1
|
Li Z, Zheng G, Fang C, Mei J, Liang H, Yang L. Comparation of brain-targeting chitosan/sodium tripolyphosphate and ovalbumin/sodium carboxymethylcellulose nanoparticles on dihydromyricetin delivery and cognitive impairment in obesity-related Alzheimer's disease. Int J Biol Macromol 2025; 306:141517. [PMID: 40020826 DOI: 10.1016/j.ijbiomac.2025.141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The brain-gut axis plays an important role in regulating cognitive ability in obesity-related Alzheimer's disease (AD). In this study, we aimed to investigate the correlation between the barrier penetration ability of the DMY nanodelivery system in vivo and the regulation of the gut-brain axis to alleviate cognitive impairment. Brain-targeted peptide (TGN: TGNYKALHPHNG) and DMY loaded chitosan (CS)/sodium tripolyphosphate (TPP) nanoparticles (TGN-DMY-CS/TPP-NPs) and ovalbumin (OVA)/sodium carboxymethylcellulose (CMC) nanoparticles (TGN-DMY-OVA/CMC-NPs) were prepared. TGN-DMY-CS/TPP-NPs demonstrated superior mucus penetration and BBB targeting ability compared to TGN-DMY-OVA/CMC-NPs, while the latter showed notable intestinal accumulation. TGN-DMY-CS/TPP-NPs treatment significantly increased the relative abundance of Alistipes and Rikenellaceae_RC9_gut_group, and TGN-DMY-OVA/CMC-NPs treatment obviously enhanced the relative abundance of Lactobacillus. Furthermore, both nanoparticles alleviated lipid metabolism disorder, oxidative stress, and inflammation in the liver, reduced oxidative stress and neuroinflammation in the brain, inhibited neuronal apoptosis, and enhanced mitochondrial biogenesis and synaptic plasticity in obesity-related AD mice. Despite different mucus penetration and biodistribution, their similar efficacy in improving obesity-related AD is attributed to the gut-brain bidirectional connection.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chaoping Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hanji Liang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Han P, Xue Y, Sun Z, Liu X, Miao L, Yuan M, Wang X. The toxicological effects of perfluorooctanoic acid (PFOA) exposure in large yellow croaker (Larimichthys crocea): exploring the relationship between liver damage and gut microbiota dysbiosis. ENVIRONMENTAL RESEARCH 2025; 278:121683. [PMID: 40280390 DOI: 10.1016/j.envres.2025.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic organofluorine compounds characterized by their persistence, toxicity, and bioaccumulative properties, rendering them substantial environmental contaminants. However, limited research has investigated the effects of a short-term low-concentration PFAS exposure on the hepatic and intestinal systems of marine fish. In this study, large yellow croaker was selected as the experimental subject to explore the toxic effects of exposure to 1000 ng/L PFOA after 3, 7, and 14 days, with a focus on liver and gut microbiota. The results demonstrated that a short-term exposure to PFOA induced significant histopathological damage in both liver and gut, with cumulative effects becoming more pronounced over time. Moreover, transcriptome analysis of the liver revealed that PFOA exposure significantly altered the expression of genes associated with lipid metabolism, inflammatory response, and cellular apoptosis. GO and KEGG functional enrichment analyses showed significant enrichment in the P53, NF-κB, MAPK, and PPAR signaling pathways. On the other hand, 16S rRNA gene sequencing demonstrated that PFOA exposure resulted in a decline in gut microbiota diversity, an increase in the abundance of potentially pathogenic bacteria (e.g. Proteobacteria), and a significant reduction in beneficial bacteria (Lactobacillus). These changes indicated gut microbiota dysbiosis. Correlation analysis between gut microbiota changes and potential liver damage indicators suggested an association between liver damage and gut microbiota dysbiosis. Furthermore, we propose a hypothetical model involving lipid accumulation-mediated mitochondrial oxidative stress and inflammation pathway activation, triggered by damage-associated molecular patterns (DAMPs) resulting from PFOA exposure. These findings offered valuable insights into the toxic effects of a short-term low-concentration PFOA on the hepatic and intestinal systems of large yellow croaker, and establish a connection between liver damage to gut microbiota dysbiosis after PFOA exposure.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Zhennan Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Liang Miao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Mingzhe Yuan
