1
|
Ghorbani Z, Shoaibinobarian N, Noormohammadi M, Taylor K, Kazemi A, Bonyad A, Khoshdooz S, Löber U, Forslund-Startceva SK. Reinforcing gut integrity: A systematic review and meta-analysis of clinical trials assessing probiotics, synbiotics, and prebiotics on intestinal permeability markers. Pharmacol Res 2025; 216:107780. [PMID: 40378939 DOI: 10.1016/j.phrs.2025.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/26/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Given the magnitude and variety of chronic metabolic disease linked to increased intestinal permeability, appropriate strategies to reinforce gut barrier function are urgently needed. METHODS This systematic review and meta-analysis explores the effects of pro- and synbiotic, or prebiotic administration, on various intestinal permeability markers. Systematic searches across the Medline and Scopus databases were performed from 1961 to January 2023. The review included data from 46 published studies on pro- and synbiotics, and 22 studies on prebiotics. 46 The meta-analysis calculated standardized mean differences (SMD) along with 95 % confidence intervals (95 %CIs) using a random-effects model to evaluate the average effect sizes (ES). To analyze heterogeneity, we employed Galbraith plots and performed the Cochrane Chi-squared test. RESULTS The analysis on 24 trials (28 ES, n = 1603) revealed a significant reduction in lipopolysaccharide levels following pro- and synbiotics consumption with high heterogeneity and very low certainty of evidence (SMD (95 %CI) = -0.54 (-1.01, -0.07); I2 (%) = 94.4). Synthesis of 13 trials showed zonulin levels were significantly lowered after pro- and synbiotics consumption with high heterogeneity and moderate certainty of evidence (15 ES, n=778) (SMD (95 %CI) = -0.49 (-0.79, -0.18); I2 (%) = 74.9). Following prebiotics supplementation, a significant reduction in lipopolysaccharide levels was observed, with high heterogeneity identified from data including 16 RCTs (n = 792; SMD (95 %CI) = -0.88 (-1.28, -0.47); P < 0.001; high certainty of evidence; I2 (%) = 85.7; P-heterogeneity< 0.001). CONCLUSION This meta-analysis revealed promising findings regarding the efficacy of pro- and synbiotic and prebiotic supplements in alleviating "leaky gut".
Collapse
Affiliation(s)
- Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Nargeskhatoon Shoaibinobarian
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Nutrition, School of Medical Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Morvarid Noormohammadi
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Kate Taylor
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Bonyad
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Khoshdooz
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ulrike Löber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sofia K Forslund-Startceva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany.
| |
Collapse
|
2
|
Xie H, Jiang J, Cao S, Xu X, Zhou J, Zhang R, Huang B, Lu P, Peng L, Liu M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. Int J Mol Sci 2025; 26:1373. [PMID: 39941141 PMCID: PMC11818489 DOI: 10.3390/ijms26031373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Mild cognitive impairment (MCI) represents a transitional stage between normal aging and dementia, often considered critical for dementia prevention. Despite its significance, no effective clinical treatment for MCI has yet been established. Emerging evidence has demonstrated a strong association between trimethylamine-N-oxide (TMAO), a prominent metabolite derived from the gut microbiota, and MCI, highlighting its potential as a biomarker and therapeutic target. TMAO has been implicated in increasing MCI risk through its influence on factors such as hypertension, cardiovascular disease, depression, diabetes, and stroke. Moreover, it contributes to MCI by promoting oxidative stress, disrupting the blood-brain barrier, impairing synaptic plasticity, inducing inflammation, causing mitochondrial metabolic disturbances, and facilitating abnormal protein aggregation. This review further explores therapeutic strategies targeting TMAO to mitigate MCI progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liang Peng
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
3
|
Saadh MJ, Bazghandi B, Jamialahmdi H, Rahimzadeh-Bajgiran F, Forouzanfar F, Esmaeili SA, Saburi E. Therapeutic potential of lipid-lowering probiotics on the atherosclerosis development. Eur J Pharmacol 2024; 971:176527. [PMID: 38554932 DOI: 10.1016/j.ejphar.2024.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Hypercholesterolemia is a critical risk factor for atherosclerosis, mostly attributed to lifestyle behavior such as diet. Recent advances have emphasized the critical effects of gastrointestinal bacteria in the pathology of hypercholesterolemia and atherosclerosis, suggesting that the gastrointestinal microbiome can therefore provide efficient therapeutic targets for preventing and treating atherosclerosis. Thus, interventions, such as probiotic therapy, aimed at altering the bacterial composition introduce a promising therapeutic procedure. In the current review, we will provide an overview of anti-atherogenic probiotics contributing to lipid-lowering, inhibiting atherosclerotic inflammation, and suppressing bacterial atherogenic metabolites.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| | - Hamid Jamialahmdi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran.
