1
|
Morais VND, Moreira LDPD, Gomes MJC, Grancieri M, Lucio HG, Toledo RCL, Mishima MDV, Costa NMB, da Silva BP, Stampini Duarte Martino H. Chia Oil ( Salvia hispanica L.) Improves the Intestinal Health of Wistar Rats Fed a Hypercaloric Diet. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:322-331. [PMID: 39689242 DOI: 10.1080/27697061.2024.2431271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND A diet rich in fat and sugar is present in society everyday life, leading to the development of metabolic changes, especially in intestinal microbiota. Chia oil is a source of alpha-linolenic acid, which has antioxidant and anti-glycemic effects. Based on this, we hypothesized that chia oil may promote intestinal health. OBJECTIVE The study aims to investigate the effects of chia oil on gut microbiota and intestinal health in Wistar rats fed a high-fat and high-fructose diet (HFHF). METHODS The animals were separated into two groups and received the following diets: standard murine diet (AIN-93M) (n = 10) and HFHF (n = 20) to induce metabolic changes (phase I) during eight weeks. After that, the AIN-93M group remained unchanged, while the HFHF group was divided into two groups: HFHF (n = 10) and HFHF with chia oil (HFHF+CO) (n = 10) for ten weeks (phase II, chia oil treatment). We analyzed immunoglobulin A (IgA) levels, cecal pH, short-chain fatty acids (SCFAs), intestinal permeability, intestinal microbiome composition, histomorphometry, and murinometric parameters. RESULTS Chia oil consumption increased alpha-linolenic acid intake, IgA levels, propionic acid production, cecum weight, goblet cell number, thickness and depth of intestinal crypts, and the thickness of both circular and longitudinal muscle layers of the colon, and decreased cecal pH. No change was observed in the alpha and beta diversity between the HFHF and HFHF+CO groups. The HFHF+CO diet increased the relative abundance of genera Lactobacillus sp., Faecalibacterium sp., and Erysipelatoclostridium sp., compared to the AIN-93M group. No difference was observed in the intestinal permeability among the groups. CONCLUSION Chia oil consumption is an alternative for improving the intestinal health of rats fed a HFHF diet.
Collapse
Affiliation(s)
- Violeta Nunes de Morais
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Haira Guedes Lucio
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | | | | |
Collapse
|
2
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024; 65:2365-2387. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Correa LB, Gomes-da-Silva NC, dos Santos CC, Rebelo Alencar LM, Graças Muller de Oliveira Henriques MD, Bhattarai P, Zhu L, Noronha Souza PF, Rosas EC, Santos-Oliveira R. Chia nanoemulsion: anti-inflammatory mechanism, biological behavior and cellular interactions. Ther Deliv 2024; 15:325-338. [PMID: 38469701 PMCID: PMC11157993 DOI: 10.4155/tde-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Aim: This study explores chia oil, rich in ω-3 fatty acids and nutraceutical components, as a potential remedy for diseases, especially those linked to inflammation and cancer. Methods/materials: A chia oil-based nanoemulsion, developed through single emulsification, underwent comprehensive analysis using various techniques. In vitro and in vivo assays, including macrophage polarization, nitrite and cytokine production, cellular uptake and biodistribution, were conducted to assess the anti-inflammatory efficacy. Results & conclusion: Results reveal that the chia nanoemulsion significantly inhibits inflammation, outperforming pure oil with twice the efficacy. Enhanced uptake by macrophage-like cells and substantial accumulation in key organs indicate its potential as an economical and effective anti-inflammatory nanodrug, addressing global economic and health impacts of inflammation-related diseases.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy & Synthesis of New Radiopharmaceuticals, Rio de Janeiro RJ, 21941906, Brazil
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy & Synthesis of New Radiopharmaceuticals, Rio de Janeiro RJ, 21941906, Brazil
| | - Clenilton Costa dos Santos
- Biophysics & Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, MA, 65065690, Brazil
| | | | | | - Prapanna Bhattarai
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Pedro Filho Noronha Souza
- Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Ceará, 60430275, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
- Master & Doctoral Degree in Drugs Translational Research, Farmanguinhos – Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy & Synthesis of New Radiopharmaceuticals, Rio de Janeiro RJ, 21941906, Brazil
- Rio de Janeiro State University, Laboratory of Radiopharmacy & Nanoradiopharmaceuticals, Rio de Janeiro, RJ, 23070200, Brazil
| |
Collapse
|
4
|
Lucini Mas A, Canalis AM, Pasqualini ME, Wunderlin DA, Baroni MV. The Effects of Chia Defatted Flour as a Nutritional Supplement in C57BL/6 Mice Fed a Low-Quality Diet. Foods 2024; 13:678. [PMID: 38472791 DOI: 10.3390/foods13050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 03/14/2024] Open
Abstract
Today, consumption of diets rich in saturated fat and fructose, associated with a variety of metabolic deregulations, has increased. The aim of this study was to evaluate the effect of dietary supplementation with a residue of defatted chia seed on a diet with low nutritional quality. To do this, C57BL/6 male mice were fed with the Control (C), Low-Nutritional-Quality (LNQ), or supplemented-with-chia-defatted-flour (LNQ+C) diets. After 12 weeks, the glucose and lactate levels were determined in the serum, liver, and kidney, along with reactive oxygen species (ROS) levels, antioxidant enzyme activity, reduced glutathione (GSH), and protein oxidation (AOPP). The LNQ diet increased the glucose and lactate levels (+25% and +50% approx. in the liver, with respect to the control group) and generated oxidative stress by modifying the levels of ROS and the activity of antioxidant enzymes, causing oxidative damage to proteins (+12% in the liver, with respect to the control). Chia supplementation helped to restore the glucose to control levels and modulate the endogenous antioxidant system, resulting in a decrease in protein oxidation products with no differences compared to the control group. In conclusion, supplementation with chia showed beneficial effects on the general health of mice, even when fed a low-nutritional-quality diet.