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
3
|
Dobani S, Kirsty Pourshahidi L, Ternan NG, McDougall GJ, Pereira-Caro G, Bresciani L, Mena P, Almutairi TM, Crozier A, Tuohy KM, Del Rio D, Gill CIR. A review on the effects of flavan-3-ols, their metabolites, and their dietary sources on gut barrier integrity. Food Funct 2025; 16:815-830. [PMID: 39807528 DOI: 10.1039/d4fo04721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts. This review summarises studies on the effects of flavan-3-ols, their microbiome-mediated metabolites, and food sources of these compounds, on gut barrier structure. Extensive evidence demonstrates that flavan-3-ol rich foods, individual flavan-3-ols (e.g., (epi)catechin, epi(gallo)catechin-3-O-gallate, and pro(antho)cyanidins), and their related microbiota-mediated metabolites, could be effective in protecting and restoring the integrity of the gut barrier. In this context, various endpoints are assessed, including transepithelial electrical resistance of the epithelial layer and expression of tight junction proteins and mucins, in ex vivo, in vitro, and animal models. The differences in bioactivity reported for barrier integrity are structure-function dependent, related to the (poly)phenolic source or the tested compound, as well as their dose, exposure time, and presence or absence of a stressor in the experimental system. Overall, these results suggest that flavan-3-ols and related compounds could help to maintain, protect, and restore gut barrier integrity, indicating that they might contribute to the beneficial properties associated with the intake of their dietary sources. However, rigorous and robustly designed human intervention studies are needed to confirm these experimental observations.
Collapse
Affiliation(s)
- Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Gordon J McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Kieran M Tuohy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| |
Collapse
|
4
|
Farid MS, Shafique B, Xu R, Łopusiewicz Ł, Zhao C. Potential interventions and interactions of bioactive polyphenols and functional polysaccharides to alleviate inflammatory bowel disease - A review. Food Chem 2025; 462:140951. [PMID: 39213975 DOI: 10.1016/j.foodchem.2024.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Bakhtawar Shafique
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Xu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Łukasz Łopusiewicz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 59 Okopowa Str. Warszawa, 01-043, Poland; Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Wang Y, Zhang L, Xiao H, Ye X, Pan H, Chen S. Revisiting dietary proanthocyanidins on blood glucose homeostasis from a multi-scale structural perspective. Curr Res Food Sci 2024; 9:100926. [PMID: 39654810 PMCID: PMC11626065 DOI: 10.1016/j.crfs.2024.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Multi-dimensional studies have consistently indicated the benefits of dietary proanthocyanidins on blood glucose homeostasis through consumption of them from fruits, cereals and nuts. Proanthocyanidins from various sources possess different structures, but even the minor variations in structures influence their regulation on blood glucose, including the degree of polymerization, galloacylation at C3, number of hydroxyl groups in B ring and linkage type. Therefore, this Review details the role of three types of proanthocyanidins (procyanidins, prodelphinidins and propelargonidins) in blood glucose control and their underlying mechanisms, and various structural features contribute to. Due to the extremely low bioavailability, proanthocyanidins mainly ameliorate high blood glucose by luminal effects: inhibit enzyme activities, improve the structure of gut microbiota, and protect the intestinal barrier function. A few absorbed proanthocyanidins exert insulin-like effects on targeted organs. Prodelphinidin gallates exhibit greater hypoglycemic activities than others, due to their galloacylation at C3 and high amounts of hydroxyl groups in B ring. Because of different action pathways, comprehensive consideration on the degree of polymerization, linkage type and density of hydroxyl groups was required. Further understanding of these relationships can concrete diet therapeutic opportunities for proanthocyanidins.
