1
|
Agustiany EA, Nawawi DS, Fatriasari W, Wahit MU, Vahabi H, Kayla DS, Hua LS. Mechanical, morphological, thermal, and fire-retardant properties of sustainable chitosan-lignin based bioplastics. Int J Biol Macromol 2025; 306:141445. [PMID: 40010451 DOI: 10.1016/j.ijbiomac.2025.141445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Lignin can function as a fire retardant for biocomposites because of its excellent thermal stability. This work evaluated the impact of integrating technical lignin into chitosan-based bioplastics to enhance their mechanical and thermal properties. The solvent-casting technique was employed for the preparation of chitosan-lignin bioplastics. The incorporation of lignin improved the antioxidant properties and mechanical strength of the bioplastic, and it functions as a UV-blocking agent, as evidenced by UV-shielding studies, which indicates a reduction in the transmittance of the chitosan-lignin bioplastic by approximately four fold. The incorporation of lignin washed 3× with HCl into the chitosan-based bioplastic increased the tensile strength of the material by 36.41 % and the elastic modulus by 56.04 %. The antioxidant activity of the chitosan-lignin-based bioplastic ranged from 75.80 % to 80.38 %, whereas that of neat chitosan was only 25.02 %. Thermal analysis revealed that incorporating lignin as an additive in a chitosan-based bioplastic improved the thermal stability and flame retardancy of the bioplastic. This is indicated by a higher limiting oxygen index (LOI) value ranging from 42 to 48 % for the chitosan-lignin bioplastics than for the control bioplastic (27 %), which has a UL-94 rating in the V-0 range. These findings support the fact that the antioxidant, strength, and fire-retardant performance of chitosan-based bioplastics could be enhanced by the addition of lignin.
Collapse
Affiliation(s)
- Erika Ayu Agustiany
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia
| | - Deded Sarip Nawawi
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia.
| | - Widya Fatriasari
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia.
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor 81310, Malaysia
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Dewi Shafa Kayla
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia
| | - Lee Seng Hua
- Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA Pahang Branch Jengka Campus, Bandar Tun Razak, Pahang 26400, Malaysia; Institute for Infrastructure Engineering and Sustainable Management (IIESM), Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| |
Collapse
|
2
|
Menandro A, Bohne C, Péres LO. Fluorescent Self-Supporting Composite Film Formed from Chitosan and the Neutral Poly(3-hexylthiophene- co-1,4-phenylene) Polymer with Enhanced Dispersion Properties for a Small Molecule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10020-10028. [PMID: 40193321 PMCID: PMC12020410 DOI: 10.1021/acs.langmuir.5c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
A composite film of chitosan (Ch) with a neutral conjugated polymer, poly(3-hexylthiophene-co-1,4-phenylene) (PTPh), was developed to combine the adsorption capacity of Ch with the fluorescence sensitivity of PTPh. Characterization of the films using thermogravimetric analysis, microscopy, and infrared, absorption, and fluorescence spectroscopies revealed that the dispersity of the target small molecule, 4-aminoazobenzene (4-AAB), was improved in the composite film compared to the pristine Ch film as evidenced in microscopy studies. In the presence of 4-AAB, the Ch/PTPh film exhibited fluorescence quenching at low 4-AAB concentrations and changes in emission spectra at higher concentrations. Photoisomerization studies suggested that the improved dispersity of 4-AAB in the composite film is due to an increase in the free volume provided by PTPh, with faster cis-to-trans isomerization observed when PTPh was present. Proof-of-concept adsorption experiments showed that the composite film adsorbed 4-AAB from an aqueous solution, leading to a change in the emission properties of the film. This qualitative characterization uncovered a dual role for the conjugated polymer in the composite film: the addition of the polymer changed the morphology and robustness of the film, and the polymer also provides the fluorophore to sense adsorbed molecules over a wide range of 4-AAB concentrations. These results show that the strategy of incorporating water-insoluble polymers at low concentrations into a versatile biopolymer leads to enhanced functionalities of a composite material.
Collapse
Affiliation(s)
- Alessandra
S. Menandro
- Laboratory
of Hybrid Materials, Federal University
of São Paulo, Diadema, São Paulo 09913-030, Brazil
| | - Cornelia Bohne
- Department
of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| | - Laura O. Péres
- Laboratory
of Hybrid Materials, Federal University
of São Paulo, Diadema, São Paulo 09913-030, Brazil
| |
Collapse
|
3
|
Ailincai D, Bercea M, Rosca I, Sandu IA, Marin L. Antimicrobial chitosan-based hydrogels: A novel approach to obtain sanitizers. Carbohydr Polym 2025; 354:123288. [PMID: 39978889 DOI: 10.1016/j.carbpol.2025.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
The study presents novel hydrogels obtained by crosslinking chitosan with both furfural and glutaraldehyde via dynamic imine bonds. Scanning electron microscopy confirmed the formation of porous networks with a mean diameter of the pores between 15 and 35 μm, while the supramolecular characterization by polarized optical microscopy and wide-angle X-ray diffraction proved the gelation mechanism. The hydrogels presented great rheological properties, along with an anti-creep behavior. The resulting materials were highly adhesive and had great antioxidant activity, leading to an inhibition of 78 % of DPPH free radicals, and exhibiting antimicrobial activity against Gram-positive and Gram-negative bacteria and fungi, reaching a maximum of the diameter of the inhibition zone of 31 mm against Candida albicans. The MTS assay, performed on NHDF cells confirmed the non-toxicity of the hydrogels, the viability of the cells remaining at values higher than 90 % for all samples, revealing their potential for bioapplications. In vitro release studies of the furfural monoaldehyde showed distinct release kinetics for each hydrogel, emphasizing their versatility. Fitting the data on different mathematical models indicated a diffusion-controlled release mechanism during the entire release process. All these findings highlighted the potential of these hydrogels to be used as biocidal agents for topical applications.
Collapse
Affiliation(s)
- D Ailincai
- Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, Iasi, Romania.
| | - M Bercea
- Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, Iasi, Romania
| | - I Rosca
- Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, Iasi, Romania
| | - I A Sandu
- Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, Iasi, Romania
| | - L Marin
- Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, Iasi, Romania
| |
Collapse
|
4
|
Marquez R, Aguado RJ, Barrios N, Arellano H, Tolosa L, Delgado-Aguilar M. Advanced antimicrobial surfaces in cellulose-based food packaging. Adv Colloid Interface Sci 2025; 341:103472. [PMID: 40132295 DOI: 10.1016/j.cis.2025.103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
This critical review provides a comprehensive framework for selecting engineered colloidal and nanostructured systems for cellulose-based food packaging. Meta-analysis was used as a methodological approach to categorize them according to antimicrobial agents, coating methods, and synergistic effects against a broad spectrum of microorganisms. The most frequent substrate is flexible packaging paper (35-70 g/m2, uncalendered), often intended for food wrapping. Among antimicrobial agents, chitosan-based coatings are a common choice-often combined with essential oils-being particularly effective against Gram-positive bacteria (e.g., Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis). This is attributed to electrostatic interactions between the polysaccharide's protonated -NH3+ groups and teichoic acids within bacterial cell walls. Inorganic metal nanoparticles, such as ZnO nanorods and Ag nanoparticles, are broadly effective by compromising the membranes of various foodborne pathogens-including Bacillus cereus and Pseudomonas aeruginosa. Terpenoid- or phenolic-rich essential oils-commonly delivered in emulsions or encapsulated in host-guest β-cyclodextrin complexes-inhibit the growth of yeasts and molds, besides some common bacteria when grafted onto bleached paper. Synergistic effects have been observed with complex coatings such as chitosan combined with CuONPs. Despite their promising performance, the widespread industrial adoption of cellulose-based active packaging in the food sector requires addressing not only antimicrobial activity, but also barrier properties and feasible methods to functionalize the paper surface (e.g., bar coating). These challenges, often overlooked, are critically assessed herein. All considered, further studies are required to address the challenges of cellulosic antimicrobial materials in a holistic manner to accelerate its large-scale implementation in the food sector.
Collapse
Affiliation(s)
- Ronald Marquez
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Roberto J Aguado
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC 27695-8005, USA
| | - Helena Arellano
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, 59000 Lille, France
| | - Laura Tolosa
- School of Chemical Engineering, University of Los Andes, Merida, Venezuela
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
| |
Collapse
|
5
|
Fang Z, Yang Y, Lin S, Xu L, Chen S, Lv W, Wang N, Dong S, Lin C, Xie Y, Liu J, Meng M, Wen W, Yang Y. Development and antimicrobial activity of composite edible films of chitosan and nisin incorporated with perilla essential oil-glycerol monolaurate emulsions. Food Chem 2025; 462:141006. [PMID: 39213974 DOI: 10.1016/j.foodchem.2024.141006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 μL/mL PEO, 18.4 μg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 μg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.