Collapse
Affiliation(s)
- Agustin Lucini Mas
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - Alejandra Mariel Canalis
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Pabellón Biología Celular, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - María Eugenia Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Pabellón Biología Celular, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Instituto de Biología Celular (IBC-UNC), Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - María Verónica Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| |
Collapse
|
5
|
Chen J, Wu G, Zhu L, Karrar E, Zhang H. A review of the functional activities of chia seed and the mechanisms of action related to molecular targets. Food Funct 2024; 15:1158-1169. [PMID: 38239106 DOI: 10.1039/d3fo02197a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In recent years, as a functional potential pseudocereal, chia seed (Salvia hispanica L.) has been of great interest for its comprehensive nutritional profile and attractive qualities after ingestion. It is reported that a reasonable dietary supplementation of chia seed (CS) contributes to the prevention and treatment of acute and chronic diseases (inflammation, diabetes, hypertension, obesity, kidney stone, etc.). CS contains a variety of bioactive macromolecular substances, such as oil, protein and gum, which manifest distinguished health-promoting activities in both in vivo and in vitro research studies. This article provides a comprehensive compendium on the functional importance of CS, in the context of biological activities and mechanism of actions of CS. Specifically, CS and its components alleviate inflammation and regulate glucose and fatty acid metabolism by regulating key influencing factors in the adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB), peroxisome-activated receptor gamma (PPAR-γ) and transforming growth factor-beta (TGF-β) pathways and the insulin receptor substrate (IRS)-mediated insulin signaling pathway. In the meantime, predictions of metabolic pathways of CS peptides based on the known tracks of newly researched active peptides were proposed, with the aim of emphasizing the enormous research space of CS peptides compared to other functional active peptides.
Collapse
Affiliation(s)
- Jinghui Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Ling Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| |
Collapse
|
6
|
Lucini Mas A, Sabatino ME, Theumer MG, Wunderlin DA, Baroni MV. Antioxidant activity of chia flour as a food supplement in a cellular model: Repercussions of processing and in vitro digestion. Heliyon 2024; 10:e24125. [PMID: 38226208 PMCID: PMC10788807 DOI: 10.1016/j.heliyon.2024.e24125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
Food processing and digestion can alter bioactive compound composition of food, affecting their potential biological activity. In this study, we evaluated the direct and protective antioxidant effects of polyphenols extracted from defatted chia flour (DCF) (salviaflaside, rosmarinic and fertaric acid as major compounds), sweet cookies supplemented with DCF (CFC) (same major compounds), and their digested fractions (rosmarinic acid, salviaflaside, fertaric and salvianolic E/B/L acid as major compounds) in HepG2 cells in basal and in oxidative stress conditions. DCF showed protective antioxidant effects by decreasing reactive oxygen species (ROS) and protein oxidation products (POP) while increasing reduced glutathione (GSH). Additionally, CFC revealed similar protective effects and even showed enhanced modulation of the antioxidant system due to the activation of antioxidant enzymes. However, the digested fractions only decreased ROS, indicating continued antioxidant effects. This study underscores the importance of evaluating manufacturing and digestion effects to confirm a food's antioxidant properties.
Collapse
Affiliation(s)
- Agustin Lucini Mas
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Eugenia Sabatino
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Martin Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Verónica Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Tavera-Hernández R, Jiménez-Estrada M, Alvarado-Sansininea JJ, Huerta-Reyes M. Chia ( Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules 2023; 28:8069. [PMID: 38138560 PMCID: PMC10745661 DOI: 10.3390/molecules28248069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.