Collapse
Affiliation(s)
- Yi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Laiming Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Department of Food Science, University of Massachusetts, Amherst, 01003, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| |
Collapse
|
6
|
Akinrinde AS, Oyewole SO, Adekanmbi AO. Grape seed oil attenuates sodium arsenite-induced gastric, hepatic and colonic damage in Wistar rats. Biotech Histochem 2024; 99:414-425. [PMID: 39514780 DOI: 10.1080/10520295.2024.2426049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Arsenic exposure is associated with numerous morbidities due to dysfunction of various organ systems including the gastrointestinal tract. We investigated the protective effect of grape seed oil (GSO) against sodium arsenite (NaAsO2)-induced gastric, hepatic and colonic injuries in rats. Twenty-four male Wistar rats were divided into four groups of six as follows: Group A (control) received saline; group B received NaAsO2 (2.5 mg/kg) orally for 7 days; group C were treated concurrently with NaAsO2 and GSO (2 ml/kg), while group D received only GSO. Administration of NaAsO2 induced significant (p < 0.05) increases in alanine aminotransferase (ALT) and aspartate aminotransferase (AST); increased periodic acid Schiff (PAS) staining for mucus and increased goblet cell numbers in the stomach and colon; inflammatory cell infiltration and vascular congestion and alterations in the fecal bacterial flora. GSO supplementation generally promoted a reversal of changes induced by NaAsO2 towards control levels. Additionally, there was increased immunohistochemically detected expression of colonic B-cell lymphoma-1 (Bcl-2) and cytokeratins AE1/AE3, but reduced expression of mucin 1 (MUC1) and carcinoembryonic antigen (CEA) in NaAsO2 + GSO and GSO treated rats when compared with the NaAsO2 group. These results suggest that GSO promoted anti-inflammatory processes in the liver, stomach and colon, as well as opposing apoptosis in the colon, resulting in significant attenuation of damage to these tissues.
Collapse
Affiliation(s)
- Akinleye Stephen Akinrinde
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Stephen Oluwasemiloore Oyewole
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
8
|
Liu Z, Yang Y, Xu Y, Zhang Z, Tang R, Liu J, Jiang H, Zhao R. Procyanidin B1 and p-coumaric acid from whole highland barley ameliorated HFD-induced impaired glucose tolerance via small intestinal barrier and hepatic glucose metabolism. Food Funct 2024; 15:9272-9283. [PMID: 39162187 DOI: 10.1039/d4fo02805h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Highland barley is a natural source for the development of phenolic compounds that exhibit potential in preventing type 2 diabetes, which is important for the agricultural and industrial utilization of highland barley. However, very few studies have focused on their effect on small intestinal absorption and barrier dysfunction, as well as the direct target for the modulation of hepatic glucose metabolism. In this study, procyanidin B1 (PB) and p-coumaric acid (CA) isolated from highland barley supplementation in impaired glucose tolerance (IGT) mice significantly increased lactase-phlorizin hydrolase (LPH), sulfotransferase 1A1 (SULT1A1), UDP glucuronosyltransferase 1A (UGT1A) families and sodium-dependent glucose transporter 1 (SGLT1) expression in the small intestine of IGT mice, indicating beneficial effects on polyphenol deglycosylation and transportation. Supplementation with PB and CA also exhibited attenuation of small intestinal barrier dysfunction by improving the mucus layer and tight junctions, which was closely related to the transportation of phenolic compounds. In addition, PB and CA supplementation were explored directly to bind to the insulin receptor and activate the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, thereby modulating hepatic glucose metabolism and ameliorating hyperglycemic in IGT mice. These results offer crucial insights into the potential development of PB and CA as non-food nutraceuticals, as well as the extensive utilization of highland barley as an industrial crop.
Collapse
Affiliation(s)
- Zehua Liu
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yijie Yang
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yi Xu
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Zhaowan Zhang
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Ruoxin Tang
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Jianshen Liu
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Hongxin Jiang
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
9
|
Song L, Ji W, Cao X. Integrated analysis of gut microbiome and its metabolites in ACE2-knockout and ACE2-overexpressed mice. Front Cell Infect Microbiol 2024; 14:1404678. [PMID: 39086603 PMCID: PMC11288824 DOI: 10.3389/fcimb.2024.1404678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 08/02/2024] Open
Abstract
Background Aberrant activation of the classic renin-angiotensin system (RAS) and intestinal micro dysbiosis adversely affect insulin resistance (IR), dyslipidemia, and other metabolic syndrome markers. However, the action of angiotensin-converting enzyme 2 (ACE2) and gut health in systemic homeostasis vary, and their interaction is not completely understood. Methods We adopted a combinatory approach of metabolomics and fecal 16S rRNA analysis to investigate gut microbiota and metabolite in two different mouse models, ACE2 knockout (ACE2 KO) mice and the ACE2-overexpressing obese mice. Results 16S rRNA gene sequencing revealed that ACE2 influences microbial community composition and function, and ACE2 KO mice had increased Deferribacteres, Alcaligenaceae, Parasutterella, Catenibacterium, and Anaerotruncus, with decreased short-chain fatty acid (SCFA)-producing bacteria (Marvinbryantia and Alistipes). In contrast, ACE2-overexpressed mice exhibited increased anti-inflammatory probiotic (Oscillospiraceae, Marinifilaceae, and Bifidobacteriaceae) and SCFA-producing microbes (Rikenellaceae, Muribaculaceae, Ruminococcaceae, Odoribacter, and Alistipes) and decreased Firmicutes/Bacteroidetes, Lactobacillaceae, Erysipelotrichaceae, and Lachnospiraceae. Metabolome analysis indicated differential metabolites in ACE2 KO and ACE2-overexpression mice, especially the glucolipid metabolism-related compounds. Furthermore, correlation analysis between gut microbiota and metabolites showed a dynamic mutual influence affecting host health. Conclusion Our study confirms for the first time a significant association between ACE2 status and gut microbiome and metabolome profiles, providing a novel mechanism for the positive effect of ACE2 on energy homeostasis.