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Salamat S, Jahan-Mihan A, Tabandeh MR, Mansoori A. Randomized clinical trial evaluating the efficacy of synbiotic supplementation on serum endotoxin and trimethylamine N-oxide levels in patients with dyslipidaemia. Arch Med Sci Atheroscler Dis 2024; 9:e18-e25. [PMID: 38434939 PMCID: PMC10905263 DOI: 10.5114/amsad/178106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Elevated serum endotoxin and trimethylamine N-oxide (TMAO) are associated with metabolic disorders including dyslipidaemia and insulin resistance. This study aimed to evaluate the impact of a 12-week treatment with a synbiotic supplement on serum endotoxin and TMAO levels in patients diagnosed with dyslipidaemia. Material and methods A total of 56 patients who met the study inclusion criteria were recruited in this randomized, double-blind clinical trial. Participants were randomly assigned into intervention and control groups and received either synbiotic or placebo sachets twice a day for 12 weeks. The sociodemographic data, food intake, physical activity, and anthropometric indices of participants were assessed before and after intervention. Serum endotoxin, TMAO, and fasting blood glucose (FBG) levels were measured at the baseline and end of the study. Results No significant difference in the baseline characteristics of participants in the 2 groups was observed. After the 12 weeks of intervention, the mean of serum endotoxin (p < 0.0001), TMAO (p < 0.0001), and FBG (p < 0.0001) was decreased in patients who received synbiotic supplements while no significant change was observed in the control group. Moreover, a significant positive correlation between changes in endotoxin (r = 0.41, p = 0.041) and TMAO (r = 0.40, p = 0.047) with FBG changes was observed. Conclusions A significant reduction in serum endotoxin and TMAO levels, as well as improvements in FBG, following 12 weeks of supplementation with synbiotics, may offer a potential approach for improving metabolic status in patients with dyslipidaemia.
Collapse
Affiliation(s)
- Shekoufeh Salamat
- Nutrition and Metabolic Diseases Research Centre, Clinical Sciences Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Iran
| | - Anahita Mansoori
- Nutrition and Metabolic Diseases Research Centre, Clinical Sciences Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Joho D, Takahashi M, Suzuki T, Ikuta K, Matsumoto M, Kakeyama M. Probiotic treatment with Bifidobacterium animalis subsp. lactis LKM512 + arginine improves cognitive flexibility in middle-aged mice. Brain Commun 2023; 5:fcad311. [PMID: 38025274 PMCID: PMC10667025 DOI: 10.1093/braincomms/fcad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Cognitive flexibility, the ability of adapting to an ever-changing environment, declines with aging and impaired in early stages of dementia. Although recent studies have indicated there is a relationship between the intestinal microbiota and cognitive function, few studies have shown relationships between intestinal microbiota and cognitive flexibility because of limited behavioural tasks in mice. We recently established a novel cognitive flexibility task for mice using a touchscreen operant apparatus and found that probiotic treatment with a mixture of Bifidobacterium animalis subsp. lactis LKM512 and arginine improved cognitive flexibility in young adult mice. To confirm the effects of the probiotic treatment on cognitive flexibility and to determine whether it is effective even in older age, we here examined the effects of long-term treatment with Bifidobacterium animalis subsp. lactis LKM512 and arginine on cognitive flexibility in middle-aged mice. From 8 to 15 months of age, mice received LKM + Arg or vehicle (controls) orally three times per week and were subjected to the cognitive flexibility task at 13-15 months old. In one of indices of cognitive flexibility, both Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice and vehicle-treated mice showed progressively improved performance by repeating reversal tasks, with a small trend that Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice showed better learning performance through reversal phases. With respect to the other index of cognitive flexibility, Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice showed significantly fewer error choices than control mice at the reversal phase, i.e. Bifidobacterium animalis subsp. lactis LKM512 and arginine improved the performance of behavioural sequencing acquired in the previous phase, which allowed Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice to show an early onset of shift to reversal contingency. Taken together, long-term treatment with Bifidobacterium animalis subsp. lactis LKM512 and arginine was found to improve cognitive flexibility in middle-aged mice, indicating that probiotic treatment might contribute to prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- Daisuke Joho
- Laboratory of Environmental Brain Science, Faculty of Human Sciences, Waseda University, Tokorozawa 3591192, Japan
| | - Masahira Takahashi
- Laboratory of Environmental Brain Science, Faculty of Human Sciences, Waseda University, Tokorozawa 3591192, Japan