Collapse
Affiliation(s)
- Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - J. Javier Alvarado-Sansininea
- Herbario FEZA, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo S/N, Col. Ejército de Oriente, Ciudad de México 09230, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
8
|
Morais VND, Gomes MJC, Grancieri M, Moreira LDPD, Toledo RCL, Costa NMB, da Silva BP, Martino HSD. Chia (Salvia hispanica L.) flour modulates the intestinal microbiota in Wistar rats fed a high-fat and high-fructose diet. Food Res Int 2023; 172:113095. [PMID: 37689868 DOI: 10.1016/j.foodres.2023.113095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
A diet rich in sugar and fat can promote metabolic disorders development, especially in the intestine. Chia flour (Salvia hispanica. L) is a source of dietary fiber, alpha-linolenic fatty acid (ALA), bioactive peptides, and phenolics, promoting health benefits. This study aimed to analyze chia flour's effect on gut microbiota modulation and intestinal health in adult male Wistar rats fed a high-fat and high-fructose (HFHF) diet. Male Wistar rats (n = 10/group) were fed the diets standard (AIN-93M) or HFHF (31% saturated fat and 20% fructose) in the first phase to induce metabolic disorders. In the second phase, the rats were fed AIN-93M, HFHF, or HFHF plus 14.7% chia flour (HFHF + CF) for 10 weeks. The consumption of chia flour increased the ALA (3.24 ± 0.24) intake and significantly improved immunoglobulin A (IgA) levels (1126.00 ± 145.90), goblet cells number (24.57 ± 2.76), crypt thickness (34.37 ± 5.86), crypt depth (215.30 ± 23.19), the longitudinal muscle layer (48.11 ± 5.04), cecum weight (4.39 ± 0.71), Shannon index (p < 0.05), and significantly increased the production of acetic (20.56 ± 4.10) and butyric acids (5.96 ± 1.50), Monoglobus sp., Lachnospiraceae sp., and Prevotellaceae sp. abundance. Furthermore, chia significantly reduced the cecal pH content (7.54 ± 1.17), body mass index (0.62 ± 0.03) and weight (411.00 ± 28.58), and Simpson index (p < 0.05). Therefore, chia intake improved intestinal health parameters and functionality in rats with metabolic disorders, which demonstrates to be an effective strategy for gut microbiota modulation.
Collapse
Affiliation(s)
- Violeta Nunes de Morais
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | - Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Legnaro 16,35020, PD, Italy; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Viken, Norway
| | | | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | | | | |
Collapse
|
9
|
Mishima MDV, Martino HSD, Kolba N, Agarwal N, Jackson C, da Silva BP, Grancieri M, de Assis A, de São José VPB, Tako E. Chia Phenolic Extract Appear to Improve Small Intestinal Functionality, Morphology, Bacterial Populations, and Inflammation Biomarkers In Vivo ( Gallus gallus). Nutrients 2023; 15:3643. [PMID: 37630833 PMCID: PMC10458096 DOI: 10.3390/nu15163643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Phenolic compounds can act as a substrate for colonic resident microbiota. Once the metabolites are absorbed and distributed throughout the body, they can have diverse effects on the gut. The objective of this study was to evaluate the effects of the intra-amniotic administration of a chia phenolic extract on intestinal inflammation, intestinal barrier, brush border membrane functionality, intestinal microbiota, and morphology in vivo (Gallus gallus model). Cornish-cross fertile broiler eggs, at 17 days of embryonic incubation, were separated into groups as follows: non-injected (NI; this group did not receive an injection); 18 MΩ H2O (H2O; injected with ultrapure water), and 10 mg/mL (1%) chia phenolic extract (CPE; injected with phenolic extract diluted in ultrapure water). Immediately after hatch (21 days), chickens were euthanized and their small intestine, cecum, and cecum content were collected and analyzed. The chia phenolic extract reduced the tumor necrosis factor-alpha (TNF-α) and increased the sucrose isomaltase (SI) gene expression, reduced the Bifidobacterium and E. coli populations, reduced the Paneth cell diameter, increased depth crypt, and maintained villus height compared to the non-injected control group. Chia phenolic extract may be a promising beneficial compound for improving intestinal health, demonstrating positive changes in intestinal inflammation, functionality, microbiota, and morphology.