Collapse
Affiliation(s)
| | | | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liu H, Li X, Li L, Li Y, Yan H, Pang Y, Li W, Yuan Y. Elaidic acid-induced intestinal barrier damage led to gut-liver axis derangement and triggered NLRP3 inflammasome in the liver of SD rats. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:1279-1291. [DOI: 10.26599/fshw.2022.9250107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Lv W, Song J, Nowshin Raka R, Sun J, Shi G, Wu H, Xiao J, Xu D. Effects of food emulsifiers on high fat-diet-induced obesity, intestinal inflammation, changes in bile acid profile, and liver dysfunction. Food Res Int 2023; 173:113302. [PMID: 37803614 DOI: 10.1016/j.foodres.2023.113302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Obesity has become one of the most prevalent health concerns of our time. A long-term high-fat diet is closely related to obesity. Food emulsifiers are incorporated into high-fat foods to enhance the texture and stability. Whether food emulsifiers exacerbate obesity and metabolic disorders induced by a high-fat diet remains unclear. This study aimed to investigate the effects of polysorbate-80 (P80) and polyglycerol polyricinoleate (PGPR) on lipid metabolism, bile acid profile, and gut microbiota in normal and high-fat-diet-induced obesity in mice. The results of this study showed that P80 and PGPR had little effect on body weight but significantly increased epididymal-fat weight, total energy intake, and blood lipid levels. P80 and PGPR stimulated colon inflammation and improved the expression of inflammatory factors in the colon and liver significantly. P80 and PGPR changed the bile acid profile. However, P80 and PGPR did not aggravate inflammation, obesity and alter bile acid profile by altering the composition of the gut microbiota. The results of this study provide an experimental reference for the rational use of food additives and the adjustment of dietary structure, which are important and have application value.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Jingyi Song
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Jinlong Sun
- Department of Stomatology, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Guizhi Shi
- Laboratory Animal Center of the Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Wu
- Beijing Technology and Business University, Beijing 100048, China
| | - Junsong Xiao
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China.
| | - Duoxia Xu
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| |
Collapse
|
12
|
Xiang Y, Zhang C, Wang J, Cheng Y, Wang L, Tong Y, Yan D. Identification of host gene-microbiome associations in colorectal cancer patients using mendelian randomization. J Transl Med 2023; 21:535. [PMID: 37563724 PMCID: PMC10416448 DOI: 10.1186/s12967-023-04335-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/09/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND There are many studies indicating that alterations in the abundance of certain gut microbiota are associated with colorectal cancer (CRC). However, a causal relationship has not been identified due to confounding factors such as lifestyle, environmental, and possible reverse causal associations between the two. Furthermore, certain host gene mutations can also contribute to the development of CRC. However, the association between genes and gut microbes in patients with CRC has not been extensively studied. METHODS We conducted a two-sample Mendelian randomization (MR) study to reveal the causal relationship between gut microbiota and CRC. We obtained SNPs associated with gut microbiome abundance as instrumental variables (IVs) from a large-scale, multi-ethnic GWAS study, and extracted CRC-related datasets from an East Asian Population genetic consortia GWAS (AGWAS) study and FinnGen consortium, respectively. We analyzed a total of 166 bacterial features at four taxonomic levels, including order, family, genus, and species. The inverse-variance-weighted (IVW), weighted median, MR-Egger, and simple median methods were applied to the MR analysis, and the robustness of the results were tested using a series of sensitivity analyses. We extracted IVs of gut microbiota with direct causal association with CRC for SNP annotation to identify the genes in which these genetic variants were located to reveal the possible host gene-microbiome associations in CRC patients. RESULTS The findings from our MR analysis based on CRC-associated GWAS datasets from AGWAS revealed causal relationships between 6 bacterial taxa and CRC at a locus-wide significance level (P < 1 × 10-5). The IVW method found that family Porphyromonadaceae, genera Anaerotruncus, Intestinibacter, Slackia, and Ruminococcaceae UCG004, and species Eubacterium coprostanoligenes group were positively associated with CRC risk, which was generally consistent with the results of other complementary analyses. The results of a meta-analysis of the MR estimates from the AGWAS and the FinnGen datasets showed that family Porphyromonadaceae and genera Slackia, Anaerotruncus, and Intestinibacter replicated the same causal association. Sensitivity analysis of all causal associations did not indicate significant heterogeneity, horizontal pleiotropy, or reverse causal associations. We annotated the SNPs at a locus-wide significance level of the above intestinal flora and identified 24 host genes that may be related to pathogenic intestinal microflora in CRC patients. CONCLUSION This study supported the causal relationship of gut microbiota on CRC and revealed a possible correlation between genes and pathogenic microbiota in CRC. These findings suggested that the study of the gut microbiome and its further multi-omics analysis was important for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Chan Zhang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Li Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China.
