1
|
Randeni N, Luo J, Xu B. Critical Review on Anti-Obesity Effects of Anthocyanins Through PI3K/Akt Signaling Pathways. Nutrients 2025; 17:1126. [PMID: 40218884 PMCID: PMC11990295 DOI: 10.3390/nu17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a global health crisis and is one of the major reasons for the rising prevalence of metabolic disorders such as type 2 diabetes, cardiovascular diseases, and certain cancers. There has been growing interest in the search for natural molecules with potential anti-obesity effects; among the phytochemicals of interest are anthocyanins, which are flavonoid pigments present in many fruits and vegetables. Anthocyanins influence obesity via several signaling pathways. The PI3K/Akt signaling pathway plays a major role with a focus on downstream targets such as GLUT4, FOXO, GSK3β, and mTOR, which play a central role in the regulation of glucose metabolism, lipid storage, and adipogenesis. The influence of critical factors such as oxidative stress and inflammation also affect the pathophysiology of obesity. However, the studies reviewed have certain limitations, including variations in experimental models, bioavailability challenges, and a lack of extensive clinical validation. While anthocyanin shows tremendous potential, challenges such as poor bioavailability, stability, and regulatory matters must be overcome for successful functional food inclusion of anthocyanins. The future of anthocyanin-derived functional foods lies in their ability to overcome hurdles. Therefore, this review highlights the molecular mechanisms of obesity through the PI3K/Akt signaling pathways and explores how anthocyanins can modulate these signaling pathways to address obesity and related metabolic disorders. It also addresses some ways to solve the challenges, like bioavailability and stability, while emphasizing future possibilities for anthocyanin-based functional foods in obesity management.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; (N.R.); (J.L.)
| |
Collapse
|
2
|
Molnar M, Kovač MJ, Jakobek L, Mihajlović L, Pavić V. Green Extraction of Phenolic Compounds from Aronia melanocarpa Using Deep Eutectic Solvents and Antioxidant Activity Investigation. Antioxidants (Basel) 2024; 14:31. [PMID: 39857365 PMCID: PMC11759870 DOI: 10.3390/antiox14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
This study explores the green extraction of phenolic antioxidants from Aronia melanocarpa fruit using choline-chloride-based deep eutectic solvents (DESs) as an eco-friendly alternative to conventional solvents. Sixteen DESs, prepared by combining choline chloride with various hydrogen bond donors, were characterized for their physical properties, including viscosity, polarity, and pH, and applied to extract phenolics from Aronia melanocarpa. High-performance liquid chromatography (HPLC) quantified key phenolic compounds, including neochlorogenic and chlorogenic acid, quercetin derivatives, and cyanidin derivatives, as well as total phenolic acids, flavanols, and anthocyanins. The results revealed that DES composition and physical properties significantly influenced extraction efficiency and antioxidant activity. Additionally, the intrinsic antioxidant activity of DESs contributed substantially to the overall activity of the extracts, particularly in DESs containing organic acids or thiourea. Choline chloride/tartaric acid DES demonstrated the highest total phenolic content, attributed to its high viscosity and strongly acidic pH, while choline chloride/thiourea DES, with low viscosity and slightly acidic pH, exhibited the greatest antioxidant activity. This study highlights how tailoring DES formulations can optimize the extraction of target compounds while accounting for the solvent's intrinsic properties. The findings support the potential application of DESs as environmentally friendly solvents in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.); (L.J.)
| | - Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.); (L.J.)
| | - Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.); (L.J.)