Collapse
Affiliation(s)
- Marcella Duarte Villas Mishima
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | - Nikolai Kolba
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Nikita Agarwal
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Cydney Jackson
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | - Andressa de Assis
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | | | - Elad Tako
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| |
Collapse
|
10
|
Mishima MDV, da Silva BP, Gomes MJC, Toledo RCL, Barra RRS, Tako E, Costa NMB, Martino HSD. Chia flour combined with a high fat diet increases propionic acid production and improves the microbial richness and diversity in female Wistar rats. Food Funct 2023; 14:7457-7468. [PMID: 37486027 DOI: 10.1039/d3fo01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chia is a functional food because of its positive impact on reducing the risk of metabolic diseases. These benefits are due to its nutritional composition as a source of dietary fiber and bioactive compounds. In our previous study, chia consumption increased the richness of the microbiota and the production of short chain fatty acids (SCFAs) when consumed by male Wistar rats, so, the objective of this study was to assess the effects of the consumption of chia with a high fat diet on gut health in female Wistar rats. 32 adult female Wistar rats were allocated into four groups and received one of the following diets: standard diet (SD), standard diet + chia (SDC), high fat diet (HFD) or high fat diet + chia (HFDC) for 8 weeks. At the end of the study, the intestinal microbiota, SCFA content, cecum content pH, immunoglobulin A (IgA) quantification and brush border membrane functionality were evaluated. There was no difference in the relative abundance of the gut microbiota, but chia consumption increased the microbial richness and diversity, increased the production of acetic and butyric acids in the SDC group and propionic acid in the HFD group, and decreased the pH of cecal content. The HFDC group demonstrated a lower IgA concentration compared to the HFD group. The SDC group increased SI and AP gene expression and decreased SGLT1 and PepT1 compared to the SD group. The consumption of chia can be beneficial for the functionality of the microbiota, improving SCFAs and intestinal pH, and the effects of chia in the microbiota can be more pronounced in HFD.
Collapse
Affiliation(s)
- Marcella Duarte Villas Mishima
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, 36570-900, MG, Brazil.
| | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, 36570-900, MG, Brazil.
| | - Mariana Juste Contin Gomes
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, 36570-900, MG, Brazil.
| | - Renata Celi Lopes Toledo
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, 36570-900, MG, Brazil.
| | | | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, 14850, NY, USA
| | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alto Universitário, s/n, Alegre, 29500-000, ES, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, 36570-900, MG, Brazil.
| |
Collapse
|
11
|
Mishima MDV, Martino HSD, Kolba N, Shah DD, Grancieri M, Dos Santos KMO, Lima JP, Da Silva BP, Gonzalez de Mejia E, Tako E. Effects of Intra-Amniotic Administration of the Hydrolyzed Protein of Chia ( Salvia hispanica L.) and Lacticaseibacillus paracasei on Intestinal Functionality, Morphology, and Bacterial Populations, In Vivo ( Gallus gallus). Nutrients 2023; 15:nu15081831. [PMID: 37111052 PMCID: PMC10144735 DOI: 10.3390/nu15081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
As a protein source, chia contains high concentrations of bioactive peptides. Probiotics support a healthy digestive tract and immune system. Our study evaluated the effects of the intra-amniotic administration of the hydrolyzed chia protein and the probiotic Lacticaseibacillus paracasei on intestinal bacterial populations, the intestinal barrier, the inflammatory response, and brush border membrane functionality in ovo (Gallus gallus). Fertile broiler (Gallus gallus) eggs (n = 9/group) were divided into 5 groups: (NI) non-injected; (H2O) 18 MΩ H2O; (CP) 10 mg/mL hydrolyzed chia protein; (CPP) 10 mg/mL hydrolyzed chia protein + 106 colony-forming unit (CFU) L. paracasei; (P) 106 CFU L. paracasei. The intra-amniotic administration was performed on day 17 of incubation. At hatching (day 21), the animals were euthanized, and the duodenum and cecum content were collected. The probiotic downregulated the gene expression of NF-κβ, increased Lactobacillus and E. coli, and reduced Clostridium populations. The hydrolyzed chia protein downregulated the gene expression of TNF-α, increased OCLN, MUC2, and aminopeptidase, reduced Bifidobacterium, and increased Lactobacillus. The three experimental groups improved in terms of intestinal morphology. The current results suggest that the intra-amniotic administration of the hydrolyzed chia protein or a probiotic promoted positive changes in terms of the intestinal inflammation, barrier, and morphology, improving intestinal health.