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
13
|
Hossen I, Kaiqi Z, Hua W, Junsong X, Mingquan H, Yanping C. Epigallocatechin gallate (EGCG) inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells via modulating nuclear factor kappa-light-chain enhancer of activated B cells (NF- κB) signaling pathway. Food Sci Nutr 2023; 11:4634-4650. [PMID: 37576060 PMCID: PMC10420764 DOI: 10.1002/fsn3.3427] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 08/15/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a major bioactive compound in tea polyphenol extract. After ingestion, EGCG reaches the intestine and may commence anti-inflammation in the intestinal organ. Thus, in this paper, the anti-inflammatory effect of EGCG was studied using lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells. LPS induction instigated morphological deformation extensively which was normalized by EGCG. In LPS-induced macrophage cells, EGCG was found to lower cellular nitric oxide (32% of LPS group) and intercellular ROS level (45.4% of LPS group). It also suppressed the expression of IL-1β (LPS 132.6 ± 14.6, EGCG 10.67 ± 3.65), IL-6 (LPS 2994.44 ± 178.5, EGCG 408.33 ± 52.34), TNF-α (LPS 27.11 ± 2.84, EGCG 1.22 ± 0.03), and iNOS (LPS 40.45 ± 11.17, EGCG 10.24 ± 0.89). The GO function analysis identified that these differential genes involved 24 biological processes, 18 molecular functions, and 19 cellular component-related processes. KEGG pathway enrichment analysis revealed that LPS significantly affects NF-κB, TNF, and TLR signaling pathways. Western blotting revealed that EGCG diminished P-IκB/IκB ratio by 75% and p-p65/p65 by 50% compared to the LPS group. Finally, Arg-1 and CD-206 mRNA expression were determined by RT-PCR, which was consistent with the RNA-Seq result. These findings indicate that EGCG exerts an anti-inflammatory effect by reducing NO and ROS production, suppressing TLR4 protein expression, and inhibiting IκB and p65 phosphorylation.