Collapse
Affiliation(s)
- Zhantong Fang
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yating Yang
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Shuimu Lin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lirong Xu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Shuyi Chen
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Wanxia Lv
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Nannan Wang
- Public Technical Service Center, Guangzhou National Laboratory, Guangzhou 510005, China
| | - Shiyi Dong
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Chunhong Lin
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yutao Xie
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jingru Liu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Meihan Meng
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Weijie Wen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yichao Yang
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
6
|
Yang Q, Hu Y, Wang Y, Xu B, Zhou C, Adhikari B, Liu J, Xu T, Wang B. Atmosphere-controlled high-voltage electrospray for improving conductivity, flexibility, and antibacterial properties of chitosan films. Food Res Int 2025; 200:115450. [PMID: 39779110 DOI: 10.1016/j.foodres.2024.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Atmosphere-controlled high-voltage electrospray (AHES) was utilised to modify the structure of chitosan (CS) films. The applied voltage in the AHES process ranged from 60 to 100 kV, with variations in the O2 content of the propellant gas from 0 to 100 %. The number density of cations in the charging environment reached 600 × 105 cations/cm3. Under these specific conditions, the one-step AHES procedure facilitated the protonation of the amine groups in the CS molecular chains, resulting in a notable increase in electrical conductivity by over 95 % and tensile elongation by over 100 %. The generation of reactive oxygen species during the AHES process also improved the antibacterial properties of the charged CS films, as evidenced by a more than 36 % increase in the inhibition zone diameter. The treated (AHES) films were employed for preserving fresh-cut muskmelon slices. These films maintained satisfactory sensory quality and effectively controlled water evaporation for up to 3 days when utilised as the inner layer of the packaging. These enhancements were achieved through a single-step AHES treatment, without the addition of chemicals or the need to alter the ambient temperature (25 °C ± 5°C). Consequently, AHES presents itself as a viable method for modifying the electrostatic characteristics of CS films and can be extended to various other materials.
Collapse
Affiliation(s)
- Qi Yang
- School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Yin Hu
- School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Yuchuan Wang
- School of Food Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, 3083 Melbourne, VIC, Australia
| | - Jiguang Liu
- Shandong Commune Union Food Co. LTD, 276034 Linyi, Shandong, China
| | - Tiantian Xu
- Laboratory Animal Research Center, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
Zeng X, Sun Z, Chen L, Zhang X, Guo X, Li G. Co-assembled biomimetic fibrils from collagen and chitosan for performance-enhancing hemostatic dressing. Biomater Sci 2024; 13:236-249. [PMID: 39529586 DOI: 10.1039/d4bm01211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of safe and efficient hemostatic materials is medically important to prevent death due to trauma bleeding. Exploiting the synergistic effect between the D-periodic functional domain of collagen fibrils on platelet activation and cationic chitosan on erythrocyte aggregation is expected to develop performance-enhanced hemostatic materials. In this study, we prepared collagen fibrils and chitosan composite hemostatic materials by modulating the self-assembled bionic fibrillation of collagen with different degrees of deacetylation (DD, 50%, 70% and 85%) of chitosan. The findings indicated that chitosan promoted collagen self-assembly, with all the collagen fibrils demonstrating a typical D-periodical structure similar to that of the native collagen. Furthermore, the composite demonstrated enhanced structural integrity and procoagulant capacity along with good biocompatibility. Notably, the fibrillar composites with 70% DD of chitosan exhibited optimal mechanical properties, procoagulant activity, and adhesion of erythrocytes and platelets. Compared to pure collagen fibrils and the commercial hemostatic agent Celox™, the collagen/chitosan fibrillar composite treatment significantly accelerated hemostasis in the rat tail amputation model and liver injury model. This research offers new insights into the development of hemostatic materials and indicates that collagen-chitosan composites hold promising potential for clinical applications.
Collapse
Affiliation(s)
- Xingling Zeng
- The Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Zhaohui Sun
- Department of Laboratory Medicine General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, PR China
| | - Lidan Chen
- Department of Laboratory Medicine General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, PR China
| | - Xiaoxia Zhang
- The Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Xin Guo
- The Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- The Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
8
|
Sheikholeslami SA, Esmaeili J, Jalise SZ, Barati A. A response surface methodology study on the development of pH-sensitive wound dressings using Rhodamine B-loaded chitosan nanoparticles and sodium alginate-based films. Heliyon 2024; 10:e40670. [PMID: 39660211 PMCID: PMC11629185 DOI: 10.1016/j.heliyon.2024.e40670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose This study aimed to develop an innovative, intelligent wound dressing capable of signaling infections through color changes. Design/methodology/approach Using response surface methodology, the Rhodamine B fluorescence colorant was encapsulated within colloidal nanoparticles and integrated into a sodium alginate patch at various concentrations. The physical and chemical characteristics of the nanoparticles and the wound dressing were thoroughly analyzed via dynamic light scattering (DLS), zeta potential measurements, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Additionally, the biodegradability, hydrophilicity, swelling behavior, release kinetics, porosity, mechanical properties, biocompatibility, and infection detection capability of the wound dressing were evaluated. Findings The results indicated that the average diameter of the synthesized colloidal nanoparticles was 300 nm before loading with Rhodamine B and increased to 400 nm after loading, with zeta potentials of 52 mV and -6 mV, respectively. The Rhodamine B-loaded wound dressing demonstrated adequate levels of swelling and hydrophilicity. Release studies revealed the gradual release of Rhodamine B at low pH. Cytotoxicity assays confirmed the high biocompatibility of the engineered wound dressing with the L929 cell line. Furthermore, bacterial exposure experiments indicated that the color change was activated in the presence of infection, making it visible under UV-A light. Originality/value This research presents a novel approach to wound care by developing a smart wound dressing that can detect infections via color changes. These findings underscore the potential of this innovative wound dressing to improve infection management in clinical settings through its responsive and biocompatible design.
Collapse
Affiliation(s)
| | - Javad Esmaeili
- Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran
- Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Applied Science, UQAC University, Quebec, Canada
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | | |
Collapse
|
9
|
Álvarez-García S, Couarraze L, Matos M, Gutiérrez G. Lycopene-Loaded Emulsions: Chitosan Versus Non-Ionic Surfactants as Stabilizers. Molecules 2024; 29:5209. [PMID: 39519849 PMCID: PMC11547727 DOI: 10.3390/molecules29215209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Lycopene is a natural carotenoid with well-known benefits due to its antioxidant properties, including an anti-inflammatory effect in colorectal cancer and anti-angiogenic effects along with a reduction in the risk of prostate cancer and coronary heart disease. Due to their poor water solubility, photosensitivity and heat sensitivity, their incorporation in cosmetic and food matrices should be through encapsulation systems. In the present work, lycopene-loaded emulsions were prepared using two different types of stabilizers: non-ionic surfactants, testing several ratios of Tween 80 and Span 80, and chitosan, using chitosans of different viscosities and molecular weights. Soybean oil was found to be a suitable candidate for O/W emulsion preparation. Lycopene encapsulation efficiency (EE) of 70-75% and loading capacities of 0.14 mg/g were registered in stable emulsions stabilized either by non-ionic surfactants or acidified chitosans. Therefore, chitosan is a good alternative as a sustainable stabilizer to partially replace traditional synthetic ingredients with a new biodegradable, renewable and biocompatible material which could contribute to reduce the environmental impact as well as the ingestion of synthetic toxic materials by humans, decreasing their risk of suffering from chronic and complex pathologies, among which several types of cancer stand out.
Collapse
Affiliation(s)
- Sonia Álvarez-García
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.Á.-G.); (L.C.); (M.M.)
| | - Lucie Couarraze
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.Á.-G.); (L.C.); (M.M.)