Collapse
Affiliation(s)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Nikolai Kolba
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | | | - Janine Passos Lima
- Embrapa Agroindústria de Alimentos, Av. das Américas 29.501, Rio de Janeiro 23020-470, RJ, Brazil
| | - Bárbara Pereira Da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elad Tako
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Effect of chia flour associated with high fat diet on intestinal health in female ovariectomized Wistar rats. Eur J Nutr 2023; 62:905-919. [PMID: 36326862 DOI: 10.1007/s00394-022-03043-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The present study aimed to evaluate the effect of chia flour associated with a high fat diet on intestinal health in female ovariectomized Wistar rats. METHODS The study was conducted with 32 adult female ovariectomized Wistar rats, which were separated into four groups: standard diet (ST), standard diet with chia (STC), high fat diet (HF) and high fat diet with chia (HFC) for 18 weeks. Cecum content pH, short chain fatty acid content, brush border membrane functionality and morphology and the gut microbiota were evaluated. RESULTS This study demonstrated that the consumption of chia flour increased the production of acetic and butyric acids, the longitudinal and circular muscle layers and crypt thickness. It also improved the expression of aminopeptidase (AP) and sucrose-isomaltase (SI) and decreased the cecum content pH. Further, the consumption of chia improved richness and decreased diversity of the microbiota. Operational Taxonomic Units (OTUs) clustering indicated difference between the ST and STC groups. In the linear discriminant analysis effect size (LEfSe) analysis, the Bacteroides genus and members of the Muribaculaceae and Lachnospiraceae families were enriched in the STC treatment group. The STC group demonstrated the enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways related to peptidoglycan and coenzyme A biosynthesis. CONCLUSION Our results suggest that chia flour, which is rich in dietary fiber and phenolic compounds, presented potential properties to improve intestinal health.
Collapse
|
13
|
Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage. Foods 2023; 12:foods12030569. [PMID: 36766097 PMCID: PMC9914348 DOI: 10.3390/foods12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Gum and mucilage from seeds and fruits are objects of study because they have characteristics of high viscosity at low concentrations and gelling properties, which are useful characteristics for modifying the texture and stabilizing products in the food industry. Chia and okra have high concentrations of polysaccharide gums in their composition, which makes them an interesting target for use in the composition of foods that require the use of texture enhancers and stabilizers. The present study investigated the influence of dehydration temperature on the characteristics of chia and okra powder mucilage obtained at different temperatures. The mucilages were extracted using an aqueous process and dehydrated in an air circulation oven at 50, 60, and 70 °C until hydroscopic equilibrium. Then, the powdered chia mucilage (CM) and okra mucilage (OM) were analyzed for chemical and physicochemical characteristics, bioactive compounds, antioxidant activity, and physical properties. It was found that powdered mucilage had low water content and water activity, with CM standing out in terms of ash, pectin, and starch content and OM, along with higher averages of proteins, sugars, total phenolic compounds, anthocyanins, flavonoids, and antioxidant activity. As for the physical parameters, CM stood out in relation to greater solubility and lower hygroscopicity, whereas OM presented higher wettability rates. Both powdered mucilages were classified as having good fluidity and cohesiveness from low to intermediate. In relation to the dehydration temperature, the best mucilage properties were verified at 70 °C. The study revealed that mucilages have good functional properties offering great potential as raw material for industry.
Collapse
|
14
|
Nutraceuticals and the Network of Obesity Modulators. Nutrients 2022; 14:nu14235099. [PMID: 36501129 PMCID: PMC9739360 DOI: 10.3390/nu14235099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.
Collapse
|
15
|
Effect of Chia ( Salvia hispanica L.) Associated with High-Fat Diet on the Intestinal Health of Wistar Rats. Nutrients 2022; 14:nu14224924. [PMID: 36432610 PMCID: PMC9696280 DOI: 10.3390/nu14224924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
A direct correlation has been reported between excessive fat intake and the development and progression of various enteropathies. Plant foods may contain bioactive compounds and non-digestible dietary fiber, with potential to improve intestinal health. Chia is a good source of dietary fiber and bioactive compounds. Our study evaluated the role of chia flour associated with a high-fat diet (HFD) on colon histomorphometry, intestinal functionality and intestinal microbiome composition and function in Wistar rats. The study used 32 young male rats separated into four groups to receive a standard diet (SD) or HFD, with or without chia, for 35 days. At the end of the study, the cecum, cecal content and duodenum were collected. The consumption of chia increased the production of short-chain fatty acids and improved fecal moisture. Chia consumption improved the circular muscle layer in the SD group. The diversity and abundance of intestinal bacteria were not affected, but increased richness was observed in the microbiome of the SD+chia group. Moreover, chia consumption decreased the expression of proteins involved in intestinal functionality. Chia consumption improved intestinal morphology and functionality in young Wistar rats but was insufficient to promote significant changes in the intestinal microbiome in a short term of 35 days.