| | - Lovro Mihajlović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia;
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia;
| |
Collapse
|
3
|
Wang J, Wang J, Hao J, Jiang M, Zhao C, Fan Z. Antioxidant Activity and Structural Characterization of Anthocyanin-Polysaccharide Complexes from Aronia melanocarpa. Int J Mol Sci 2024; 25:13347. [PMID: 39769111 PMCID: PMC11728365 DOI: 10.3390/ijms252413347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Anthocyanins and polysaccharides are among the primary components of numerous foodstuffs, and their interaction exerts a considerable influence on the texture and nutritional value of foods. In order to improve the antioxidant properties and stability of anthocyanins as well as their bioavailability, in this study, anthocyanin-polysaccharide complexes with varying compounding ratios (1:0.5, 1:1.0, 1:1.5, 1:2.0, 1:2.5, 1:3.0) were prepared from Aronia melanocarpa anthocyanins and polysaccharides derived from the fruit pomace of Aronia melanocarpa. These compounds were characterized, and their antioxidant capacity was determined. The findings demonstrated that the antioxidant activity of anthocyanins was markedly enhanced through the process of compounding with polysaccharides. The most efficacious antioxidant effect was determined by measuring the IC50 of the antioxidant activity of mixtures at different anthocyanin/polysaccharide complexing ratios. The results of ultraviolet-visible spectroscopy, infrared spectroscopy, and scanning electron microscopy revealed the features of the anthocyanin-polysaccharide complexes with ratios of 1:0.5, 1:1.0, 1:1.5, and 1:2.5. The anthocyanins and polysaccharides were observed to enhance the intensity of ultraviolet absorption with respect to that of the individual molecules, and it was noted that they were able to bond to each other through hydrogen bonding. Additionally, the morphology of the compositions differed from that of the individual components. This provides a theoretical foundation for the structural design of anthocyanin-polysaccharide-containing foods and the development and utilization of novel food ingredients.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Jingyi Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Jiahui Hao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Miao Jiang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Congcong Zhao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Ziluan Fan
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
- Key Laboratory of Forest Food Resources Utilization, Harbin 150040, China
| |
Collapse
|
4
|
Jelska A, Polecka A, Zahorodnii A, Olszewska E. The Role of Oxidative Stress and the Potential Therapeutic Benefits of Aronia melanocarpa Supplementation in Obstructive Sleep Apnea Syndrome: A Comprehensive Literature Review. Antioxidants (Basel) 2024; 13:1300. [PMID: 39594442 PMCID: PMC11591145 DOI: 10.3390/antiox13111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder characterized by repeated episodes of apnea and hypopnea, leading to inflammation and oxidative stress that contribute to numerous health complications, including cardiovascular diseases. Continuous positive airway pressure (CPAP) is a standard for treating OSA and is effective in reducing inflammation and oxidative stress. Aronia melanocarpa (a black chokeberry), a deciduous shrub belonging to the Rosaceae family and native to eastern North America that is rich in polyphenols, has garnered attention for its therapeutic potential due to its ability to neutralize reactive oxygen species (ROS) and modulate inflammatory pathways, such as NF-κB. This review supports the hypothesis that combining CPAP with black chokeberry supplementation might provide a more comprehensive approach to treating OSA, reducing the risk of health complications by further reducing oxidative stress. In conclusion, Aronia melanocarpa has potential benefits as an adjunct therapy in the treatment of OSA, enhancing overall health and well-being. This review compiles the latest scientific findings on the benefits of black chokeberry supplementation, its application in OSA treatment, and its potential use in the treatment of other conditions linked to oxidative stress.
Collapse
Affiliation(s)
- Alicja Jelska
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.P.)
| | - Agnieszka Polecka
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.P.)
| | - Andrii Zahorodnii
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.P.)
| | - Ewa Olszewska
- Department of Otolaryngology, Sleep Apnea Surgery Center, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
5
|
Liu M, Li S, Guan M, Bai S, Bai W, Jiang X. Leptin pathway is a crucial target for anthocyanins to protect against metabolic syndrome. Crit Rev Food Sci Nutr 2024; 65:2046-2061. [PMID: 38567995 DOI: 10.1080/10408398.2024.2323093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The high prevalence of metabolic syndrome is threatening the health of populations all over the world. Contemporary work demonstrates that high leptin concentration is directly related to the development of metabolic syndrome such as obesity, fatty liver diseases, type 2 diabetes mellitus and cardiovascular diseases. Anthocyanins are a widespread group of dietary polyphenols, which can ameliorate chronic diseases related to metabolic syndrome. In addition, anthocyanins can regulate the leptin pathway in chronic metabolic diseases, however the potential mechanism between anthocyanin and leptin is complex and elusive. In this review paper, we have evaluated the bioactivity of anthocyanins on the mediation of leptin level and the upstream and downstream pathways in chronic metabolic diseases. Anthocyanins could regulate the hypertrophy of adipose tissue, and the expression of leptin level via mediating TNF-α, C/EBP, PPAR, CREB and SREBP-1. Anthocyanins promoted the leptin sensitivity by increasing the level of leptin receptor, phosphorylation of JAK2/STAT3, PI3K/AKT, and additionally ameliorated metabolic disorder related outcome, including oxidative stress, inflammation, lipid accumulation, insulin resistance and the balance of gut microbiota. However, direct evidence of anthocyanins treatment on leptin signal transduction is still limited which calls for future molecular binding and gene regulation test.