- ENSMAC—Bordeaux INP, 16 Avenue Pey Berland, 33600 Pessac, France
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.Á.-G.); (L.C.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.Á.-G.); (L.C.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Verma R, Verma C, Gupta B, Mukhopadhyay S. Preparation and characterization of structural and antifouling properties of chitosan/polyethylene oxide membranes. Int J Biol Macromol 2024; 278:134693. [PMID: 39142485 DOI: 10.1016/j.ijbiomac.2024.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
It aims to prepare the chitosan (CS) and polyethylene oxide (PEO) hydrogel membranes with different CS/PEO blend ratios (100:0, 95:5, 90:10, 80:20 and 70:30) via solvent casting. The physicochemical properties of these membranes were investigated using various characterization techniques: Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), contact angle, and tensile testing. The interaction of PEO and chitosan was investigated by DSC in terms of freezing bound, freezing free, and non-freezing PEO fraction. The cross-sectional surface morphology of membranes displayed a smoother surface with increasing PEO content up to 20 %, beyond which nonhomogeneity on the surface was visible. The antifouling behavior of membranes was investigated by bacterial adherence study, which showed an enhanced antifouling nature of membranes with the increase in the PEO content. The peeling strength of the membranes was measured using a 90° angle peeling test, and it was found that 20 % and more PEO content promotes easy removal from the gelatin slab. In addition to this, live/ dead assay of the CS was performed to visualize the presence of live and dead bacteria on the surface. The CS/PEO blend with 20 % PEO content has properties makes it suitable for use as a protective layer on wound dressings to prevent bacterial growth. It's use in wound dressings has the potential to reduce the pain during the time of dressing removal and improve patient outcomes. The present investigation leads to the development of a CS hydrogel matrix which exhibits very interesting interaction with the PEO moiety along with its innovative feature of antifouling and antimicrobial nature.
Collapse
Affiliation(s)
- Rohini Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
11
|
Yazdi JS, Salari M, Ehrampoush MH, Bakouei M. Development of active chitosan film containing bacterial cellulose nanofibers and silver nanoparticles for bread packaging. Food Sci Nutr 2024; 12:8186-8199. [PMID: 39479705 PMCID: PMC11521716 DOI: 10.1002/fsn3.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 11/02/2024] Open
Abstract
The objective was to develop an active chitosan-based coating and to evaluate its effect on the shelf life and microbial safety of bread. Bacterial cellulose nanofibers (BCNF) and various levels (0.5%, 1%, and 2%) of silver nanoparticles (AgNPs) were in the chitosan (CS) film. Characterization of films was determined by analyzing WVP, ultraviolet barrier, and opacity as well as FTIR, XRD, DSC, TGA, and SEM. The water vapor permeability (WVP) of CS was remarkably (p < .05) decreased from 3.75 × 10-10 to 0.85 × 10-10 g/smPa when filled with BCNF and 2% AgNPs. Thermal and structural properties were enhanced in nanoparticle-included films. Applying CS/BCNF/AgNPs coatings for bread samples demonstrated a significant improvement in moisture retention and a decrease in the hardness (from 10.2 to 7.05 N for CS and CS/BCNF/1% AgNPs coated samples, respectively). Moreover, microbial shelf life of bread sample increased from 5 to 38 days after packaging with CS/BCNF/2% AgNPs film. After a storage period of 15 days at 25°C, no fungal growth was detected in bread samples which were coated with nanocomposite suspensions containing 1% and 2% AgNPs. However, at the same condition, yeast and mold counts was 7.91 log CFU/g for control sample. In conclusion, the CS/BCNF/2% AgNPs film might have the potential for use as active packaging of bread.
Collapse
Affiliation(s)
- Jalal Sadeghizadeh Yazdi
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Salari
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Mohammad Hasan Ehrampoush
- Department of Environmental Health Engineering, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mehrasa Bakouei
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
12
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
13
|
Geeta, Shivani, Devi N, Shayoraj, Bansal N, Sharma S, Dubey SK, Kumar S. Novel chitosan-based smart bio-nanocomposite films incorporating TiO 2 nanoparticles for white bread preservation. Int J Biol Macromol 2024; 267:131367. [PMID: 38583837 DOI: 10.1016/j.ijbiomac.2024.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Chitosan (CS)-based bio-nanocomposite food packaging films were prepared via solvent-casting method by incorporating a unique combination of additives and fillers, including polyvinyl alcohol (PVA), glycerol, Tween 80, castor oil (CO), and nano titanium dioxide (TiO2) in various proportions to enhance film properties. For a comprehensive analysis of the synthesized films, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), tensile testing, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and UV-vis spectrophotometry were employed. Furthermore, the antimicrobial efficacy of the films against S. aureus, E. coli, and A. niger was examined to assess their potential to preserve food from foodborne pathogens. The results claimed that the inclusion of castor oil and TiO2 nanoparticles considerably improved antimicrobial properties, UV-vis light barrier properties, thermal stability, optical transparency, and mechanical strength of the films, while reducing their water solubility, moisture content, water vapor and oxygen permeability. Based on the overall analysis, CS/PVA/CO/TiO2-0.3 film can be selected as the optimal one for practical applications. Furthermore, the practical application of the optimum film was evaluated using white bread as a model food product. The modified film successfully extended the shelf life of bread to 10 days, surpassing the performance of commercial LDPE packaging (6 days), and showed promising attributes for applications in the food packaging sector. These films exhibit superior antimicrobial properties, improved mechanical strength, and extended shelf life for food products, marking a sustainable and efficient alternative to conventional plastic packaging in both scientific research and industrial applications.
Collapse
Affiliation(s)
- Geeta
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Shivani
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Neeru Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Shayoraj
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Neha Bansal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Sanjay Sharma
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Santosh Kumar Dubey
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Satish Kumar
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
14
|
Song Y, Zhao G, Zhang S, Xie C, Yang R, Li X. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydr Polym 2024; 329:121530. [PMID: 38286525 DOI: 10.1016/j.carbpol.2023.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.
Collapse
Affiliation(s)
- Yanghui Song
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sihan Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runde Yang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China.
| |
Collapse
|
15
|
Tripathi S, Kumar P, Gaikwad KK. UV- shielding and antioxidant properties of chitosan film impregnated with Acacia catechu modified with calcium carbonate for food packaging. Int J Biol Macromol 2024; 257:128790. [PMID: 38101659 DOI: 10.1016/j.ijbiomac.2023.128790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Acacia catechu contains polyphenolic compounds such as catechin and tannins, which exhibit antioxidant and antimicrobial properties that have the potential to be used in food packaging applications. In this study, chitosan-based (CH) antioxidant films were developed with the incorporation of calcium carbonate (CC) and Acacia catechu (CT). The films were fabricated by the solvent-casting method, and the effects of the different concentrations of Acacia catechu were analyzed. The physicomechanical, antioxidant, and UV shielding properties of the films were determined. The addition of Acacia catechu and calcium carbonate has significantly increased the tensile from 2.30 MPa to 4.95 MPa, respectively, for neat CH and CH/CC/CT-4 film. At the same time, there is a reduction in the elongation at break from 26.75 % in neat CH film to 12.11 % in CH/CC/CT-4 film. The CH/CC/CT-4 film has shown the highest ferric-reducing antioxidant power (FRAP) of 0.440 mg Trolox/g dried weight of the film and 2,2 diphenyl picrylhydrazyl (DPPH) radical scavenging activity of 93.05 %. The UV transmittance of CH/CC/CT-4 film was 0.46 %, the lowest compared to the rest of the fabricated films. These active properties depict that CH/CC/CT-4 film has the potential to be utilized for the packaging of light and oxygen-sensitive food products.
Collapse
Affiliation(s)
- Shefali Tripathi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pradeep Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
16
|
Kaur N, Somasundram C, Razali Z, Mourad AHI, Hamed F, Ahmed ZFR. Aloe vera/Chitosan-Based Edible Film with Enhanced Antioxidant, Antimicrobial, Thermal, and Barrier Properties for Sustainable Food Preservation. Polymers (Basel) 2024; 16:242. [PMID: 38257041 PMCID: PMC10821446 DOI: 10.3390/polym16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Food bioactive packaging has received increasing attention from consumers and the food industry for its potential to reduce food waste and environmental issues. Several materials can be used to produce edible films/coats; however, bio-based, cost-effective, and sustainable coatings have gained a high reputation these days. For instance, Aloe vera gel (AV) is a promising bio-based material for edible coatings and films; therefore, the present study aimed to investigate the film-forming abilities of AV and Chitosan (CH) combination as a potential active food packaging material. The physicochemical and mechanical characteristics of formed films of various combinations were prepared at different concentrations, i.e., CH (0.5% w/v), AV (100%), CH:AV (75:25), and CH:AV (60:40). The results showed significant differences among all the prepared edible films wherein these differences were mainly on account of incorporating AV gel. The rheological and antioxidant properties of the formulations improved with the inclusion of AV gel. The films composed of CH:AV (60:40) positively affected the water solubility, thermal properties, and water vapour permeability of the edible films. The X-ray Diffraction (XRD) and Scanning electron microscopy (SEM) results showed that the films composed of CH:AV, (60:40) were amorphous and had smooth morphology. Further, the edible film solutions were applied to fresh figs (Ficus carica) to investigate their role in preserving fruits during storage. A significant reduction in microbial growth was found in coated fruits after 28 days of cold storage. The films composed of CH and AV showed overall improved results compared to the CH (0.5%, w/v). Therefore, the used formulations (CH:AV, 60:40) can form a sustainable film that has the potential to be utilized for fresh product preservation to maintain its quality and shelf life.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.S.); (Z.R.)