Collapse
Affiliation(s)
- Imam Hossen
- Beijing Technology and Business UniversityBeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesBeijingChina
- Key Laboratory of Brewing Molecular Engineering of China Light IndustryBeijingChina
| | - Zhang Kaiqi
- Beijing Technology and Business UniversityBeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesBeijingChina
- Key Laboratory of Brewing Molecular Engineering of China Light IndustryBeijingChina
| | - Wu Hua
- Beijing Technology and Business UniversityBeijingChina
- Key Laboratory of Brewing Molecular Engineering of China Light IndustryBeijingChina
| | - Xiao Junsong
- Beijing Technology and Business UniversityBeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesBeijingChina
| | - Huang Mingquan
- Beijing Technology and Business UniversityBeijingChina
- Key Laboratory of Brewing Molecular Engineering of China Light IndustryBeijingChina
| | - Cao Yanping
- Beijing Technology and Business UniversityBeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesBeijingChina
| |
Collapse
|
14
|
Zhang S, Chen A, Deng H, Jiang L, Liu X, Chai L. Intestinal response of Rana chensinensis larvae exposed to Cr and Pb, alone and in combination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114774. [PMID: 36931087 DOI: 10.1016/j.ecoenv.2023.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Although numerous investigations on the adverse impact of Cr and Pb have been performed, studies on intestinal homeostasis in amphibians are limited. Here, single and combined effects of Cr (104 μg/L) and Pb (50 μg/L) on morphological and histological features, bacterial community, digestive enzymes activities, as well as transcriptomic profile of intestines in Rana chensinensis tadpoles were assessed. Significant decrease in the relative intestine length (intestine length/snout-to-vent length, IL/SVL) was observed after exposure to Pb and Cr/Pb mixture. Intestinal histology and digestive enzymes activities were altered in metal treatment groups. In addition, treatment groups showed significantly increased bacterial richness and diversity. Tadpoles in treatment groups were observed to have differential gut bacterial composition from controls, especially for the abundance of phylum Proteobacteria, Firmicutes, Verrucomicrobia, Actinobacteria, and Fusobacteria as well as genus Citrobacter, Anaerotruncus, Akkermansia, and Alpinimonas. Moreover, transcriptomic analysis showed that the transcript expression profiles of GPx and SOD isoforms responded differently to Cr and/or Pb exposure. Besides, transcriptional activation of pro-apoptotic and glycolysis-related genes, such as Bax, Apaf 1, Caspase 3, PK, PGK, TPI, and GPI were detected in all treatment groups but downregulation of Bcl2 in Pb and Cr/Pb mixture groups. Collectively, these results suggested that Cr and Pb exposure at environmental relevant concentration, alone and in combination, could disrupt intestinal homeostasis of R. chensinensis tadpoles.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
15
|
Redondo-Castillejo R, Garcimartín A, Hernández-Martín M, López-Oliva ME, Bocanegra A, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24065369. [PMID: 36982444 PMCID: PMC10049473 DOI: 10.3390/ijms24065369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD) is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
Collapse
Affiliation(s)
- Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| |
Collapse
|
16
|
Mu C, Zhang X, Zhang J, Hao X. Procyanidins regulate colonic metabolome, inflammatory response and antioxidant capacity in lambs fed a high‐concentrate diet. J Anim Physiol Anim Nutr (Berl) 2022. [DOI: 10.1111/jpn.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Chuntang Mu
- College of Animal Science Shanxi Agricultural University Jinzhong China
| | - Xuanzi Zhang
- College of Animal Science Shanxi Agricultural University Jinzhong China
| | - Jianxin Zhang
- College of Animal Science Shanxi Agricultural University Jinzhong China
| | - Xiaoyan Hao
- College of Animal Science Shanxi Agricultural University Jinzhong China
| |
Collapse
|
17
|
Ferreira YAM, Jamar G, Estadella D, Pisani LP. Proanthocyanidins in grape seeds and their role in gut microbiota-white adipose tissue axis. Food Chem 2022; 404:134405. [DOI: 10.1016/j.foodchem.2022.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
|
18
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
19
|
Hou J, Long J, Xiang J, Pan W, Li D, Liu X. Ontogenetic characteristics of the intestinal microbiota of
Quasipaa spinosa
revealed by
16S rRNA
gene sequencing. Lett Appl Microbiol 2022; 75:1182-1192. [DOI: 10.1111/lam.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jingliang Hou
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| | - Jiahang Long
- Hunan Fisheries Science Institute Changsha Hunan China
| | - Jianguo Xiang
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| | | | - Deliang Li
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| | - Xinhua Liu
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| |
Collapse
|
20
|
Calabriso N, Scoditti E, Massaro M, Maffia M, Chieppa M, Laddomada B, Carluccio MA. Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 2022; 14:2679. [PMID: 35807860 PMCID: PMC9268201 DOI: 10.3390/nu14132679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.