| | - Takeru Suzuki
- Laboratory of Environmental Brain Science, Faculty of Human Sciences, Waseda University, Tokorozawa 3591192, Japan
| | - Kayo Ikuta
- Dairy of Science and Technology Institute, Kyodo Milk Industry Co, Ltd., Tokyo 1900182, Japan
| | - Mitsuharu Matsumoto
- Dairy of Science and Technology Institute, Kyodo Milk Industry Co, Ltd., Tokyo 1900182, Japan
- Research Institute for Environmental Medical Sciences, Waseda University, Tokorozawa 3591192, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Brain Science, Faculty of Human Sciences, Waseda University, Tokorozawa 3591192, Japan
- Research Institute for Environmental Medical Sciences, Waseda University, Tokorozawa 3591192, Japan
| |
Collapse
|
6
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
7
|
Tang J, Wei Y, Pi C, Zheng W, Zuo Y, Shi P, Chen J, Xiong L, Chen T, Liu H, Zhao Q, Yin S, Ren W, Cao P, Zeng N, Zhao L. The therapeutic value of bifidobacteria in cardiovascular disease. NPJ Biofilms Microbiomes 2023; 9:82. [PMID: 37903770 PMCID: PMC10616273 DOI: 10.1038/s41522-023-00448-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
There has been an increase in cardiovascular morbidity and mortality over the past few decades, making cardiovascular disease (CVD) the leading cause of death worldwide. However, the pathogenesis of CVD is multi-factorial, complex, and not fully understood. The gut microbiome has long been recognized to play a critical role in maintaining the physiological and metabolic health of the host. Recent scientific advances have provided evidence that alterations in the gut microbiome and its metabolites have a profound influence on the development and progression of CVD. Among the trillions of microorganisms in the gut, bifidobacteria, which, interestingly, were found through the literature to play a key role not only in regulating gut microbiota function and metabolism, but also in reducing classical risk factors for CVD (e.g., obesity, hyperlipidemia, diabetes) by suppressing oxidative stress, improving immunomodulation, and correcting lipid, glucose, and cholesterol metabolism. This review explores the direct and indirect effects of bifidobacteria on the development of CVD and highlights its potential therapeutic value in hypertension, atherosclerosis, myocardial infarction, and heart failure. By describing the key role of Bifidobacterium in the link between gut microbiology and CVD, we aim to provide a theoretical basis for improving the subsequent clinical applications of Bifidobacterium and for the development of Bifidobacterium nutritional products.
Collapse
Affiliation(s)
- Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Shi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Qianjiao Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Cao
- The Affiliated Hospital of Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P.R. China.
| | - Nan Zeng
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
8
|
Yu L, Pan J, Guo M, Duan H, Zhang H, Narbad A, Zhai Q, Tian F, Chen W. Gut microbiota and anti-aging: Focusing on spermidine. Crit Rev Food Sci Nutr 2023; 64:10419-10437. [PMID: 37326367 DOI: 10.1080/10408398.2023.2224867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
10
|
Lian J, Liang Y, Zhang H, Lan M, Ye Z, Lin B, Qiu X, Zeng J. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment. Front Immunol 2022; 13:912279. [PMID: 36119047 PMCID: PMC9479087 DOI: 10.3389/fimmu.2022.912279] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The study of metabolism provides important information for understanding the biological basis of cancer cells and the defects of cancer treatment. Disorders of polyamine metabolism is a common metabolic change in cancer. With the deepening of understanding of polyamine metabolism, including molecular functions and changes in cancer, polyamine metabolism as a new anti-cancer strategy has become the focus of attention. There are many kinds of polyamine biosynthesis inhibitors and transport inhibitors, but not many drugs have been put into clinical application. Recent evidence shows that polyamine metabolism plays essential roles in remodeling the tumor immune microenvironment (TIME), particularly treatment of DFMO, an inhibitor of ODC, alters the immune cell population in the tumor microenvironment. Tumor immunosuppression is a major problem in cancer treatment. More and more studies have shown that the immunosuppressive effect of polyamines can help cancer cells to evade immune surveillance and promote tumor development and progression. Therefore, targeting polyamine metabolic pathways is expected to become a new avenue for immunotherapy for cancer.
Collapse
Affiliation(s)
- Jiachun Lian
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Hailiang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Minsheng Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xianxiu Qiu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling Atherosclerosis via Selected Nutrition. Int J Mol Sci 2022; 23:8233. [PMID: 35897799 PMCID: PMC9368664 DOI: 10.3390/ijms23158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.