Collapse
|
16
|
Tanisha, Venkategowda S, Majumdar M. Amelioration of hyperglycemia and hyperlipidemia in a high-fat diet-fed mice by supplementation of a developed optimized polyherbal formulation. 3 Biotech 2022; 12:251. [PMID: 36060893 PMCID: PMC9428098 DOI: 10.1007/s13205-022-03309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
This study evaluated in vivo anti-diabetic and anti-obesity activity of a polyherbal formulation's methanolic extract containing an optimized ratio of edible seeds (Salvia hispanica, Chenopodium quinoa, Nelumbo nucifera). Diet-induced obese mice model (C57BL/6) was developed by feeding the mice a high-fat diet for 10 weeks resulting in hyperglycemia and obesity. Different doses (125, 250 and 500 mg/kg of body weight) of formulation were administered orally daily for 6 weeks. Fasting blood glucose and body weight were monitored throughout the study. At the end of the study, serum parameters were analyzed and histological examinations were performed. There was a significant reduction in fasting blood glucose levels and body weight in animal groups receiving polyherbal formulation. Lipid profile was improved as revealed by a reduction in serum triglycerides and total cholesterol. Histological study showed an improvement in liver, kidney and pancreatic sections of treated mice. High-performance thin layer chromatography was performed to identify the phytochemicals responsible for the above-mentioned bioactivities. The results revealed the presence of flavonoid (rutin) in seeds of N.nucifera and in the polyherbal formulation. For the first time, this study demonstrated the anti-diabetic and anti-obesity potential of the optimized formulation. The formulation can be used as a potential therapy for management of diabesity.
Collapse
Affiliation(s)
- Tanisha
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Sunil Venkategowda
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Mala Majumdar
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| |
Collapse
|
17
|
Tak Y, Kaur M, Kumar R, Gautam C, Singh P, Kaur H, Kaur A, Bhatia S, Jha NK, Gupta PK, Amarowicz R. Repurposing chia seed oil: A versatile novel functional food. J Food Sci 2022; 87:2798-2819. [PMID: 35708201 DOI: 10.1111/1750-3841.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Chia seed oil (CSO) has been recently gaining tremendous interest as a functional food. The oil is rich in with polyunsaturated fatty acids (PUFAs), especially, alpha linolenic acid (ALA), linoleic acid (LA), tocopherols, phenolic acids, vitamins, and antioxidants. Extracting CSO through green technologies has been highly efficient, cost-effective, and sustainable, which has also shown to improve its nutritional potential and proved to be eco-friendly than any other traditional or conventional processes. Due to the presence of valuable bioactive metabolites, CSO is proving to be a revolutionary source for food, baking, dairy, pharmaceutical, livestock feed, and cosmetic industries. CSO has been reported to possess antidiabetic, anticancer, anti-inflammatory, antiobesity, antioxidant, antihyperlipidemic, insect-repellent, and skin-healing properties. However, studies on toxicological safety and commercial potency of CSO are limited and therefore the need of the hour is to focus on large-scale molecular mechanistic and clinical studies, which may throw light on the possible translational opportunities of CSO to be utilized to its complete potential. In this review, we have deliberated on the untapped therapeutical possibilities and novel findings about this functional food, its biochemical composition, extraction methods, nutritional profiling, oil stability, and nutraceutical and pharmaceutical applications for its health benefits and ability to counter various diseases.
Collapse
Affiliation(s)
- Yamini Tak
- Department of Biochemistry, Agriculture University, Kota, Rajasthan, India
| | - Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajendra Kumar
- Department of Entomology, MBDDS Girls College, Siswali, Baran, Rajasthan, India
| | - Chirag Gautam
- Department of Plant Pathology, Agriculture University, Kota, Rajasthan, India
| | - Prabhjot Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harjeet Kaur
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surekha Bhatia
- Department of Processing & Food engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
18
|
Moura MAFE, Martins BDA, Oliveira GPD, Takahashi JA. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Crit Rev Food Sci Nutr 2022; 63:10691-10708. [PMID: 35698908 DOI: 10.1080/10408398.2022.2085657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review aimed to compare alternative protein sources in terms of nutritional composition and health benefits with the purpose of disseminating up-to-date knowledge and contribute for diversification of the food marked and consumers decision-making. Plant-based is the most well-established category of alternative proteins, but there is still room for diversification. Less conventional species such as chia seeds are prominent sources of ω-3 (∼60% total lipids), while hempseed and quinoa are notable sources of ω-6 (up to 58% and 61%, respectively). Edible insects and microalgae are alternative foods rich in protein (up to 70%), fibers (∼30%), as well as peptides and polysaccharides with antimicrobial, antioxidant, anti-hypertensive, antidiabetic, antidepressant, antitumor, and immunomodulatory activities. Additionally, lipid contents in insect larvae can be as high as 50%, on a dry weight basis, containing fatty acids with anti-inflammatory and antitumor properties. In contrast, edible fungi have low lipid contents (∼2%), but are rich in carbohydrates (up to 79%) and have balanced amino acid profiles. The results suggest that food formulations combining different alternative protein sources can meet dietary requirements. Further studies on flavoring and texturing processes will help to create meat and dairy analogs, thus helping to broaden acceptance and applicability of alternative protein sources.