Collapse
Affiliation(s)
- Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy
| | - Maria Annunziata Carluccio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| |
Collapse
|
21
|
Wang Z, Tang Y, Long L, Zhang H. Effects of Dietary L-Theanine on Growth Performance, Antioxidation, Meat Quality, and Intestinal Microflora in White Feather Broilers With Acute Oxidative Stress. Front Vet Sci 2022; 9:889485. [PMID: 35812843 PMCID: PMC9267357 DOI: 10.3389/fvets.2022.889485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In order to reduce the negative effects caused by oxidative stress on broilers, it is particularly important to find ways to alleviate oxidative stress. As a natural plant extract, L-theanine has a variety of biological effects, such as improving antioxidant capacity, promoting growth, and enhancing immunity and antitumor. This trial evaluated the effects of dietary supplementation of L-theanine on growth performance, antioxidation, meat quality, and intestinal microflora in 817 White Feather Broilers. A total of 108 21-day-old 817 broilers with similar body weight (BW) were randomly divided into three groups with six replicates per group and six chickens within each replicate. The three groups were corn-soybean-based diet (NC group); basal diet plus drinking water with 30 mg hydrocortisone/kg (PC group); and basal diet supplemented with 400 mg L-theanine/kg plus drinking water with 30 mg hydrocortisone/kg (LT group). Compared with the NC group, from 21 to 24 days of age, the PC and LT groups had decreased BW, average daily gain (ADG), and average daily feed intake (ADFI), and increased feed to gain ratio (F/G; p < 0.05). At 24 days of age, the LT group had improved superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in serum as compared to the NC group (p < 0.05). The LT group broilers also had significantly higher concentrations of malondialdehyde (MDA) in serum and liver (p < 0.05). On the 42nd days, the PC group had lower PH45min (p < 0.05) than the NC and LT groups and higher cooking loss and shear force (p < 0.05). Moreover, the villi height of the PC group was significantly lower in jejunum than the NC group (p < 0.05). The LT group had a higher ZO-1 content in duodenum than the NC and PC groups (p < 0.05). The activity of GSH-Px in the liver of the LT group was increased than in the PC group (p < 0.05). The relative abundance of Firmicutes in the LT group was significantly higher than in the NC and PC groups (p < 0.05). These results suggested that the effects of acute oxidative stress on growth performance and meat quality of broilers are continuous, and dietary supplementation of L-theanine could improve the growth performance and meat quality, enhance the intestinal mucosal barrier and antioxidant capacity, and improve the composition of the intestinal flora of broilers caused by acute oxidative stress.
Collapse
|
22
|
Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World J Gastroenterol 2022; 28:1946-1964. [PMID: 35664963 PMCID: PMC9150055 DOI: 10.3748/wjg.v28.i18.1946] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence links gut microbiota to various human diseases including colorectal cancer (CRC) initiation and development. However, gut microbiota profiles associated with CRC recurrence and patient prognosis are not completely understood yet, especially in a Chinese cohort. AIM To investigate the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. METHODS We obtained the composition and structure of gut microbiota collected from 75 patients diagnosed with CRC and 26 healthy controls. The patients were followed up by regular examination to determine whether tumors recurred. Triplet-paired samples from on-tumor, adjacent-tumor and off-tumor sites of patients diagnosed with/without CRC recurrence were analyzed to assess spatial-specific patterns of gut mucosal microbiota by 16S ribosomal RNA sequencing. Next, we carried out bioinformatic analyses, Kaplan-Meier survival analyses and Cox regression analyses to determine the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. RESULTS We observed spatial-specific patterns of gut mucosal microbiota profiles linked to CRC recurrence and patient prognosis. A total of 17 bacterial genera/families were identified as potential biomarkers for CRC recurrence and patient prognosis, including Anaerotruncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, Haemophilus, Mogibacteriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 and Treponema. CONCLUSION Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC recurrence and patient death.
Collapse
Affiliation(s)
- Rui-Xue Huo
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yi-Jia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shao-Bin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
- Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Xue-Hua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
23
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Han X, Zhao W, Zhou Q, Chen H, Yuan J, Zhang XF, Zhang Z. Procyanidins from Hawthorn ( Crataegus Pinnatifida) Alleviates Lipid Metabolism Disorder via Inhibiting Insulin Resistance and Oxidative Stress, Normalizing Gut Microbiota Structure and Intestinal Barrier, Further Suppressing Hepatic Inflammation and Lipid Accumulation. Food Funct 2022; 13:7901-7917. [DOI: 10.1039/d2fo00836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, lipid metabolism disorder (LMD) has been regarded as a risky factor leading to multiple diseases and affecting human health. Procyanidins have been reported to be the potential therapy for...
Collapse
|
25
|
Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Diseases. Nutrients 2021; 13:nu13030850. [PMID: 33807621 PMCID: PMC7998994 DOI: 10.3390/nu13030850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.