- The Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.S.); (Z.R.)
- The Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdel-Hamid I. Mourad
- Department of Mechanical and Aerospace Engineering, College of Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Zienab F. R. Ahmed
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
17
|
Yang J, Du M, Wang Y, Yang L, Yang J, Yang X, Liu Q, Wu Q, Zhao L, Hong J. Construction of a multifunctional dual-network chitosan composite aerogel with enhanced tunability. Int J Biol Macromol 2024; 254:128052. [PMID: 37967602 DOI: 10.1016/j.ijbiomac.2023.128052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/22/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Typically, the tailorable versatility of biomass aerogels is attributed to the tunable internal molecular structure, providing broad application prospects. Herein, a simple and novel preparation strategy for developing multifunctional dual-network chitosan/itaconic acid (CSI) aerogel with tunability by using freeze-drying and vacuum heat treatment techniques. By regulating the temperature and duration of amidation reaction, electrostatic interactions between chitosan (CS) and itaconic acid (IA) was abstemiously converted into amide bond in frozen aerogel, with IA acting as an efficient in-situ cross-linking agent, which yielded CSI aerogels with different electrostatic/covalent cross-linking ratios. Heat treatment and tuning of the covalent cross-linking degree of CSI aerogel changed their microstructure and density, which led to enhanced performance. For example, the specific modulus of CSI1.5-160 °C-5 h (71.69 ± 2.55 MPa·cm3·g-1) increased by 119 % compared to that of CSI1.5 (32.73 ± 0.718 MPa·cm3·g-1), converting the material from superhydrophilic to hydrophobic (124° ± 3.6°), exhibiting favorable stability and heat transfer performance. In addition, part of -NH3+ of CS was retained in the electrostatic cross-linked network, endowing the aerogel with antibacterial properties. The findings of this study provide insights and a reliable strategy for fabricating biomass aerogel with good comprehensive performance via ingenious structural design and simple regulation methods.
Collapse
Affiliation(s)
- Jiazhu Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Meiqing Du
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lijuan Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jiaying Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xin Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Qiuyi Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Qihong Wu
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu 610106, China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jing Hong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
18
|
Primo LMDG, Roque-Borda CA, Carnero Canales CS, Caruso IP, de Lourenço IO, Colturato VMM, Sábio RM, de Melo FA, Vicente EF, Chorilli M, da Silva Barud H, Barbugli PA, Franzyk H, Hansen PR, Pavan FR. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym 2024; 323:121449. [PMID: 37940311 DOI: 10.1016/j.carbpol.2023.121449] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs. An interesting approach is to graft antimicrobial peptides (AMPs) to antibiotic-loaded nanoparticles. The objective of the present work was to determine the anti-MTB activity of rifampicin-loaded N-acetylcysteine-chitosan-based nanoparticles (NPs), conjugated with the AMP Ctx(Ile21)-Ha; against clinical isolates (multi- and extensively-drug resistant) and the H37Rv strain. The modified chitosan and drug-loaded NPs were characterized with respect to their physicochemical stability and their antimycobacterial profile, which showed potent inhibition (MIC values <0.977 μg/mL) by the latter. Furthermore, their accumulation within macrophages and cytotoxicity were determined. To understand the possible mechanisms of action, an in silico study of the peptide against MTB membrane receptors was performed. The results presented herein demonstrate that antibiotic-loaded NPs grafted with an AMP can be a powerful tool for revitalizing drugs against multidrug-resistant M. tuberculosis strains, by launching multiple attacks against MTB. This approach could potentially serve as a novel treatment strategy for various long-term diseases requiring extended treatment periods.
Collapse
Affiliation(s)
- Laura Maria Duran Gleriani Primo
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Shleider Carnero Canales
- Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas bioquímicas y biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | - Icaro Putinhon Caruso
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Isabella Ottenio de Lourenço
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Vitória Maria Medalha Colturato
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Fernando Alves de Melo
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
19
|
Desireé Sousa da Costa R, Hickmann Flôres S, Brandelli A, Galarza Vargas C, Carolina Ritter A, Manoel da Cruz Rodrigues A, Helena Meller da Silva L. Development and properties of biodegradable film from peach palm (Bactris gasipaes). Food Res Int 2023; 173:113172. [PMID: 37803529 DOI: 10.1016/j.foodres.2023.113172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/12/2023] [Accepted: 06/17/2023] [Indexed: 10/08/2023]
Abstract
Formulations of biodegradable films using macrocarpa peach palm flour (low amylose starch), chitosan and glycerol, were developed and the effects of the drying temperature on films by assessing their physicochemical, mechanical, barrier, optical, structural, antioxidant properties, and the biodegradability in soil were evaluated. Chitosan enhanced the mechanical properties of the films, but they showed no antimicrobial activity against the tested food-borne pathogens, except for Listeria monocytogenes, for which the inhibition zone was from 0.1 to 0.6 cm. Films with higher concentrations of peach palm flour are opaquer, with better antioxidant characteristics and content of phenolic compounds compared to films made with lower concentrations of flour. The films presented a yellowish color because of the carotenoids found in peach palm flour, 29.63 μg 100 g-1, and exhibited a C-type X-ray pattern, characteristic peak of materials where amylose and amylopectin are present. After 15 days in soil, the films lost 30% of their initial weight. Therefore, these results suggest that the development of films as food preservative is a promising field and that the material used in the study are suitable for their formulation.
Collapse
Affiliation(s)
- Rebeca Desireé Sousa da Costa
- Federal University of Pará, Graduate Program in Food Science and Technology, Laboratory of Physical Measurements, Augusto Corrêa St., Guamá, 66075-900 Belém, PA, Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.
| | - Adriano Brandelli
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.
| | - Carolina Galarza Vargas
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Ana Carolina Ritter
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.
| | - Antonio Manoel da Cruz Rodrigues
- Federal University of Pará, Graduate Program in Food Science and Technology, Laboratory of Physical Measurements, Augusto Corrêa St., Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena Meller da Silva
- Federal University of Pará, Graduate Program in Food Science and Technology, Laboratory of Physical Measurements, Augusto Corrêa St., Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
20
|
Westlake J, Laabei M, Jiang Y, Yew WC, Smith DL, Burrows AD, Xie M. Vanillin Cross-Linked Chitosan Film with Controlled Release of Green Tea Polyphenols for Active Food Packaging. ACS FOOD SCIENCE & TECHNOLOGY 2023; 3:1680-1693. [PMID: 37881445 PMCID: PMC10594654 DOI: 10.1021/acsfoodscitech.3c00222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
We report a novel cross-linked chitosan composite film containing vanillin, glycerol, and green tea extract. The effects of vanillin-mediated cross-linking and the incorporation of antimicrobial green tea polyphenols were investigated. The cross-linking effect, confirmed by Fourier transform infrared (FTIR) analysis, increased the tensile strength of the biopolymer film to 20.9 ± 3 MPa. The release kinetics of polyphenols from the chitosan-vanillin matrix was studied, and we reported an initial burst release (8 h) followed by controlled release (8 to 400 h). It was found that both vanillin and green tea polyphenols were successful inhibitors of foodborne bacteria, with a minimum inhibitory concentration of the tea polyphenols determined as 0.15 mg/mL (Staphylococcus aureus). These active components also displayed strong antioxidant capacities, with polyphenols quenching >80% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals at all concentrations tested. Degradation results revealed that there was a significant (>85%) mass loss of all samples after being buried in compost for 12 weeks. The biopolymeric films, prepared by solvent casting methods, adhere to green chemistry and waste valorization principles. The one-pot recipe reported may also be applied to other cross-linkers and active compounds with similar chemical functionalities. Based on the obtained results, the presented material provides a promising starting point for the development of a degradable active packaging material.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department
of Biology, University of Bath, Bath BA2 7AY, U.K.
| | - Yunhong Jiang
- Department
of Applied Sciences, Northumbria University, Newcastle NE7 7XA, U.K.
| | - Wen Chyin Yew
- Department
of Applied Sciences, Northumbria University, Newcastle NE7 7XA, U.K.
| | - Darren L. Smith
- Department
of Applied Sciences, Northumbria University, Newcastle NE7 7XA, U.K.
| | | | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
21
|
Pooja N, Chakraborty I, Rahman MH, Mazumder N. An insight on sources and biodegradation of bioplastics: a review. 3 Biotech 2023; 13:220. [PMID: 37265543 PMCID: PMC10230146 DOI: 10.1007/s13205-023-03638-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Durability and affordability are two main reasons for the widespread consumption of plastic in the world. However, the inability of these materials to undergo degradation has become a significant threat to the environment and human health To address this issue, bioplastics have emerged as a promising alternative. Bioplastics are obtained from renewable and sustainable biomass and have a lower carbon footprint and emit fewer greenhouse gases than petroleum-based plastics. The use of these bioplastics sourced from renewable biomass can also reduce the dependency on fossil fuels, which are limited in availability. This review provides an elaborate comparison of biodegradation rates of potential bioplastics in soil from various sources such as biomass, microorganisms, and monomers. These bioplastics show great potential as a replacement for conventional plastics due to their biodegradable and diverse properties.