Collapse
Affiliation(s)
- Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Applied Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia;
| |
Collapse
|
12
|
Yu Y, Ren X, Cao L, Liang Q, Xiao M, Cheng J, Nan S, Zhu C, Kong Q, Fu X, Mou H. Complete‐Genome
Sequence and
in vitro
Probiotic Characteristics Analysis of
Bifidobacterium pseudolongum
YY
‐26. J Appl Microbiol 2022; 133:2599-2617. [DOI: 10.1111/jam.15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Yu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Xinmiao Ren
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Linyuan Cao
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Qingping Liang
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Mengshi Xiao
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Jiaying Cheng
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Shihao Nan
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University
| | - Changliang Zhu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Qing Kong
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University
| | - Haijin Mou
- College of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
13
|
Sharma D, Prashar A. Associations between the gut microbiome, gut microbiology and heart failure: Current understanding and future directions. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 17:100150. [PMID: 38559891 PMCID: PMC10978367 DOI: 10.1016/j.ahjo.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 04/04/2024]
Abstract
The role of the gut microbiome in pathophysiology, prognostication and clinical management of heart failure (HF) patients is of great clinical and research interest. Both preclinical and clinical studies have shown promising results, and the gut microbiome has been implicated in other cardiovascular conditions that are risk factors for HF. There is an increasing interest in the use of biological compounds produced as biomarkers for prognostication as well as exploration of therapeutic options targeting the various markers and pathways from the gut microbiome that are implicated in HF. However, study variations exist, and targeted research for individual putative biomarkers is necessary. There is also limited evidence pertaining to decompensated HF in particular. In this review, we synthesize current understandings around pathophysiology, prognostication and clinical management of heart failure (HF) patients, and also provide an outline of potential areas of future research and scientific advances.
Collapse
Affiliation(s)
| | - Abhisheik Prashar
- University of New South Wales, Sydney, NSW 2052, Australia
- Department of Cardiology, St George Hospital, Sydney, NSW 2217, Australia
| |
Collapse
|
14
|
Bifidobacterium lactis Probio-M8 Adjuvant Treatment Confers Added Benefits to Patients with Coronary Artery Disease via Target Modulation of the Gut-Heart/-Brain Axes. mSystems 2022; 7:e0010022. [PMID: 35343796 PMCID: PMC9040731 DOI: 10.1128/msystems.00100-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that gut dysbiosis may play a role in cardiovascular problems like coronary artery disease (CAD). Thus, target steering the gut microbiota/metabolome via probiotic administration could be a promising way to protect against CAD. A 6-month randomized, double-blind, placebo-controlled clinical trial was conducted to investigate the added benefits and mechanism of the probiotic strain, Bifidobacterium lactis Probio-M8, in alleviating CAD when given together with a conventional regimen. Sixty patients with CAD were randomly divided into a probiotic group (n = 36; received Probio-M8, atorvastatin, and metoprolol) and placebo group (n = 24; placebo, atorvastatin, and metoprolol). Conventional treatment significantly improved the Seattle Angina Questionnaire (SAQ) scores of the placebo group after the intervention. However, the probiotic group achieved even better SAQ scores at day 180 compared with the placebo group (P < 0.0001). Moreover, Probio-M8 treatment was more conducive to alleviating depression and anxiety in patients (P < 0.0001 versus the placebo group, day 180), with significantly lower serum levels of interleukin-6 and low-density lipoprotein cholesterol (P < 0.005 and P < 0.001, respectively). In-depth metagenomic analysis showed that, at day 180, significantly more species-level genome bins (SGBs) of Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, and Butyricicoccus porcorum were detected in the probiotic group compared with the placebo group, while the abundances of SGBs representing Flavonifractor plautii and Parabacteroides johnsonii decreased significantly among the Probio-M8 receivers (P < 0.05). Furthermore, significantly more microbial bioactive metabolites (e.g., methylxanthine and malonate) but less trimethylamine-N-oxide and proatherogenic amino acids were detected in the probiotic group than placebo group during/after intervention (P < 0.05). Collectively, we showed that coadministering Probio-M8 synergized with a conventional regimen to improve the clinical efficacy in CAD management. The mechanism of the added benefits was likely achieved via probiotic-driven modulation of the host's gut microbiota and metabolome, consequently improving the microbial metabolic potential and serum metabolite profile. This study highlighted the significance of regulating the gut-heart/-brain axes in CAD treatment. IMPORTANCE Despite recent advances in therapeutic strategies and drug treatments (e.g., statins) for coronary artery disease (CAD), CAD-related mortality and morbidity remain high. Active bidirectional interactions between the gut microbiota and the heart implicate that probiotic application could be a novel therapeutic strategy for CAD. This study hypothesized that coadministration of atorvastatin and probiotics could synergistically protect against CAD. Our results demonstrated that coadministering Probio-M8 with a conventional regimen offered added benefits to patients with CAD compared with conventional treatment alone. Our findings have provided a wide and integrative view of the pathogenesis and novel management options for CAD and CAD-related diseases.