Collapse
|
26
|
Pei Y, Chen C, Mu Y, Yang Y, Feng Z, Li B, Li H, Li K. Integrated Microbiome and Metabolome Analysis Reveals a Positive Change in the Intestinal Environment of Myostatin Edited Large White Pigs. Front Microbiol 2021; 12:628685. [PMID: 33679652 PMCID: PMC7925633 DOI: 10.3389/fmicb.2021.628685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
Myostatin (MSTN) functional inactivation can change the proportion of lean meat and fat content in pigs. While both genotype and microbial composition are known to affect the host phenotype, so far there has been no systematic study to detect the changes in the intestinal microbial composition and metabolome of MSTN single copy mutant pigs. Here, we used 16S rDNA sequencing and metabolome analysis to investigate how MSTN gene editing affects changes in the microbial and metabolome composition in the jejunum and the cecum of Large White pigs. Our results showed that Clostridium_sensu_stricto_1, Bifidobacterium, Lachnospiraceae_UCG-007, Clostridium_sensu_stricto_6, Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-004 were significantly upregulated; while Treponema_2 and T34_unclassified were significantly downregulated in the jejunum of MSTN pigs. Similarly, Phascolarctobacterium, Ruminiclostridium_9, Succinivibrio, Longibaculum, and Candidatus_Stoquefichus were significantly upregulated, while Barnesiella was significantly downregulated in the cecum of MSTN pigs. Moreover, metabolomics analysis showed significant changes in metabolites involved in purine, sphingolipid and tryptophan metabolism in the jejunum, while those associated with glycerophospholipid and pyrimidine metabolism were changed in the cecum. Spearman correlation analysis further demonstrated that there was a significant correlation between microflora composition and metabolites. Our analyses indicated the MSTN editing affects the composition of metabolites and microbial strains in the jejunum and the cecum, which might provide more useable nutrients for the host of MSTN± Large White pigs.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chujie Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Dias R, Pereira CB, Pérez-Gregorio R, Mateus N, Freitas V. Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Bailén M, Bressa C, Martínez-López S, González-Soltero R, Montalvo Lominchar MG, San Juan C, Larrosa M. Microbiota Features Associated With a High-Fat/Low-Fiber Diet in Healthy Adults. Front Nutr 2020; 7:583608. [PMID: 33392236 PMCID: PMC7775391 DOI: 10.3389/fnut.2020.583608] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
A high intake of dietary saturated fatty acids (SFAs) is related to an increased risk of obesity, inflammation and cancer-related diseases, and this risk is attenuated only when SFAs are replaced by unsaturated fats and unrefined carbohydrates. The gut microbiota has recently emerged as a new environmental factor in the pathophysiology of these disorders, and is also one of the factors most influenced by diet. We sought to determine whether the gut microbiota of healthy individuals whose intake of SFAs exceeds World Health Organization (WHO) recommendations exhibits features similar to those reported in people with obesity, inflammation, cancer or metabolic disease. Healthy non-obese subjects were divided into two groups based on their SFAs intake. Body composition and gut microbiota composition were analyzed, and associations between bacterial taxa, diet and body fat composition were determined globally and separately by sex. Metagenome functional pathways were predicted by PICRUSt analysis. Subjects whose SFAs intake exceeded WHO recommendations also had a dietary pattern of low fiber intake. This high saturated fat/low fiber diet was associated with a greater sequence abundance of the Anaerotruncus genus, a butyrate producer associated with obesity. Analysis of data of high SFAs intake by sex showed that females presented with a greater abundance of Campylobacter, Blautia, Flavonifractor and Erysipelatoclostridium, whereas males showed higher levels of Anaerotruncus, Eisenbergiella, a genus from the order Clostridiales (FamilyXIIIUCG_001) and two genera from the Lachnospiraceae family. PICRUSt analysis confirmed these data, showing a correlation with a decrease in the abundance of sequences encoding for transporters of some metals such as iron, which is needed to maintain a healthy metabolism. Thus, the microbiota of healthy people on a high SFAs diet contain bacterial taxa (Anaerotruncus, Lachnospiraceae Flavonifractor, Campylobacter, Erysipelotrichacea and Eisenbergiella) that could be related to the development of some diseases, especially obesity and other pro-inflammatory diseases in women. In summary, the present study identifies bacterial taxa that could be considered as early predictors for the onset of different diseases in healthy subjects. Also, sex differences in gut microbiota suggest that women and men differentially benefit from following a specific diet.
Collapse
Affiliation(s)
- María Bailén
- MAS Microbiota Group, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|