Collapse
Affiliation(s)
- Nag Pooja
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna, Bangladesh
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
22
|
Basumatary IB, Mukherjee A, Kumar S. Chitosan-based composite films containing eugenol nanoemulsion, ZnO nanoparticles and Aloe vera gel for active food packaging. Int J Biol Macromol 2023; 242:124826. [PMID: 37178889 DOI: 10.1016/j.ijbiomac.2023.124826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Biopolymer-based food packaging films are gaining increasing popularity, as consumers' demands for sustainable alternatives and environmental concerns associated with synthetic plastic packaging grow. In this research work, chitosan-based active antimicrobial films reinforced with eugenol nanoemulsion (EuNE), Aloe vera gel, and zinc oxide nanoparticles (ZnONPs) were fabricated and characterized for their solubility, microstructure, optical properties, antimicrobial and antioxidant activities. The rate of release of EuNE from the fabricated films was also evaluated to determine active nature of the films. The EuNE droplet size was about 200 nm, and they were uniformly distributed throughout the film matrices. Incorporation of EuNE in chitosan drastically improved UV-light barrier property of the fabricated composite film by 3 to 6 folds, while maintaining their transparency. The XRD spectra of the fabricated films showed good compatibility between the chitosan and the incorporated active agents. The incorporation of ZnONPs significantly improved their antibacterial properties against foodborne bacteria and tensile strength about 2-folds, whereas incorporation of EuNE and AVG improved DPPH scavenging activities of the chitosan film up to 95 %, respectively.
Collapse
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| |
Collapse
|
23
|
Zheng T, Tang P, Li G. Development of composite film based on collagen and phenolic acid-grafted chitosan for food packaging. Int J Biol Macromol 2023; 241:124494. [PMID: 37080407 DOI: 10.1016/j.ijbiomac.2023.124494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Collagen, a fibrous protein with triple-helical structure, is a good film-forming substrate for food packaging films because collagen films show advantages of biodegradability, high mechanical strength and good water resistance. However, collagen films lack functional activities, which may limit their applications in the field of active packaging. In this work, phenolic acid-grafted-chitosan was blended with collagen to improve the antioxidant and antimicrobial activities of collagen films. Gallic acid (GA), ferulic acid (FA) and caffeic acid (CA) were respectively grafted onto chitosan, and the physical properties and functional activities of the collagen/phenolic acids-g-chitosan (CGC, CFC and CCC) films were compared. The prepared films presented varying degrees of yellow color, and exhibited significantly improved UV light blocking capacity, antioxidant and antimicrobial properties due to the function of phenolic acid. Moreover, compared with collagen/chitosan (CC) film, CGC, CFC and CCC films showed higher mechanical strength (69.08-73.79 MPa), higher thermal denaturation temperature (69.4-71.2 °C), and lower water vapor permeability values (2.64-2.98 × 10-12 g m-1 s-1 Pa-1). The properties of collagen/ phenolic acids-g-chitosan films were greatly affected by the type of phenolic acid grafted. CGC film had the best antioxidant property as well as the best mechanical property, thermostability, UV light and water vapor blocking capacity.
Collapse
Affiliation(s)
- Tingting Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Pingping Tang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
24
|
Inhibition of multi-species biofilm formation using chitosan-based film supplemented with essential oils. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
25
|
Characterization of heat-treated chitosan cast films and their antimicrobial activity on the growth of natural flora of pasteurized milk. Int J Biol Macromol 2023; 232:123446. [PMID: 36708888 DOI: 10.1016/j.ijbiomac.2023.123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
This research aimed to evaluate the physicochemical and biocidal properties of chitosan films obtained through the solvent casting method using two different molecular weights, and thermally treated for an extended time (3 weeks) at 70 °C under vacuum condition (RH 0 %). The effect of storage time (for 30 and 180 days) under ambient conditions (23 °C and RH 40 %) on the properties of heat-treated cast films and their biocidal effectiveness was also assessed. FTIR-ATR, TGA and XRD of resulting films were analyzed to explore the dependency of antibacterial performance on the alteration in molecular and chemical structure. The results demonstrated that the solubility of treated films at 70 °C was proportionally reduced, resulting from the reduction of protonated amines and an increase in crystallinity. Likewise, increasing storage time led to a significant lowering in the solubilization of cast films. It was found that the solubilized fraction of chitosan cast films is the active fraction with the biocide behavior that can act against bacteria. In addition, the effectiveness of migrated chitosan was examined against the natural flora of pasteurized milk, such as Paenibacillus and Pseudomonas fluorescens. The results showed that cast films obtained from chitosan with lower molecular weight caused a reduction in the total count of viable cells without a significant effect on the properties of milk.
Collapse
|
26
|
Yu D, Basumatary IB, Kumar S, Ye F, Dutta J. Chitosan modified with bio-extract as an antibacterial coating with UV filtering feature. Int J Biol Macromol 2023; 230:123145. [PMID: 36621742 DOI: 10.1016/j.ijbiomac.2023.123145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Benzophenone-3 grafted chitosan (CS-BP-3) was successfully synthesized and applied as an antibacterial coating for the first time. The grafting mechanism is based on the reaction between ketone and primary amine to form imine derivatives and the chemical structure of grafted chitosan was studied by Fourier transform infrared (FT-IR) spectroscopy. Water solubility of BP-3 is enhanced after covalently grafted on chitosan and consequently renders the chitosan coating with UV blocking property. Results of thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) further confirmed the thermal stability of BP-3 modified chitosan is enhanced. The CS-BP-3 coating was applied on a variety of substrates of glass, plastics, wood, and metal. The surface features of the coatings such as morphology, water contact angle (WCA), and surface roughness were investigated. The optical and thermal stabilities of the coatings under UV irradiation were studied for 16 h. Antibacterial activity of CS-BP-3 was evaluated against both Gram-negative and Gram-positive bacteria. And the results of bacterial inhibition by CS-BP-3 coating indicate its potential for future application in food packaging.
Collapse
Affiliation(s)
- Dongkun Yu
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India
| | - Fei Ye
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden.
| | - Joydeep Dutta
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden.
| |
Collapse
|
27
|
Waste Orange Peels as a Source of Cellulose Nanocrystals and Their Use for the Development of Nanocomposite Films. Foods 2023; 12:foods12050960. [PMID: 36900477 PMCID: PMC10001245 DOI: 10.3390/foods12050960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
To date, approximately 30-50% of food is wasted from post-harvesting to consumer usage. Typical examples of food by-products are fruit peels and pomace, seeds, and others. A large part of these matrices is still discarded in landfills, while a small portion is valorized for bioprocessing. In this context, a feasible strategy to valorize food by-products consists of their use for the production of bioactive compounds and nanofillers, which can be further used to functionalize biobased packaging materials. The focus of this research was to create an efficient methodology for the extraction of cellulose from leftover orange peel after juice processing and for its conversion into cellulose nanocrystals (CNCs) for use in bionanocomposite films for packaging materials. Orange CNCs were characterized by TEM and XRD analyses and added as reinforcing agents into chitosan/hydroxypropyl methylcellulose (CS/HPMC) films enriched with lauroyl arginate ethyl (LAE). It was evaluated how CNCs and LAE affected the technical and functional characteristics of CS/HPMC films. CNCs revealed needle-like shapes with an aspect ratio of 12.5, and average length and width of 500 nm and 40 nm, respectively. Scanning electron microscopy and infrared spectroscopy confirmed the high compatibility of the CS/HPMC blend with CNCs and LAE. The inclusion of CNCs increased the films' tensile strength, light barrier, and water vapor barrier properties while reducing their water solubility. The addition of LAE improved the films' flexibility and gave them biocidal efficacy against the main bacterial pathogens that cause foodborne illness, such as Escherichia coli, Pseudomonas fluorescens, Listeria monocytogenes, and Salmonella enterica.