Collapse
|
15
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
16
|
Radojević D, Tomić S, Mihajlović D, Tolinački M, Pavlović B, Vučević D, Bojić S, Golić N, Čolić M, Đokić J. Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro. Gut Microbes 2021; 13:1-20. [PMID: 33970783 PMCID: PMC8115579 DOI: 10.1080/19490976.2021.1921927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although promising for active immunization in cancer patients, dendritic cells (DCs) vaccines generated in vitro display high inter-individual variability in their immunogenicity, which mostly limits their therapeutic efficacy. Gut microbiota composition is a key emerging factor affecting individuals' immune responses, but it is unknown how it affects the variability of donors' precursor cells to differentiate into immunogenic DCs in vitro. By analyzing gut microbiota composition in 14 healthy donors, along with the phenotype and cytokines production by monocyte-derived DCs, we found significant correlations between immunogenic properties of DC and microbiota composition. Namely, donors who had higher α-diversity of gut microbiota and higher abundance of short-chain fatty acid (SCFAs) and SCFA-producing bacteria in feces, displayed lower expression of CD1a on immature (im)DC and higher expression of ILT-3, costimulatory molecules (CD86, CD40) proinflammatory cytokines (TNF-α, IL-6, IL-8) and IL-12p70/IL-10 ratio, all of which correlated with their lower maturation potential and immunogenicity upon stimulation with LPS/IFNγ, a well-known Th1 polarizing cocktail. In contrast, imDCs generated from donors with lower α-diversity and higher abundance of Bifidobacterium and Collinsella in feces displayed higher CD1a expression and higher potential to up-regulate CD86 and CD40, increase TNF-α, IL-6, IL-8 production, and IL-12p70/IL-10 ratio upon stimulation. These results emphasize the important role of gut microbiota on the capacity of donor precursor cells to differentiate into immunogenic DCs suitable for cancer therapy, which could be harnessed for improving the actual and future DC-based cancer therapies.
Collapse
Affiliation(s)
- Dušan Radojević
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Dušan Mihajlović
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | | | - Dragana Vučević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Nataša Golić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia,CONTACT Jelena Đokić Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, Belgrade11042, Serbia
| |
Collapse
|
17
|
Annunziata G, Ciampaglia R, Capò X, Guerra F, Sureda A, Tenore GC, Novellino E. Polycystic ovary syndrome and cardiovascular risk. Could trimethylamine N-oxide (TMAO) be a major player? A potential upgrade forward in the DOGMA theory. Biomed Pharmacother 2021; 143:112171. [PMID: 34536755 DOI: 10.1016/j.biopha.2021.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/26/2022] Open
Abstract
Several studies reported an increase in cardiovascular risk (CVR) in women with polycystic ovary syndrome (PCOS), considered primarily as the result of the combination of all the clinical features that characterize the syndrome, including hyperandrogenism, insulin resistance, diabetes, obesity chronic low-grade inflammation. Interestingly, in 2012 it has been proposed the so-called DOGMA theory, suggesting the pivotal role played by microbiota alteration in the development of PCOS. Subsequently, several authors evidenced the existence in PCOS women of a marked dysbiosis, which is related to the development of metabolic diseases and cardiovascular complications, mainly due to the production of bacteria-derived metabolites that interfere with various pathways. Among these, trimethylamine-N-oxide (TMAO) is emerging as one of the most important and studied microbiota-derived metabolites related to the increase in CVR, due to its pro-atherosclerotic effect. The purpose of the present review is to summarize the evidence in order to support the hypothesis that, in women with PCOS, dysbiosis might be further involved in enhancement of the CVR via contributing to the increase of circulating TMAO. Although no observational studies on a large number of patients directly investigated the serum levels of TMAO in PCOS women, this manuscript aimed to drive future studies in this field, concurring in providing a novel approach for both comprehension and treatment of the CVR in PCOS.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Roberto Ciampaglia
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Xavier Capò
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain.
| | - Fabrizia Guerra
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Ettore Novellino
- NGN Healthcare - New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Avellino, Italy.
| |
Collapse
|
18
|
Murphy K, O'Donovan AN, Caplice NM, Ross RP, Stanton C. Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites 2021; 11:metabo11080493. [PMID: 34436434 PMCID: PMC8401482 DOI: 10.3390/metabo11080493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) has been classified as one of the leading causes of morbidity and mortality worldwide. CVD risk factors include smoking, hypertension, dyslipidaemia, obesity, inflammation and diabetes. The gut microbiota can influence human health through multiple interactions and community changes are associated with the development and progression of numerous disease states, including CVD. The gut microbiota are involved in the production of several metabolites, such as short-chain fatty acids (SCFAs), bile acids and trimethylamine-N-oxide (TMAO). These products of microbial metabolism are important modulatory factors and have been associated with an increased risk of CVD. Due to its association with CVD development, the gut microbiota has emerged as a target for therapeutic approaches. In this review, we summarise the current knowledge on the role of the gut microbiome in CVD development, and associated microbial communities, functions, and metabolic profiles. We also discuss CVD therapeutic interventions that target the gut microbiota such as probiotics and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Aoife N O'Donovan
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| | - Noel M Caplice
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| |
Collapse
|
19
|
Gut Microbiome and Precision Nutrition in Heart Failure: Hype or Hope? Curr Heart Fail Rep 2021; 18:23-32. [DOI: 10.1007/s11897-021-00503-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|
20
|
Zhang Y, Wang Y, Ke B, Du J. TMAO: how gut microbiota contributes to heart failure. Transl Res 2021; 228:109-125. [PMID: 32841736 DOI: 10.1016/j.trsl.2020.08.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
An increasing amount of evidence reveals that the gut microbiota is involved in the pathogenesis and progression of various cardiovascular diseases. In patients with heart failure (HF), splanchnic hypoperfusion causes ischemia and intestinal edema, allowing bacterial translocation and bacterial metabolites to enter the blood circulation via an impaired intestinal barrier. This results in local and systemic inflammatory responses. Gut microbe-derived metabolites are implicated in the pathology of multiple diseases, including HF. These landmark findings suggest that gut microbiota influences the host's metabolic health, either directly or indirectly by producing several metabolites. In this review, we mainly discuss a newly identified gut microbiota-dependent metabolite, trimethylamine N-oxide (TMAO), which appears to participate in the pathologic processes of HF and can serve as an early warning marker to identify individuals who are at the risk of disease progression. We also discuss the potential of the gut-TMAO-HF axis as a new target for HF treatment and highlight the current controversies and potentially new and exciting directions for future research.