Collapse
Affiliation(s)
| | - Bruna de Almeida Martins
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geane P de Oliveira
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacqueline A Takahashi
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Digested protein from chia seed (Salvia hispanica L) prevents obesity and associated inflammation of adipose tissue in mice fed a high-fat diet. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
de Paula Dias Moreira L, Enes BN, de São José VPB, Toledo RCL, Ladeira LCM, Cardoso RR, da Silva Duarte V, Hermsdorff HHM, de Barros FAR, Martino HSD. Chia (Salvia hispanica L.) Flour and Oil Ameliorate Metabolic Disorders in the Liver of Rats Fed a High-Fat and High Fructose Diet. Foods 2022; 11:foods11030285. [PMID: 35159437 PMCID: PMC8834135 DOI: 10.3390/foods11030285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
We hypothesized that the consumption of chia (Salvia hispanica L.) flour (CF) and chia oil (CO) improves metabolic disorders in the liver of Wistar rats (Rattus norvegicus domestica) fed a high-fat and high-fructose (HFHF) diet. The animals were fed a HFHF diet (n = 30) or AIN93-M standard diet (n = 10) for eight weeks. After this period, the animals fed HFHF were divided into three groups (n = 10): HFHF diet, HFHF plus 14.7% of CF, and HFHF plus 4% of CO. Histological and biochemical analyses, gene expression, protein levels related to inflammation, and oxidative stress were evaluated in the liver. The HFHF diet caused lipogenesis, liver steatosis, oxidative stress, and inflammation in the animals. The CF and CO intake increased the liver total antioxidant capacity and superoxide dismutase, decreased nitric oxide levels and liver steatosis. Furthermore, the CF and CO led to the upregulation of Cpt1a and Adipor2, respectively, whereas CF downregulated Srebf1. CO intake decreased blood glucose, triglycerides, and the animals’ body weight. Chia did not show effects on mitigating liver pro-inflammatory status, which it may indicate occurs later. The addition of chia into an unbalanced diet is a good and relevant strategy to reduce liver metabolic disorders caused by the high consumption of fructose and saturated fat.
Collapse
Affiliation(s)
- Luiza de Paula Dias Moreira
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (L.d.P.D.M.); (B.N.E.); (V.P.B.d.S.J.); (R.C.L.T.); (H.H.M.H.)
| | - Bárbara Nery Enes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (L.d.P.D.M.); (B.N.E.); (V.P.B.d.S.J.); (R.C.L.T.); (H.H.M.H.)
| | | | - Renata Celi Lopes Toledo
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (L.d.P.D.M.); (B.N.E.); (V.P.B.d.S.J.); (R.C.L.T.); (H.H.M.H.)
| | | | - Rodrigo Rezende Cardoso
- Department of Food Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (R.R.C.); (F.A.R.d.B.)
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, 1432 Ås, Norway;
| | - Helen Hermana Miranda Hermsdorff
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (L.d.P.D.M.); (B.N.E.); (V.P.B.d.S.J.); (R.C.L.T.); (H.H.M.H.)
| | | | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (L.d.P.D.M.); (B.N.E.); (V.P.B.d.S.J.); (R.C.L.T.); (H.H.M.H.)
- Correspondence:
| |
Collapse
|
21
|
Martinez ODM, Theodoro JMV, Grancieri M, Toledo RCL, de Barros FAR, Tako E, Queiroz VAV, Martino HSD. Dry heated sorghum BRS 305 hybrid flour as a source of resistant starch and tannins improves inflammation and oxidative stress in Wistar rats fed with a high-fat high-fructose diet. Food Funct 2021; 12:8738-8746. [PMID: 34369542 DOI: 10.1039/d1fo00802a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to evaluate the effect of dry heated sorghum BRS 305 hybrid flour, as a rich source of resistant starch and tannins, on inflammation and oxidative stress in animals fed with a high-fat high-fructose diet. Phase 1 (8 weeks): male Wistar rats were divided into a group fed with an AIN-93 M diet (n = 10) and a group fed with a high-fat (35%) high-fructose (20%) (HFHF) diet (n = 20). Phase 2 (intervention 10 weeks): the control group was continued with the AIN-93 M diet (n = 10) and the HFHF group was divided into HFHF (n = 10) and sorghum flour (n = 10) groups. Sorghum flour decreased the NO, Akt, p65-NFκB, TLR4, and lipid peroxidation in the liver. Furthermore, sorghum flour improved SOD and CAT activities and the total antioxidant capacity of plasma. The phenolic compounds found in sorghum flour interacted in silico with AKT and p65-NFκB, mainly quercetin-3-rutinoside that showed the highest interaction with AKT (EFE -8.0) and procyanidins B1 and B2 that showed the highest interaction with p65-NFκB (EFE -8.9). The consumption of BRS 305 sorghum with a high tannin and resistant starch content improved inflammation and oxidative stress by inhibition of p65-NFκB activation in rats fed a high-fat high-fructose diet.
