechanistic View. Nutrients 2020; 12:E499. [PMID: 32075238 PMCID: PMC7071322 DOI: 10.3390/nu12020499] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is present in approximately 25% of the population worldwide. It is characterized by the accumulation of triacylglycerol in the liver, which can progress to steatohepatitis with different degrees of fibrosis, stages that lack approved pharmacological therapies and represent an indication for liver transplantation with consistently increasing frequency. In view that hepatic steatosis is a reversible condition, effective strategies preventing disease progression were addressed using combinations of natural products in the preclinical high-fat diet (HFD) protocol (60% of fat for 12 weeks). Among them, eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:5n-3, DHA), DHA and extra virgin olive oil (EVOO), or EPA plus hydroxytyrosol (HT) attained 66% to 83% diminution in HFD-induced steatosis, with the concomitant inhibition of the proinflammatory state associated with steatosis. These supplementations trigger different molecular mechanisms that modify antioxidant, antisteatotic, and anti-inflammatory responses, and in the case of DHA and HT co-administration, prevent NAFLD. It is concluded that future studies in NAFLD patients using combined supplementations such as DHA plus HT are warranted to prevent liver steatosis, thus avoiding its progression into more unmanageable stages of the disease.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Nutritional Sciences Department, Faculty of Medicine, University of Toronto, Toronto, ON M2J4A6, Canada
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| |
Collapse
|
13
|
Toscano R, Millan-Linares MC, Naranjo MC, Lemus-Conejo A, Claro C, Montserrat-de la Paz S. Unsaponifiable and phenolic fractions from virgin olive oil prevent neuroinflammation skewing microglia polarization toward M2 phenotype. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
14
|
Calahorra J, Shenk J, Wielenga VH, Verweij V, Geenen B, Dederen PJ, Peinado MÁ, Siles E, Wiesmann M, Kiliaan AJ. Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke. Nutrients 2019; 11:E2430. [PMID: 31614692 PMCID: PMC6836045 DOI: 10.3390/nu11102430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke is one of the leading causes of adult disability worldwide. After ischemic stroke, damaged tissue surrounding the irreversibly damaged core of the infarct, the penumbra, is still salvageable and is therefore a target for acute therapeutic strategies. The Mediterranean diet (MD) has been shown to lower stroke risk. MD is characterized by increased intake of extra-virgin olive oil, of which hydroxytyrosol (HT) is the foremost phenolic component. This study investigates the effect of an HT-enriched diet directly after stroke on regaining motor and cognitive functioning, MRI parameters, neuroinflammation, and neurogenesis. Stroke mice on an HT diet showed increased strength in the forepaws, as well as improved short-term recognition memory probably due to improvement in functional connectivity (FC). Moreover, mice on an HT diet showed increased cerebral blood flow (CBF) and also heightened expression of brain derived neurotrophic factor (Bdnf), indicating a novel neurogenic potential of HT. This result was additionally accompanied by an enhanced transcription of the postsynaptic marker postsynaptic density protein 95 (Psd-95) and by a decreased ionized calcium-binding adapter molecule 1 (IBA-1) level indicative of lower neuroinflammation. These results suggest that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic stroke-associated damage.
Collapse
Affiliation(s)
- Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Justin Shenk
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Vera H Wielenga
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Vivienne Verweij
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Bram Geenen
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Pieter J Dederen
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - M Ángeles Peinado
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Maximilian Wiesmann
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Amanda J Kiliaan
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Pham LB, Wang B, Zisu B, Adhikari B. Complexation between flaxseed protein isolate and phenolic compounds: Effects on interfacial, emulsifying and antioxidant properties of emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Serrano A, Ros G, Nieto G. Regulation of Inflammatory Response and the Production of Reactive Oxygen Species by a Functional Cooked Ham Reformulated with Natural Antioxidants in a Macrophage Immunity Model. Antioxidants (Basel) 2019; 8:antiox8080286. [PMID: 31390804 PMCID: PMC6720695 DOI: 10.3390/antiox8080286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Nowadays, more consumers demand healthier products. A way to offer such products is to functionalize them using health-promoting bioactive compounds. Meat and meat products are high in essential nutrients; however, their excessive consumption implies a high intake of other substances that, at levels above recommended uptake limits, have been linked to certain non-communicable chronic diseases. An effective way to reduce this danger is to reformulate meat products. In this study, natural botanical extracts rich in anti-inflammatory and antioxidant compounds were used to improve the health properties of a cooked ham with an optimal nutritional profile (i.e., low in fat and salt). The RAW 264.7 mouse cell line was used as an inflammatory model and was stimulated with Escherichia coli lipopolysaccharide to evaluate changes in inflammatory biomarkers such as tumour necrosis factor alpha, the interleukins (ILs) IL-1β and IL-6, nitric oxide and intracellular reactive oxygen species (ROS). The results showed that the use of natural extracts in optimized cooked ham significantly downregulated inflammatory markers and reduced the levels of intracellular ROS. Thus, the present study proposed a new functional cooked ham with potential health properties via anti-inflammatory and antioxidant in vitro activity.