Collapse
Affiliation(s)
- Yixin Zhang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Bingbing Ke
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.
| |
Collapse
|
21
|
Olas B. Probiotics, Prebiotics and Synbiotics-A Promising Strategy in Prevention and Treatment of Cardiovascular Diseases? Int J Mol Sci 2020; 21:E9737. [PMID: 33419368 PMCID: PMC7767061 DOI: 10.3390/ijms21249737] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that probiotics, prebiotics and synbiotics may serve as important dietary components in the prevention (especially) and treatment of cardiovascular diseases (CVD), but the recommendations for their use are often based on brief reports and small clinical studies. This review evaluates the current literature on the correlation between CVD and probiotics, prebiotics and synbiotics. Although research on probiotics, prebiotics and synbiotics has grown exponentially in recent years, particularly regarding the effect of probiotics on CVD, their mechanisms have not been clearly defined. It has been proposed that probiotics lower cholesterol levels, and may protect against CVD, by increasing bile salt synthesis and bile acid deconjugation. Similar effects have also been observed for prebiotics and synbiotics; however, probiotics also appear to have anti-oxidative, anti-platelet and anti-inflammatory properties. Importantly, probiotics not only have demonstrated effects in vitro and in animal models, but also in humans, where supplementation with probiotics decreases the risk factors of CVD. In addition, the properties of commercial probiotics, prebiotics and synbiotics remain undetermined, and further experimental research is needed before these substances can be used in the prevention and treatment of CVD. In particular, well-designed clinical trials are required to determine the influence of probiotics on trimethylamine-N-oxide (TMAO), which is believed to be a marker of CVDs, and to clarify the long-term effects, and action, of probiotic, prebiotic and synbiotic supplementation in combination with drug therapy (for example, aspirin). However, while it cannot be unequivocally stated whether such supplementation yields benefits in the prevention and treatment of CVDs, it is important to note that clinical studies performed to date have not identified any side-effects to use.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
22
|
Simó C, García-Cañas V. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food Funct 2020; 11:6745-6776. [PMID: 32686802 DOI: 10.1039/d0fo01237h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a growing body of clinical evidence that supports a strong association between elevated circulating trimethylamine N-oxide (TMAO) levels with increased risk of developing adverse cardiovascular outcomes such as atherosclerosis and thrombosis. TMAO is synthesized through a meta-organismal stepwise process that involves (i) the microbial production of TMA in the gut from dietary precursors and (ii) its subsequent oxidation to TMAO by flavin-containing monooxygenases in the liver. Choline, l-carnitine, betaine, and other TMA-containing compounds are the major dietary precursors of TMA. TMAO can also be absorbed directly from the gastrointestinal tract after the intake of TMAO-rich foods such as fish and shellfish. Thus, diet is an important factor as it provides the nutritional precursors to eventually produce TMAO. A number of studies have attempted to associate circulating TMAO levels with the consumption of diets rich in these foods. On the other hand, there is growing interest for the development of novel food ingredients that reduce either the TMAO-induced damage or the endogenous TMAO levels through the interference with microbiota and host metabolic processes involved in TMAO pathway. Such novel functional food ingredients would offer great opportunities to control circulating TMAO levels or its effects, and potentially contribute to decrease cardiovascular risk. In this review we summarize and discuss current data regarding the effects of TMA precursors-enriched foods or diets on circulating TMAO levels, and recent findings regarding the circulating TMAO-lowering effects of specific foods, food constituents and phytochemicals found in herbs, individually or in extracts, and their potential beneficial effect for cardiovascular health.