Collapse
Affiliation(s)
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG 36570900, Brazil.
| | | | | | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14850, USA
| | | | | |
Collapse
|
22
|
Theodoro JMV, Martinez ODM, Grancieri M, Toledo RCL, Binoti ML, Martins AMD, Carvalho CWP, Lisboa PC, Martino HSD. Germinated millet flour (Pennisetum glaucum (L.) R. BR.) improves adipogenesis and glucose metabolism and maintains thyroid function in vivo. Food Funct 2021; 12:6083-6090. [PMID: 34047312 DOI: 10.1039/d0fo03388j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study investigated the effects of germinated millet flour on adipogenesis, insulin resistance, glucose tolerance and thyroid function in Wistar rats fed with a high-fat high-fructose diet (HFHF). The experiment was divided into two phases. Phase 1: control group, which received an AIN-93M diet (n = 10) and HFHF group (n = 20), which received a diet rich in saturated fat (31%) and fructose (20%), for eight weeks. Phase 2: intervention: the control group maintained the AIN-93M diet (n = 10) and the HFHF group was divided into two groups: the HFHF (n = 10) and the germinated millet group (n = 10), for 10 weeks. The germinated millet flour maintained (p > 0, 05) the plasma levels of thyroid hormones, increased (p < 0.05) the insulin receptor (INSR) mRNA expression, protein kinase B (AKT) mRNA expression and the phospho-AKT1 protein concentration, phosphofructokinase (PFK) mRNA, pyruvate kinase (PK) mRNA and activated protein kinase (AMPK) mRNA expression, and the brown adipose tissue and reduced (p < 0.05) the glucose triglyceride index (TyG), glucose, insulin, HOMA-IR and hypercorticosteronemia, compared to the HFHF group. These effects contributed to reduce the gluconeogenesis, hyperinsulinemia and adiposity. Thus, germinated millet flour is a good alternative for modulating the adipogenesis and glucose metabolism, without interfering with the thyroid hormones, in rats with an insulin resistance condition with a high-fat high-fructose diet.
Collapse
Affiliation(s)
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG 36570900, Brazil.
| | | | - Mirella Lima Binoti
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG 36570900, Brazil.
| | - Amanda M Dias Martins
- Federal Rural University of Rio de Janeiro (UFRRJ), Department of Food Technology (DTA), 23890-000, Seropédica, RJ, Brazil
| | | | - Patrícia Cristina Lisboa
- Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
23
|
Dry heated whole sorghum flour (BRS 305) with high tannin and resistant starch improves glucose metabolism, modulates adiposity, and reduces liver steatosis and lipogenesis in Wistar rats fed with a high-fat high-fructose diet. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Mishima MDV, da Silva BP, Toledo RCL, Costa NMB, Martino HSD. Bioavailability of Calcium from Chia ( Salvia hispanica L.) in Ovariectomized Rats Fed a High Fat Diet. J Am Coll Nutr 2020; 40:454-464. [PMID: 32729778 DOI: 10.1080/07315724.2020.1790441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Skeletal abnormalities such as bone loss occur when there is an imbalance in bone matrix synthesis and bone resorption. This imbalance is also caused by hormonal changes and inflammation. Chia (Salvia hispanica L.) has a high nutritional value and is an excellent source of calcium. Evaluate the bioavailability of calcium from chia, and its effect on bone metabolism when consumed as part of a standard or high fat diet (HFD) in ovariectomized rats. METHODS The study was conducted with 80 female Wistar rats that received standard diet or HFD. 40 female mice were ovariectomized (OVX) and 40 were sham-operated (SHAM). After recovery from surgery the animals received chia as a source of 20% of the calcium recommendation, calcium bioavailability was measured using the calcium balance technique. Bone strength and bone morphometry were evaluated by weight, length and microtomography measurements. RESULTS HFD increased serum calcium and decreased calcium retention. The addition of chia to HFD did not alter bone morphology. Ovariectomy led to lower percentage of bone volume, smaller trabecular thickness, higher trabecular separation and higher porosity, when ovariectomy was associated with HFD, the final weight, waist circumference, body mass index and adiposity were increased. CONCLUSIONS Chia maintained bone health when offered as a source of 20% calcium, in a diet that met 100% of the mineral recommendation, regardless of the type of diet, in animals non-ovariectomized adults.
Collapse
|