Collapse
Affiliation(s)
- Antonio Serrano
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Espinardo Campus, Espinardo, 30100 Murcia, Spain
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Espinardo Campus, Espinardo, 30100 Murcia, Spain
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Espinardo Campus, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
17
|
Millan-Linares MC, Toscano R, Lemus-Conejo A, Martin ME, Pedroche J, Millan F, Montserrat-de la Paz S. GPETAFLR, a biopeptide from Lupinus angustifolius L., protects against oxidative and inflammatory damage in retinal pigment epithelium cells. J Food Biochem 2019; 43:e12995. [PMID: 31659814 DOI: 10.1111/jfbc.12995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023]
Abstract
GPETAFLR, an octapeptide released from the enzymatic hydrolysis of lupine (Lupinus angustifolius L.) protein, has demonstrated anti-inflammatory effect in myeloid lineage. This work aims to evaluate in retinal pigment epithelium (RPE) cells the protective role of GPETAFLR on both oxidative and inflammatory markers known to be involved in age-related macular degeneration (AMD). In comparison with stimulated control cells, GPETAFLR increased glutathione production and diminished the secretion and gene expression of VEFG, IL-1β, IL-6, IFNγ, and TNF-α, as well as reactive oxygen species, and nitrite output. Our findings reveal that GPETAFLR, a novel plant peptide, is able to protect against RPE oxidative stress and inflammation. Taken together, these results strongly support innovative nutritional strategies considering Lupinus angustifolius L. as source of proteins to prevent the onset and progression of AMD. PRACTICAL APPLICATIONS: We reveal a novel nutraceutical impact of GPETAFLR peptide in human RPE cells to prevent oxidative and inflammatory mediators. Our results support that the intake of Lupine angustifolius L., proposed to be a reservoir of GPETAFLR, could lessen the functional decay of RPE cells, leading therefore to a slowdown of the progress of AMD during age. Not only this work, but also future simple clinical studies should raise new nutritional strategies focused on understanding the etiological role of the foods, nutrition, and metabolism in the pathogenesis of ocular disorders.
Collapse
Affiliation(s)
| | - Rocio Toscano
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Ana Lemus-Conejo
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Francisco Millan
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
Begines P, Biedermann D, Valentová K, Petrásková L, Pelantová H, Maya I, Fernández-Bolaños JG, Křen V. Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7281-7288. [PMID: 31198027 DOI: 10.1021/acs.jafc.9b01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potential metabolites of bioactive compounds are important for their biological activities and as authentic standards for metabolic studies. The phenolic compounds contained in olive oil are an important part of the human diet, and therefore their potential metabolites are of utmost interest. We developed a convenient, scalable, one-pot chemoenzymatic method using the arylsulfotransferase from Desulfitobacterium hafniense for the sulfation of the natural olive oil phenols tyrosol, hydroxytyrosol, and of their monoacetylated derivatives. Respective monosulfated (tentative) metabolites were fully structurally characterized using LC-MS, NMR, and HRMS. In addition, Folin-Ciocalteu reduction, 1,1-diphenyl-2-picrylhydrazyl radical scavenging, and antilipoperoxidant activity in rat liver microsomes damaged by tert-butylhydroperoxide were measured and compared to the parent compounds. As expected, the sulfation diminished the radical scavenging properties of the prepared compounds. These compounds will serve as authentic standards of phase II metabolites.
Collapse
Affiliation(s)
- Paloma Begines
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - David Biedermann
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| |
Collapse
|
19
|
Illesca P, Valenzuela R, Espinosa A, Echeverría F, Soto-Alarcon S, Ortiz M, Videla LA. Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomed Pharmacother 2019; 109:2472-2481. [DOI: 10.1016/j.biopha.2018.11.120] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
|
20
|
Wani TA, Masoodi F, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M. Olive oil and its principal bioactive compound: Hydroxytyrosol – A review of the recent literature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Hydroxytyrosol and Cytoprotection: A Projection for Clinical Interventions. Int J Mol Sci 2017; 18:ijms18050930. [PMID: 28452954 PMCID: PMC5454843 DOI: 10.3390/ijms18050930] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Hydroxytyrosol (HT) ((3,4-Dihydroxyphenyl)ethanol) is a polyphenol mainly present in extra virgin olive oil (EVOO) but also in red wine. It has a potent antioxidant effect related to hydrogen donation, and the ability to improve radical stability. The phenolic content of olive oil varies between 100 and 600 mg/kg, due to multiple factors (place of cultivation, climate, variety of the olive and level of ripening at the time of harvest), with HT and its derivatives providing half of that content. When consumed, EVOO’s phenolic compounds are hydrolyzed in the stomach and intestine, increasing levels of free HT which is then absorbed in the small intestine, forming phase II metabolites. It has been demonstrated that HT consumption is safe even at high doses, and that is not genotoxic or mutagenic in vitro. The beneficial effects of HT have been studied in humans, as well as cellular and animal models, mostly in relation to consumption of EVOO. Many properties, besides its antioxidant capacity, have been attributed to this polyphenol. The aim of this review was to assess the main properties of HT for human health with emphasis on those related to the possible prevention and/or treatment of non-communicable diseases.
Collapse
|