Collapse
|
28
|
Simões A, Coelhoso IM, Alves VD, Brazinha C. Recovery and Purification of Cutin from Tomato By-Products for Application in Hydrophobic Films. MEMBRANES 2023; 13:261. [PMID: 36984648 PMCID: PMC10059779 DOI: 10.3390/membranes13030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Tomato pomace is a low-cost, renewable resource that has been studied for the extraction of the biopolyester cutin, which is mainly composed of long-chain hydroxy fatty acids. These are excellent building blocks to produce new hydrophobic biopolymers. In this work, the monomers of cutin were extracted and isolated from tomato pomace and utilized to produce cutin-based films. Several strategies for the depolymerization and isolation of monomeric cutin were explored. Strategies differed in the state of the raw material at the beginning of the extraction process, the existence of a tomato peel dewaxing step, the type of solvent used, the type of alkaline hydrolysis, and the isolation method of cutin monomers. These strategies enabled the production of extracts enriched in fatty acids (16-hydroxyhexadecanoic, hexadecanedioic, stearic, and linoleic, among others). Cutin and chitosan-based films were successfully cast from cutin extracts and commercial chitosan. Films were characterized regarding their thickness (0.103 ± 0.004 mm and 0.106 ± 0.005 mm), color, surface morphology, water contact angle (93.37 ± 0.31° and 95.15 ± 0.53°), and water vapor permeability ((3.84 ± 0.39) × 10-11 mol·m/m2·s·Pa and (4.91 ± 1.33) × 10-11 mol·m/m2·s·Pa). Cutin and chitosan-based films showed great potential to be used in food packaging and provide an application for tomato processing waste.
Collapse
Affiliation(s)
- Andreia Simões
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Isabel M. Coelhoso
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Carla Brazinha
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
29
|
Tickle J. Evaluation of a chitosan dressing in the management of hard-to-heal wounds. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2023; 32:S44-S50. [PMID: 36840523 DOI: 10.12968/bjon.2023.32.4.s44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
It is vital that as tissue viability teams, we are constantly striving to improve service delivery, healing rates and positive patient outcomes. In 2021 the author's team were introduced to a unique bioactive microfibre gelling (BMG) dressing, MaxioCel®, which uses chitosan to maintain a cohesive structure to increase fluid handling, antimicrobial and wound-healing properties. METHOD Following Isle of Wight NHS Foundation Trust guidelines and with patient consent, 11 patients with chronic wounds of various aetiologies and wound durations were enrolled in a multicentre, clinical 4-week evaluation. RESULTS Over a 4-week evaluation period, all patients showed a significant improvement in wound healing parameters including average tissue type, condition of periwound skin, patient comfort, exudate levels. The assessments demonstrated a significant decrease in necrotic and sloughy tissue (from >75% at the start of treatment), replaced with healthy granulation and epithelial tissue (>80% by week 4). Significant reduction in pain score was also reported in all patients, with average pain score at the start of the evaluation reducing from 5.8 ± 2.7 to a score of 2.5 ± 1.9 within 3 weeks. CONCLUSION The complicated wounds seen in this study were previously non-healing and MaxioCel, with BMG technology, demonstrated both significant clinical improvement and a positive impact on patient quality of life within just 4 weeks, resulting in its addition to the team's woundcare formulary.
Collapse
Affiliation(s)
- Joy Tickle
- Tissue Viability Nurse Consultant, Isle of Wight NHS Foundation Trust
| |
Collapse
|
30
|
Garreau C, Chiappisi L, Micciulla S, Morfin I, Trombotto S, Delair T, Sudre G. Preparation of highly stable and ultrasmooth chemically grafted thin films of chitosan. SOFT MATTER 2023; 19:1606-1616. [PMID: 36752562 DOI: 10.1039/d3sm00003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings. In detail, chitosan films with a low degree of N-acetylation and of thicknesses varying from 40 nm to 10 μm were grafted onto epoxy-functionalized silicon wafers via an optimized water-temperature treatment (WTT). The formation of a grafted chitosan network insoluble in acidic aqueous media (pH 3.5) was evidenced and the films were stable for at least 2 days at pH 3.5. The film morphology and the swelling behavior were characterized by atomic force microscopy (AFM) and neutron reflectivity, which showed that the film roughness was extremely low. The physical cross-linking of the films was demonstrated using infrared spectroscopy, dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Finally, we show that the swelling behavior of such films was largely influenced by the environmental conditions, such as the pH or ionic strength of the solution.
Collapse
Affiliation(s)
- Cyrielle Garreau
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Leonardo Chiappisi
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble F-38000, Cedex 9, France
| | - Samantha Micciulla
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble F-38000, Cedex 9, France
| | - Isabelle Morfin
- LIPhy, Université Grenoble Alpes CNRS, UMR 5588, 140 Avenue de la Physique, Saint Martin d'Hères F-38402, France
| | - Stéphane Trombotto
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Thierry Delair
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Guillaume Sudre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| |
Collapse
|
31
|
Andreica BI, Anisiei A, Rosca I, Sandu AI, Pasca AS, Tartau LM, Marin L. Quaternized chitosan/chitosan nanofibrous mats: An approach toward bioactive materials for tissue engineering and regenerative medicine. Carbohydr Polym 2023; 302:120431. [PMID: 36604092 DOI: 10.1016/j.carbpol.2022.120431] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Chitosan based nanofibers are emerging biomaterials with a plethora of applications, especially in medicine and healthcare. Herein, binary quaternized chitosan/chitosan fibers are reported for the first time. Their preparation strategy consisted in the electrospinning of ternary chitosan/quaternized chitosan/poly(ethylene oxide) solutions followed by the selective removal of poly(ethylene oxide). Their morphology and performances were systematically investigated and discussed in detail. It was found that the fibers had reversible water vapor adsorption/desorption and showed swelling degrees similar to commercial wound dressings. They presented good mechanical properties and the content of quaternized chitosan modulated their bioadhesion, mucoadhesion and biodegradation rate and conferred them strong antimicrobial activity. Tests on normal human fibroblasts confirmed their safely use in contact with tissues and the biocompatibility investigation on rats showed no harmful effect when subcutaneous implanted. All these proved the binary quaternized chitosan/chitosan fibers as bioactive materials suitable for tissue regeneration, wound healing and drug delivery systems.
Collapse
Affiliation(s)
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Aurelian Sorin Pasca
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, Iasi, Romania
| | | | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania.
| |
Collapse
|
32
|
Sorasitthiyanukarn FN, Muangnoi C, Gomez CB, Suksamrarn A, Rojsitthisak P, Rojsitthisak P. Potential Oral Anticancer Therapeutic Agents of Hexahydrocurcumin-Encapsulated Chitosan Nanoparticles against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020472. [PMID: 36839794 PMCID: PMC9959490 DOI: 10.3390/pharmaceutics15020472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Hexahydrocurcumin-encapsulated chitosan nanoparticles (HHC-CS-NPs) were formulated by oil-in-water emulsification and ionotropic gelation and optimized using the Box-Behnken design. The particle size, zeta potential, and encapsulation efficiency of the optimized HHC-CS-NPs were 256 ± 14 nm, 27.3 ± 0.7 mV, and 90.6 ± 1.7%, respectively. The TEM analysis showed a spherical shape and a dense structure with a narrow size distribution. The FT-IR analysis indicated no chemical interaction between the excipients and the drugs in the nanoparticles, but the existence of the drugs was molecularly dispersed in the nanoparticle matrices. The drug release profile showed a preliminary burst release followed by a sustained release under simulated gastrointestinal (GI) and physiological conditions. A stability study suggested that the HHC-CS-NPs were stable under UV light, simulated GI, and body fluids. The in vitro bioaccessibility and bioavailability of the HHC-CS-NPs were 2.2 and 6.1 times higher than those of the HHC solution, respectively. The in vitro evaluation of the antioxidant, anti-inflammatory, and cytotoxic effects of the optimized HHC-CS-NPs demonstrated that the CS-NPs significantly improved the biological activities of HHC in radical scavenging, hemolysis protection activity, anti-protein denaturation, and cytotoxicity against MDA-MB-231 breast cancer cells. Western blot analysis showed that the apoptotic protein expression of Bax, cytochrome C, caspase-3, and caspase-9, were significantly up-regulated, whereas the anti-apoptotic protein Bcl-2 expression was down-regulated in the HHC-CS-NP-treated cells. Our findings suggest that the optimized HHC-CS-NPs can be further developed as an efficient oral treatment for breast cancer.