Collapse
Affiliation(s)
- Maomao Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Siyu Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Meiyi Guan
- Department of Food Science and Engineering, International School, Jinan University, Guangzhou, P. R. China
| | - Shun Bai
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
6
|
Ye X, Chen W, Huang XF, Yan FJ, Deng SG, Zheng XD, Shan PF. Anti-diabetic effect of anthocyanin cyanidin-3-O-glucoside: data from insulin resistant hepatocyte and diabetic mouse. Nutr Diabetes 2024; 14:7. [PMID: 38429305 PMCID: PMC10907696 DOI: 10.1038/s41387-024-00265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Anthocyanins are a group of natural products widely found in plants. They have been found to alleviate the disorders of glucose metabolism in type 2 diabetes mellitus (T2DM), while the underlying mechanisms remain unclear. METHODS HepG2 and L02 cells were incubated with 0.2 mM PA and 30 mM glucose for 24 h to induce IR, and cells treated with 5 mM glucose were used as the control. C57BL/6 J male mice and db/db male mice were fed with a chow diet and gavaged with pure water or cyanidin-3-O-glucoside (C3G) solution (150 mg/kg/day) for 6 weeks. RESULTS In this study, the anthocyanin C3G, extracted from red bayberry, was found to alleviate disorders of glucose metabolism, which resulted in increased insulin sensitivity in hepatocytes, and achieved by enhancing the glucose consumption as well as glycogen synthesis in insulin resistance (IR) hepatpcytes. Subsequently, the expression of key proteins involved in IR was detected by western blotting analysis. Protein tyrosine phosphatase-1B (PTP1B), a negative regulator of insulin signaling, could reduce cellular sensitivity to insulin by inhibiting the phosphorylation of insulin receptor substrate-2 (IRS-2). Results of this study showed that C3G inhibited the increase in PTP1B after high glucose and palmitic acid treatment. And this inhibition was accompanied by increased phosphorylation of IRS proteins. Furthermore, the effect of C3G on improving IR in vivo was validated by using a diabetic db/db mouse model. CONCLUSION These findings demonstrated that C3G could alleviate IR in vitro and in vivo to increase insulin sensitivity, which may offer a new insight for regulating glucose metabolism during T2DM by using the natural dietary bioactive components. C3G promotes the phosphorylation of IRS-2 proteins by suppressing the expression of PTP1B, and then enhances the sensitivity of hepatocyte to insulin.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310058, Hangzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - Wen Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - Xu-Fan Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Fu-Jie Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - Shui-Guang Deng
- Advanced Computing and System Laboratory, College of Computer Science and Technology, Zhejiang University, 310058, Hangzhou, China
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Dong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China.