Collapse
Affiliation(s)
- C Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC-UAM), c/Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | |
Collapse
|
23
|
Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis. Nutrition 2020; 79-80:110941. [PMID: 32858376 DOI: 10.1016/j.nut.2020.110941] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of this study was to explore the effect of trimethylamine (TMA)-degrading probiotic agents on trimethylamine oxide (TMAO) and the related lipid metabolism in mice. METHODS Ten lipid-lowering strains were detected with TMA-degradation capacity in vitro. After probiotic intervention for the mice on a high-choline diet, TMA content in cecum and TMA and TMAO in serum was explored, as well as the expression of key gene flavin-containing monooxygenase 3 (FMO3) of the TMA-TMAO metabolism. The expression of genes related to the lipid metabolism was also investigated by real-time polymerase chain reaction and Western blot. Finally, the colonization of functional strains in the intestine were examined. RESULTS Five of 10 lipid-lowering strains effectively degraded TMA in vitro, and the TMA level in the cecum of mice were reduced after probiotic intervention. TMA level and TMAO in serum were also significantly reduced by the strains (P < 0.05), but not due to the regulation of FMO3. Probiotic agents could improve the lipid metabolism by acting on the Farnesoid X receptor and cholesterol 7-alpha hydroxy-lase. Among the strains, Bifidobacterium animalis subsp. lactis F1-3-2 showed the most prominent performance and colonized in the cecum of mice. CONCLUSIONS Bif. animalis subsp. lactis F1-3-2 could be colonized in the cecum, and might directly degrade TMA or change the structure of intestinal flora. The strain had an effect on TMA and TMAO levels in vivo by decreasing cecum TMA. The strain was demonstrated to participate in the TMA-TMAO regulation, improve the lipid metabolism, and alleviate atherosclerosis caused by TMAO. However, FMO3 had not changed in this process, and needs further study.
Collapse
|
24
|
Lotus seed oligosaccharides at various dosages with prebiotic activity regulate gut microbiota and relieve constipation in mice. Food Chem Toxicol 2019; 134:110838. [DOI: 10.1016/j.fct.2019.110838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
|
25
|
Endothelial Function is improved by Inducing Microbial Polyamine Production in the Gut: A Randomized Placebo-Controlled Trial. Nutrients 2019; 11:nu11051188. [PMID: 31137855 PMCID: PMC6566626 DOI: 10.3390/nu11051188] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, it was demonstrated that spermidine-induced autophagy reduces the risk of cardiovascular disease in mice. Intestinal bacteria are a major source of polyamines, including spermidine. We previously reported that the intake of both Bifidobacterium animalis subsp. lactis (Bifal) and arginine (Arg) increases the production of putrescine, a spermidine precursor, in the gut. Here, we investigated the effects of Bifal and Arg consumption on endothelial function in healthy subjects. Healthy individuals with body mass index (BMI) near the maximum value in the “healthy” range (BMI: 25) (n = 44) were provided normal yogurt containing Bifal and Arg (Bifal + Arg YG) or placebo (normal yogurt) for 12 weeks in this randomized, double-blinded, placebo-controlled, parallel-group comparative study. The reactive hyperemia index (RHI), the primary outcome, was measured using endo-peripheral arterial tone (EndoPAT). The change in RHI from week 0 to 12 in the Bifal + Arg YG group was significantly higher than that in the placebo group, indicating that Bifal + Arg YG intake improved endothelial function. At week 12, the concentrations of fecal putrescine and serum putrescine and spermidine in the Bifal + Arg YG group were significantly higher than those in the placebo group. This study suggests that consuming Bifal + Arg YG prevents or reduces the risk of atherosclerosis.
Collapse
|
26
|
Day RLJ, Harper AJ, Woods RM, Davies OG, Heaney LM. Probiotics: current landscape and future horizons. Future Sci OA 2019; 5:FSO391. [PMID: 31114711 PMCID: PMC6511921 DOI: 10.4155/fsoa-2019-0004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years there has been a rapid rise in interest for the application of probiotic supplements to act as mediators in health and disease. This appeal is predominantly due to ever-increasing evidence of the interaction of the microbiota and pathophysiological processes of disease within the human host. This narrative review considers the current landscape of the probiotic industry and its research, and discusses current pitfalls in the lack of translation from laboratory science to clinical application. Future considerations into how industry and academia must adapt probiotic research to maximize success are suggested, including more targeted application of probiotic strains dependent on individual capabilities as well as application of multiple advanced analytical technologies to further understand and accelerate microbiome science.
Collapse
Affiliation(s)
| | | | - Rachel M Woods
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Owen G Davies
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Liam M Heaney
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
27
|
Ding RX, Goh WR, Wu RN, Yue XQ, Luo X, Khine WWT, Wu JR, Lee YK. Revisit gut microbiota and its impact on human health and disease. J Food Drug Anal 2019; 27:623-631. [PMID: 31324279 PMCID: PMC9307029 DOI: 10.1016/j.jfda.2018.12.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Trillions of microbes have evolved with and continue to live on human beings. With the rapid advances in tools and technology in recent years, new knowledge and insight in cross-talk between the microbes and their hosts have gained. It is the aim of this work to critically review and summarize recent literature reports on the role of microbiota and mechanisms involved in the progress and development of major human diseases, which include obesity, hypertension, cardiovascular disease, diabetes, cancer, Inflammatory Bowel Disease (IBD), gout, depression and arthritis, as well as infant health and longevity.