Collapse
Affiliation(s)
- Feuangthit N. Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Clinton B. Gomez
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-4221; Fax: +662-611-7586
| | - Pornchai Rojsitthisak
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Venkatesan R, Alagumalai K, Kim SC. Preparation and Performance of Biodegradable Poly(butylene adipate- co-terephthalate) Composites Reinforced with Novel AgSnO 2 Microparticles for Application in Food Packaging. Polymers (Basel) 2023; 15:polym15030554. [PMID: 36771855 PMCID: PMC9921653 DOI: 10.3390/polym15030554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Biodegradable composites with antimicrobial properties were prepared with microparticles of silver stannate (AgSnO2) and poly(butylene adipate-co-terephthalate) (PBAT) and tested for applications in food packaging. The PBAT matrix was synthesized and confirmed by 1H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). Ultrasonic and coprecipitation methods were used to synthesize AgSnO2. A two-step mixing method and a solvent cast technique were utilized to fabricate the PBAT composites (different weight % of AgSnO2) for packaging foods. Attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, XRD, and scanning electron microscopy were used to investigate the formation, structure, and size of the composites. Thermogravimetric analysis and differential thermal calorimetry were used to examine the PBAT/AgSnO2 composites. The best characteristics are exhibited in 5.0 wt. % AgSnO2 loaded PBAT composite. The tensile strength, elongation at break, water vapor transmission rate, and oxygen transmission rate were 22.82 MPa, 237.00%, 125.20 g/m2/day, and 1104.62 cc/m2/day.atm, respectively. Incorporating AgSnO2 enhanced the hydrophobicity of the PBAT materials as evaluated by the water contact angle. The 5.0 wt. % AgSnO2/PBAT film shows a favorable zone of inhibition against the bacteria pathogens S. aureus and E. coli, according to an evaluation of its antimicrobial activity. The weight loss of 5% AgSnO2/PBAT film was 78.4% after eight weeks in the natural soil environments. In addition, the results of food quality studies recommend that AgSnO2/PBAT (5.0 wt. %) film had a longer food shelf life than the neat PBAT and commercial, increasing it from one to 14 days for carrot vegetables.
Collapse
Affiliation(s)
- Raja Venkatesan
- Correspondence: (R.V.); (S.-C.K.); Tel.: +82-53-810-2787 (S.-C.K.)
| | | | - Seong-Cheol Kim
- Correspondence: (R.V.); (S.-C.K.); Tel.: +82-53-810-2787 (S.-C.K.)
| |
Collapse
|
34
|
Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans-Biocontrol Applications. Molecules 2023; 28:molecules28030966. [PMID: 36770629 PMCID: PMC9919833 DOI: 10.3390/molecules28030966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Five different chitosan samples (CHI-1 to CHI-5) from crustacean shells with high deacetylation degrees (>93%) have been deeply characterized from a chemical and physicochemical point of view in order to better understand the impact of some parameters on the bioactivity against two pathogens frequently encountered in vineyards, Plasmopara viticola and Botrytis cinerea. All the samples were analyzed by SEC-MALS, 1H-NMR, elemental analysis, XPS, FTIR, mass spectrometry, pyrolysis, and TGA and their antioxidant activities were measured (DPPH method). Molecular weights were in the order: CHI-4 and CHI-5 (MW >50 kDa) > CHI-3 > CHI-2 and CHI-1 (MW < 20 kDa). CHI-1, CHI-2 and CHI-3 are under their hydrochloride form, CHI-4 and CHI-5 are under their NH2 form, and CHI-3 contains a high amount of a chitosan calcium complex. CHI-2 and CHI-3 showed higher scavenging activity than others. The bioactivity against B. cinerea was molecular weight dependent with an IC50 for CHI-1 = CHI-2 (13 mg/L) ≤ CHI-3 (17 mg/L) < CHI-4 (75 mg/L) < CHI-5 (152 mg/L). The bioactivity on P. viticola zoospores was important, even at a very low concentration for all chitosans (no moving spores between 1 and 0.01 g/L). These results show that even at low concentrations and under hydrochloride form, chitosan could be a good alternative to pesticides.
Collapse
|
35
|
Mouhoub A, Er Raouan S, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, El Abed S, Delattre C, El Modafar C. The effect of essential oils mixture on chitosan-based film surface energy and antiadhesion activity against foodborne bacteria. World J Microbiol Biotechnol 2023; 39:77. [PMID: 36642748 DOI: 10.1007/s11274-023-03520-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 01/17/2023]
Abstract
In the food sector, the formation of biofilms as a result of microbial adherence on food-grade surfaces causes a major problem resulting in significant economic losses. Thereby, this work aimed to elaborate a biodegradable film using chitosan (CS-film) and reinforce its antiadhesion activity by incorporating pelargonium, clove, thyme, and cinnamon essential oils (EOs). Firstly, the antibacterial activity of these EOs alone and combined against four foodborne bacteria were analyzed by the microdilution method. Synergism was observed in the case of EOs combination. Secondly, the physicochemical characteristics and antiadhesion behavior of the CS-films were assessed by the contact angle method and ESEM, respectively. Results revealed that the EOs mixture treatment impacted considerably the physicochemical characteristics of the CS-film and reduced its qualitative and quantitative hydrophobicity. Moreover, the treated CS-film showed a strong antiadhesion behavior against Enterococcus hirae, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus with percentages of non-covered surface equal to 97.65 ± 1.43%, 98.76 ± 0.32%, 99.68 ± 0.28%, and 95.63 ± 1.32% respectively. From all these results, the CS-film treated with the mixture of EOs presents a great potential for application as surface coating and food packaging preventing microbial adhesion and thus, avoiding food contamination and spoilage.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco.
| | - Safae Er Raouan
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Amine Guendouz
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Soumya El Abed
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France.,Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
36
|
Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers (Basel) 2023; 15:polym15020396. [PMID: 36679276 PMCID: PMC9864592 DOI: 10.3390/polym15020396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Chitosan is the deacetylated form of chitin regarded as one of the most abundant polymers and due to its properties, both chitosan alone or in combination with bioactive substances for the production of biodegradable films and coatings is gaining attention in terms of applications in the food industry. To enhance the antimicrobial and antioxidant properties of chitosan, a vast variety of plant extracts have been incorporated to meet consumer demands for more environmentally friendly and synthetic preservative-free foods. This review provides knowledge about the antioxidant and antibacterial properties of chitosan films and coatings enriched with natural extracts as well as their applications in various food products and the effects they had on them. In a nutshell, it has been demonstrated that chitosan can act as a coating or packaging material with excellent antimicrobial and antioxidant properties in addition to its biodegradability, biocompatibility, and non-toxicity. However, further research should be carried out to widen the applications of bioactive chitosan coatings to more foods and industries as well was their industrial scale-up, thus helping to minimize the use of plastic materials.
Collapse
|
37
|
Long-Term Refrigerated Storage of Beef Using an Active Edible Film Reinforced with Mesoporous Silica Nanoparticles Containing Oregano Essential Oil ( Lippia graveolens Kunth). Int J Mol Sci 2022; 24:ijms24010092. [PMID: 36613543 PMCID: PMC9820268 DOI: 10.3390/ijms24010092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Beef is a fundamental part of the human diet, but it is highly susceptible to microbiological and physicochemical deterioration which decrease its shelf life. This work aimed to formulate an active edible film (AEF) incorporated with amino-functionalized mesoporous silica nanoparticles (A-MSN) loaded with Mexican oregano (Lippia graveolens Kunth) essential oil (OEO) and to evaluate its effect as a coating on fresh beef quality during refrigerated storage. The AEF was based on amaranth protein isolate (API) and chitosan (CH) (4:1, w/w), to which OEO emulsified or encapsulated in A-MSN was added. The tensile strength (36.91 ± 1.37 MPa), Young's modulus (1354.80 ± 64.6 MPa), and elongation (4.71%) parameters of AEF made it comparable with synthetic films. The antimicrobial activity of AEF against E. coli O157:H7 was improved by adding 9% (w/w) encapsulated OEO, and interactions of glycerol and A-MSN with the polymeric matrix were observed by FT-IR spectroscopy. In fresh beef, after 42 days, AEF reduced the population growth (Log CFU/cm2, relative to uncoated fresh beef) of Brochothrix thermosphacta (5.5), Escherichia coli (3.5), Pseudomonas spp. (2.8), and aerobic mesophilic bacteria (6.8). After 21 days, odor acceptability of coated fresh beef was improved, thus, enlarging the shelf life of the beef and demonstrating the preservation capacity of this film.