| | - Peng-Fei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
7
|
Zhao Q, Zhang H, Zhao H, Zhu H, Liu J, Li B, Li M, Yang X. Construction of a Biomimetic Receptor Based on Hydrophilic Multifunctional Monomer Covalent Organic Framework Molecularly Imprinted Polymers for Molecular Recognition of Cyanidin-3- O-Glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18024-18036. [PMID: 37939378 DOI: 10.1021/acs.jafc.3c04391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Anthocyanins (AOCs) are phenols that are readily soluble in water and are commonly present in plants. The chemical instability of AOC, however, causes it to be severely limited in terms of extraction and purification. Hence, in order to obtain efficient and stable extraction of AOC, we designed hydrophilic multifunctional monomer covalent organic framework molecularly imprinted polymers (HMCMIPs) as adsorbents. The functional reagent, p-aminobenzenesulfonic acid (ASA), was added to this material during synthesis to facilitate the sulfonation modification of covalent organic frameworks (COFs), which enhanced its affinity for hydrophilic guests (cyanidin-3-O-glucoside, the representative nutritional and functional ingredient in AOC). With ASA serving as a terminator, overextension of the material to form micron-level cross-linked structures is prevented, thereby increasing its surface area and mass transfer efficiency. The biomimetic receptors were then created by integrating MIPs into sulfonated COFs in order to create multiple binding sites specific for C3G recognition. HMCMIPs exhibited excellent adsorption capacity (1566 mg/g) and superior selectivity (selectivity coefficient >12) for C3G. It has been demonstrated that high purity (93.72%) C3G can be obtained rapidly and efficiently by utilizing HMCMIPs. There may be a potential benefit to the synthesis strategy of HMCMIPs for the extraction of specific active ingredients in the future.
Collapse
Affiliation(s)
- Qianyu Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
| | - Hongwei Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jia Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Internal Trade Food Science Research Institute Co., Ltd, Beijing 102209, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Minjie Li
- Internal Trade Food Science Research Institute Co., Ltd, Beijing 102209, China
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
| |
Collapse
|
8
|
Christiansen CB, Jeppesen PB, Hermansen K, Gregersen S. Aronia in the Type 2 Diabetes Treatment Regimen. Nutrients 2023; 15:4188. [PMID: 37836472 PMCID: PMC10574687 DOI: 10.3390/nu15194188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Aronia melanocarpa berries are rich in antioxidants and possess a high antioxidant capacity. Aronia berries have shown potential in type 2 diabetes mellitus (T2DM) treatment, and previous studies indicate improvements in glycemia after supplementation. Unfortunately, the effectiveness of aronia berries is limited by the low bioavailability of aronia, which fermentation could potentially overcome. The objective of this study was to compare the effects of fermented or non-fermented aronia pulp with placebo in subjects with T2DM. This study was a triple-blinded, triple-crossover study with eight-week intervention periods with fermented aronia extract (FAE), non-fermented aronia extract (AE), and placebo. Extracts were incorporated in snack bars with 37% aronia (FAE or AE) or wheat bran (placebo) and 63% raisins and coconut oil. Pre- and post-treatment period, we did fasting blood samples, including hemoglobin A1c, fructosamine, insulin, glucose, glucagon-like peptide-1, glucose-dependent insulinotropic peptide (GIP) and glucagon, oral glucose tolerance tests, and anthropometric measurements. Of 36 randomized participants, 23 completed the trial. Aside from a higher increase in GIP after FAE supplementation compared to after placebo supplementation, aronia extracts had no effect. The increase in GIP levels after FAE supplementation may hold potential benefits, but the overall clinical impact remains unclear.
Collapse
Affiliation(s)
- Christine B. Christiansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Steno Diabetes Center Aarhus, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| |
Collapse
|
9
|
Deng H, Zhu J, Li L, Meng X. A multi-omics analysis strategy reveals the molecular mechanism of the inhibition of Escherichia coli O157:H7 by anthocyanins from Aronia melanocarpa and its application. Food Funct 2023; 14:8575-8585. [PMID: 37664957 DOI: 10.1039/d3fo00406f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Water pollution causes the propagation of pathogenic microorganisms, which poses a serious threat to human life. Escherichia coli O157:H7, as a representative organism that can directly exhibit molecular response to stress, was selected as the indicator bacteria for the study. Tandem mass tag (TMT) quantitative proteomics and non-targeted metabolomics were used to study the response of Escherichia coli O157:H7 to Aronia melanocarpa anthocyanin (AMA) treatment. The results showed that 628 proteins and 1338 metabolites changed significantly after treatment with AMAs. According to bioinformatics analysis, integrated proteomics and metabolomics analysis differentially expressed proteins (DEPs) and metabolites participate in pyruvate metabolism, glycolysis/gluconeogenesis, alanine, aspartate and glutamate metabolism and the pentose phosphate pathway. This study preliminarily proposed the inhibition mechanism of AMAs on Escherichia coli O157:H7 from the perspective of multi-omics, providing a theoretical basis for the application of natural preservatives in fresh cut vegetables.
