1
|
Butowski CF, Dixit Y, Reis MM, Mu C. Metatranscriptomics for Understanding the Microbiome in Food and Nutrition Science. Metabolites 2025; 15:185. [PMID: 40137150 PMCID: PMC11943699 DOI: 10.3390/metabo15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active metabolites that affect food fermentation or gut health. Most of these processes are mediated by microbial enzymes such as carbohydrate-active enzymes and amino acid metabolism enzymes. Metatranscriptomics enables the capture of active transcripts within the microbiome, providing invaluable functional insights into metabolic activities. Given the inter-kingdom complexity of the microbiome, metatranscriptomics could further elucidate the activities of fungi, archaea, and bacteriophages in the microbial ecosystem. Despite its potential, the application of metatranscriptomics in food and nutrition sciences remains limited but is growing. This review highlights the latest advances in food science (e.g., flavour formation and food enzymology) and nutrition science (e.g., dietary fibres, proteins, minerals, and probiotics), emphasizing the integration of metatranscriptomics with other technologies to address key research questions. Ultimately, metatranscriptomics represents a powerful tool for uncovering the microbiome activity, particularly in relation to active metabolic processes.
Collapse
|
2
|
Bui G, Torres-Fuentes C, Pusceddu MM, Gareau MG, Marco ML. Milk and Lacticaseibacillus paracasei BL23 effects on intestinal responses in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G659-G675. [PMID: 38591132 PMCID: PMC11376982 DOI: 10.1152/ajpgi.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.
Collapse
Affiliation(s)
- Glory Bui
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| | - Cristina Torres-Fuentes
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| |
Collapse
|
3
|
Reuter MA, Tucker M, Marfori Z, Shishani R, Bustamante JM, Moreno R, Goodson ML, Ehrlich A, Taha AY, Lein PJ, Joshi N, Brito I, Durbin-Johnson B, Nandakumar R, Cummings BP. Dietary resistant starch supplementation increases gut luminal deoxycholic acid abundance in mice. Gut Microbes 2024; 16:2315632. [PMID: 38375831 PMCID: PMC10880513 DOI: 10.1080/19490976.2024.2315632] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.
Collapse
Affiliation(s)
- Melanie A. Reuter
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Madelynn Tucker
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Zara Marfori
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
| | - Rahaf Shishani
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Jessica Miranda Bustamante
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Rosalinda Moreno
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Michael L. Goodson
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California – Davis, Davis, CA, USA
| | - Allison Ehrlich
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California – Davis, Davis, CA, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, University of California - Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Nikhil Joshi
- Bioinformatics Core, UC Davis Genome Center, University of California – Davis, Davis, CA, USA
| | - Ilana Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Blythe Durbin-Johnson
- Bioinformatics Core, UC Davis Genome Center, University of California – Davis, Davis, CA, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Bethany P. Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| |
Collapse
|
4
|
Song EJ, Lee ES, So YS, Lee CY, Nam YD, Lee BH, Seo DH. Modulation of gut microbiota by rice starch enzymatically modified using amylosucrase from Deinococcus geothermalis. Food Sci Biotechnol 2023; 32:565-575. [PMID: 36911326 PMCID: PMC9992496 DOI: 10.1007/s10068-022-01238-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023] Open
Abstract
Amylosucrase can increase the amount of resistant starch (RS) in starch by transferring glucose from sucrose to amylopectin. Here, rice starch was modified using amylosucrase from Deinococcus geothermalis (DgAS). DgAS-modified rice starch (DMRS) increased the side-chain length of amylopectin and appeared in the form of B-type crystals. In vitro digestion analyses revealed that DMRS had a higher RS contents and lower digestion rate than native rice starch. When high-fat diet (HFD)-induced C57BL/6 mice were orally administered DMRS, body weight and white fat tissues of DMRS-fed HFD mice were not significantly different. However, serum leptin and glucose levels were significantly decreased and serum glucagon like peptide-1was increased in these mice. The cecal microbiome in DMRS-fed HFD mice was identified to investigate the role of DMRS in gut microbiota regulation. DMRS supplementation increased the relative abundance of Bacteroides, Faecalibaculum, and Ruminococcus in mouse gut microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01238-1.
Collapse
Affiliation(s)
- Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Yun-Sang So
- Department of Food Science and Technology, College of Agriculture and Life Sciences Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Chang-Young Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
- Department of Food Science and Technology, College of Agriculture and Life Sciences Jeonbuk National University, Jeonju, 54896 Republic of Korea
| |
Collapse
|