Collapse
Affiliation(s)
- Rui-Xue Ding
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wei-Rui Goh
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Ri-Na Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xi-Qing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wei Wei Thwe Khine
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Jun-Rui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore.
| |
Collapse
|
28
|
Xiong Q, Zhu L, Zhang F, Li H, Wu J, Liang J, Yuan J, Shi Y, Zhang Q, Hu Y. Protective activities of polysaccharides from Cipangopaludina chinensis against high-fat-diet-induced atherosclerosis via regulating gut microbiota in ApoE-deficient mice. Food Funct 2019; 10:6644-6654. [DOI: 10.1039/c9fo01530b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The supplementation of sulfated polysaccharides extracted from C. chinensis slows down the development of atherosclerosis caused by high-fat-diet-induced AS via regulating gut microbiota.
Collapse
|
29
|
Cross-Talk between Gut Microbiota and Heart via the Routes of Metabolite and Immunity. Gastroenterol Res Pract 2018; 2018:6458094. [PMID: 29967639 PMCID: PMC6008745 DOI: 10.1155/2018/6458094] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Considering the prevalence of cardiovascular disease (CVD), significant interest has been focused on the gut microbiota-heart interaction because the gut microbiota has been recognized as a barometer of human health. Dysbiosis, characterized by changes in the gut microbiota in CVD, has been reported in cardiovascular pathologies, such as atherosclerosis, hypertension, and heart failure. Conversely, gut microbiota-derived metabolites, such as trimethylamine/trimethylamine N-oxide (TMA/TMAO), can impact host physiology. Further, bacterial dysbiosis can disturb gut immunity, which increases the risk of acute arterial events. Moreover, studies of germ-free mice have provided evidence that microbiota diversity and the presence of a specific microbe in the gut can affect immune cells in hosts. Therefore, the changes in the composition of the gut microbiota can affect host metabolism and immunity. Importantly, these effects are not only confined to the gut but also spreaded to distal organs. The purpose of the current review is to highlight the complex interplay between the microbiota and CVD via TMAO and different immune cells and discuss the roles of probiotics and nutrition interventions in modulating the intestinal microbiota as novel therapeutic targets of CVD.
Collapse
|
30
|
Song R, Yao J, Shi Q, Wei R. Nanocomposite of Half-Fin Anchovy Hydrolysates/Zinc Oxide Nanoparticles Exhibits Actual Non-Toxicity and Regulates Intestinal Microbiota, Short-Chain Fatty Acids Production and Oxidative Status in Mice. Mar Drugs 2018; 16:E23. [PMID: 29324644 PMCID: PMC5793071 DOI: 10.3390/md16010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
The nanocomposite of half-fin anchovy hydrolysates (HAHp) and zinc oxide nanoparticles (ZnO NPs) (named as HAHp(3.0)/ZnO NPs) demonstrated increased antibacterial activity compared to either HAHp(3.0) or ZnO NPs as per our previous studies. Also, reactive oxygen species (ROS) formation was detected in Escherichia coli cells after treatment with HAHp(3.0)/ZnO NPs. The aim of the present study was to evaluate the acute toxicity of this nanocomposite and to investigate its effect on intestinal microbiota composition, short-chain fatty acids (SCFAs) production, and oxidative status in healthy mice. The limit test studies show that this nanoparticle is non-toxic at the doses tested. The administration of HAHp(3.0)/ZnO NPs, daily dose of 1.0 g/kg body weight for 14 days, increased the number of goblet cells in jejunum. High-throughput 16S ribosomal RNA gene sequencing of fecal samples revealed that HAHp(3.0)/ZnO NPs increased Firmicutes and reduced Bacteriodetes abundances in female mice. Furthermore, the microbiota for probiotic-type bacteria, including Lactobacillus and Bifidobacterium, and SCFAs-producing bacteria in the Clostridia class, e.g., Lachnospiraceae_unclassified and Lachnospiraceae_UCG-001, were enriched in the feces of female mice. Increases of SCFAs, especially statistically increased propionic and butyric acids, indicated the up-regulated anti-inflammatory activity of HAHp(3.0)/ZnO NPs. Additionally, some positive responses in liver, like markedly increased glutathione and decreased malonaldehyde contents, indicated the improved oxidative status. Therefore, our results suggest that HAHp(3.0)/ZnO NPs could have potential applications as a safe regulator of intestinal microbiota or also can be used as an antioxidant used in food products.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jianbin Yao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Qingqing Shi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Rongbian Wei
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|