Collapse
Affiliation(s)
- Haotian Deng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| | - Jinyan Zhu
- Food Inspection Monitoring Center of Zhuanghe, Dalian, Liaoning Province, 116400, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| |
Collapse
|
10
|
Rutkowska M, Olszewska MA. Anti-Diabetic Potential of Polyphenol-Rich Fruits from the Maleae Tribe-A Review of In Vitro and In Vivo Animal and Human Trials. Nutrients 2023; 15:3756. [PMID: 37686786 PMCID: PMC10489674 DOI: 10.3390/nu15173756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The Maleae tribe consists of over one thousand species, including many well-known polyphenol-containing fruit crops with wide-ranging biological properties, e.g., apples (Malus), chokeberries (Aronia), pears (Pyrus), quinces (Cydonia, Chaenomeles), saskatoon (Amelanchier), loquats (Eriobotrya), medlars (Mespilus), rowans (Sorbus), and hawthorns (Crataegus). Considering the current interest in the concept of functional foods and the still-insufficient methods of diabetes management, the anti-diabetic potential of fruits has been studied intensively, including those of the Maleae tribe. This paper is the first comprehensive overview of this selected topic, covering articles published from 2000 to 2023 (131 articles in total). The first part of this review focuses on the potential mechanisms of action of fruits investigated so far (46 species), including their effects on tissue-specific glucose transport and the expression or activity of proteins in the insulin signalling pathway. The second part covers the phytocompounds responsible for particular fruits' activity-primarily polyphenols (e.g., flavonols, dihydrochalcones, proanthocyanidins, anthocyanins, phenolic acids), but also polysaccharides, triterpenes, and their additive and synergistic effects. In summary, fruits from the Maleae tribe seem promising as functional foods and anti-diabetic agents; however, their prospects for more expansive pro-health application require further research, especially more profound in vivo trials.
Collapse
Affiliation(s)
- Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland;
| | | |
Collapse
|
11
|
Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Nikitin E, Zobov V. Antioxidative and Immunomodulating Properties of Aronia melanocarpa Extract Rich in Anthocyanins. PLANTS (BASEL, SWITZERLAND) 2022; 11:3333. [PMID: 36501372 PMCID: PMC9737032 DOI: 10.3390/plants11233333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The fruits of Aronia melanocarpa are well known due to their high anthocyanin content that may be effective in preventing certain health disorders arising from oxidative stress. Various polyphenolic compounds such as anthocyanins and flavonoids are responsible for the multiple effects of chokeberry. The aim of this study was to determine in vitro how active the black chokeberry anthocyanins are in scavenging radicals and to evaluate in vivo their immunomodulating capacity. Using the method of column chromatography, we extracted the anthocyanins of black chokeberries, i.e., cyanidin-3-O-galactoside with a purity of over 93.7%. Using HPLC and spectrophotometric analysis, the flavonoid content was determined. Following the analysis of the tests with AAPH and DPPH, the chokeberry cyanidin-3-O-galactoside was found much better than individual anthocyanins in regard to antioxidant capacity. The range of concentrations was revealed, showing the protective effect of anthocyanins on the RPMI-1788 cell culture against cyclophosphamide, as well as against osmotic and peroxide hemolysis. An immunomodulating effect on the functional activity of phagocytes was revealed in vivo as a result of oral administration of chokeberry cyanidin-3-O-galactoside and a mixture composed of cyanidin-3-O-glucoside and cyanidin-3-O-galactoside standards. Consequently, anthocyanins, in particular cyanidin-3-O-galactoside, play an important role, demonstrating immunomodulating effects when chokeberries are consumed.
Collapse
|
12
|
Chen J, Meng X. Aronia melanocarpa Anthocyanin Extracts Improve Hepatic Structure and Function in High-Fat Diet-/Streptozotocin-Induced T2DM Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11531-11543. [PMID: 36084327 DOI: 10.1021/acs.jafc.2c03286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthocyanins can prevent and ameliorate type 2 diabetes mellitus (T2DM), but its mechanism of action has not been fully established. IKK/NF-κB and JAK/Stat pathways have multiple effects, triggering T2DM. Liver abnormalities in individuals with T2DM are detrimental to glycemic control. We determined whether anthocyanins could improve the liver of individuals with T2DM using IKK/NF-κB and JAK/Stat. We established a T2DM mouse model using a high-fat diet and streptozotocin and then performed Aronia melanocarpa anthocyanin extracts' (AMAEs') administration for 5 weeks. AMAEs improved blood glucose and hyperinsulinemia of T2DM mice. In the liver of AMAE-administered T2DM mice, ROS, IKKβ/NF-κB p65, and JAK2/Stat3/5B signalings were down-regulated, thereby reducing the suppressor of cytokine signaling 3 (SOCS3), iNOS, and inflammatory mediators. AMAE-improved hyperinsulinemia also down-regulated SOCS3 by decreasing p-Stat5B in hepatocytes. AMAEs enhanced glucose uptake and conversion and decreased hepatocyte enlargement and inflammatory cells in the liver of T2DM mice. These indicated that AMAEs could alleviate oxidative stress, insulin resistance, inflammation, and tissue damage in the liver of T2DM mice through inhibiting NF-κB p65 and Stat3/5B.
Collapse
Affiliation(s)
- Jing Chen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, P. R. China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, P. R. China
| |
Collapse
|
13
|
Deng H, Xue B, Wang M, Tong Y, Tan C, Wan M, Kong Y, Meng X, Zhu J. TMT-Based Quantitative Proteomics Analyses Reveal the Antibacterial Mechanisms of Anthocyanins from Aronia melanocarpa against Escherichia coli O157:H7. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8032-8042. [PMID: 35729077 DOI: 10.1021/acs.jafc.2c02742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aronia melanocarpa anthocyanins (AMAs), as natural plant extracts, can control pathogens and are attracting increasing attention. In this study, a tandem mass tag (TMT) quantitative proteomics method combined with multiple reaction monitoring (MRM) was used to explore the antibacterial mechanism of AMAs against Escherichia coli at the protein level. The results showed that 1739 proteins were identified in E. coli treated with AMAs, of which 628 were altered, including 262 downregulated proteins and 366 upregulated proteins. Bioinformatics analysis showed that these differentially expressed proteins have different molecular functions and participate in different molecular pathways. AMAs can affect E. coli protein biosynthesis, DNA replication and repair, oxidative stress response, peptidoglycan biosynthesis, and homeostasis. These pathways induce morphological changes and cell death. The results of this study help understand the molecular mechanism of the inhibitory effect of AMAs on food-borne pathogens and provide a reference for further development of plant-derived antimicrobial agents.
Collapse
Affiliation(s)
- Haotian Deng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Bo Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Mingyue Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Yuqi Tong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Chang Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Meizhi Wan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Yanwen Kong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Jinyan Zhu
- Food Inspection Monitoring Center of Zhuanghe, Dalian, Liaoning Province 116400, China
| |
Collapse
|
14
|
Cyanidin-3-galactoside ameliorates silica-induced pulmonary fibrosis by inhibiting fibroblast differentiation via Nrf2/p38/Akt/NOX4. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Deng H, Zhu J, Tong Y, Kong Y, Tan C, Wang M, Wan M, Meng X. Antibacterial characteristics and mechanisms of action of Aronia melanocarpa anthocyanins against Escherichia coli. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Cui Y, Lin Y, Meng X, Ma J, Deng H, Liu X, He X, Zhao J. Cyanidin-3-galactoside from Aronia melanocarpa ameliorates PM10 induced pulmonary injury by modulating M1/M2 macrophage polarization and NRF2/Sirt1 MAPK signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|