Collapse
|
38
|
Thermally-induced crosslinking altering the properties of chitosan films: Structure, physicochemical characteristics and antioxidant activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Nair Chithra Harinarayanan, Maya Raman. Utilization of Chitosan and Cassia (Cassia fistula) Seed Extract Based Filters in Efficient Wastewater Management. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x22060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Soradech S, Kengkwasingh P, Williams AC, Khutoryanskiy VV. Synthesis and Evaluation of Poly(3-hydroxypropyl Ethylene-imine) and Its Blends with Chitosan Forming Novel Elastic Films for Delivery of Haloperidol. Pharmaceutics 2022; 14:pharmaceutics14122671. [PMID: 36559165 PMCID: PMC9785711 DOI: 10.3390/pharmaceutics14122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to develop novel elastic films based on chitosan and poly(3-hydroxypropyl ethyleneimine) or P3HPEI for the rapid delivery of haloperidol. P3HPEI was synthesized using a nucleophilic substitution reaction of linear polyethyleneimine (L-PEI) with 3-bromo-1-propanol. 1H-NMR and FTIR spectroscopies confirmed the successful conversion of L-PEI to P3HPEI, and the physicochemical properties and cytotoxicity of P3HPEI were investigated. P3HPEI had good solubility in water and was significantly less toxic than the parent L-PEI. It had a low glass transition temperature (Tg = -38.6 °C). Consequently, this new polymer was blended with chitosan to improve mechanical properties, and these materials were used for the rapid delivery of haloperidol. Films were prepared by casting from aqueous solutions and then evaporating the solvent. The miscibility of polymers, mechanical properties of blend films, and drug release profiles from these formulations were investigated. The blends of chitosan and P3HPEI were miscible in the solid state and the inclusion of P3HPEI improved the mechanical properties of the films, producing more elastic materials. A 35:65 (%w/w) blend of chitosan-P3HPEI provided the optimum glass transition temperature for transmucosal drug delivery and so was selected for further investigation with haloperidol, which was chosen as a model hydrophobic drug. Microscopic and X-ray diffractogram (XRD) data indicated that the solubility of the drug in the films was ~1.5%. The inclusion of the hydrophilic polymer P3HPEI allowed rapid drug release within ~30 min, after which films disintegrated, demonstrating that the formulations are suitable for application to mucosal surfaces, such as in buccal drug delivery. Higher release with increasing drug loading allows flexible dosing. Blending P3HPEI with chitosan thus allows the selection of desirable physicochemical and mechanical properties of the films for delivery of haloperidol as a poorly water-soluble drug.
Collapse
Affiliation(s)
- Sitthiphong Soradech
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
- Expert Centre of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Pattarawadee Kengkwasingh
- Expert Centre of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Adrian C. Williams
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
- Correspondence: ; Tel.: +44-(0)118-378-6119
| |
Collapse
|
41
|
Iqbal N, Braxton TM, Anastasiou A, Raif EM, Chung CKY, Kumar S, Giannoudis PV, Jha A. Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6245. [PMID: 36143561 PMCID: PMC9506122 DOI: 10.3390/ma15186245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Dicalcium Phosphate Dihydrate (DCPD) mineral scaffolds alone do not possess the mechanical flexibility, ease of physicochemical properties' tuneability or suitable porosity required for regenerative bone scaffolds. Herein, we fabricated highly porous freeze-dried chitosan scaffolds embedded with different concentrations of Dicalcium Phosphate Dihydrate (DCPD) minerals, i.e., 0, 20, 30, 40 and 50 (wt)%. Increasing DCPD mineral concentration led to increased scaffold crystallinity, where the % crystallinity for CH, 20, 30, 40, and 50-DCPD scaffolds was determined to be 0.1, 20.6, 29.4, 38.8 and 69.9%, respectively. Reduction in scaffold pore size distributions was observed with increasing DCPD concentrations of 0 to 40 (wt)%; coalescence and close-ended pore formation were observed for 50-DCPD scaffolds. 50-DCPD scaffolds presented five times greater mechanical strength than the DCPD mineral-free scaffolds (CH). DCPD mineral enhanced cell proliferation for the 20, 30 and 40-DCPD scaffolds. 50-DCPD scaffolds presented reduced pore interconnectivity due to the coalescence of many pores in addition to the creation of closed-ended pores, which were found to hinder osteoblast cell proliferation.
Collapse
Affiliation(s)
- Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | | | - Antonios Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - El Mostafa Raif
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sandeep Kumar
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Panigrahi C, Ravuru SS, Mukherjee M, Mishra HN, De S. Antimicrobial and antifouling performance of modified membrane during UF of sugarcane juice. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Zheng T, Tang P, Li G. Development of a pH-sensitive film based on collagen/chitosan/ZnO nanoparticles and mulberry extract for pork freshness monitoring. Food Chem 2022; 402:134428. [DOI: 10.1016/j.foodchem.2022.134428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
|
44
|
Zheng T, Tang P, Li G. Effects of chitosan molecular weight and deacetylation degree on the properties of collagen‐chitosan composite films for food packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.52995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tingting Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu People's Republic of China
| | - Pingping Tang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu People's Republic of China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu People's Republic of China
- National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| |
Collapse
|
45
|
Cui Y, Wang X, Cheng M, Zhang R, Wang L, Han M, Guo Y. Characterization and release kinetics model of thymol from starch-based nanocomposite film into food simulator. J Food Biochem 2022; 46:e14326. [PMID: 35894224 DOI: 10.1111/jfbc.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
To improve the performance of potato starch films and solve the problems of high volatility and low stability of thymol (Thy), thymol was loaded into the channel of SBA-15 to prepare Thy-SBA-15, and the Thy-SBA-15/potato starch film was prepared. The results showed thymol was successfully loaded into the pores of SBA-15. The addition of Thy-SBA-15 enhanced the tensile strength of potato starch film (3.93 Mpa), reduced the water vapor permeability (1.56 × 10-12 g·d-1 m-1 Pa-1 , WVP) and moisture absorption (80.97%, MA), which enhanced the barrier properties of the films. Thy-SBA-15 had good compatibility with potato starch films. Notably, the thymol released from Thy-SBA-15/potato starch film was initially explosive, and then continuous, which showed this film could effectively slow down the release rate of thymol and prolong the fresh-keeping period of food. The Korsmeyer-Peppas model M t M ∞ = k t n $$ \left(\frac{{\mathrm{M}}_{\mathrm{t}}}{{\mathrm{M}}_{\infty }}=\mathrm{k}{\mathrm{t}}^{\mathrm{n}}\right) $$ (R2 > .96) had the best fit for the release curve of thymol. PRACTICAL APPLICATIONS: This work offers a new method for the preparation of potato starch sustained-release antibacterial film, and provides a theoretical basis and technical support for the development of intelligent packaging.
Collapse
Affiliation(s)
- Yingjun Cui
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Liang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Minjie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yanli Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
46
|
Sutharsan J, Zhao J. Physicochemical and Biological Properties of Chitosan Based Edible Films. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jenani Sutharsan
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| | - Jian Zhao
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| |
Collapse
|
47
|
Kabirou Olatounde Odjo A, Ali Al-Maqtari Q, Yu H, Xie Y, Guo Y, Li M, Du Y, Kun Feng L, Chen Y, Yao W. Preparation and characterization of chitosan-based antimicrobial films containing encapsulated lemon essential oil by ionic gelation and cranberry juice. Food Chem 2022; 397:133781. [DOI: 10.1016/j.foodchem.2022.133781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
|
48
|
Craciun AM, Morariu S, Marin L. Self-Healing Chitosan Hydrogels: Preparation and Rheological Characterization. Polymers (Basel) 2022; 14:polym14132570. [PMID: 35808616 PMCID: PMC9268889 DOI: 10.3390/polym14132570] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
The paper aims at the preparation of chitosan self-healing hydrogels, designed as carriers for local drug delivery by parenteral administration. To this aim, 30 hydrogels were prepared using chitosan and pyridoxal 5-phosphate (P5P), the active form of vitamin B6 as precursors, by varying the ratio of glucosamine units and aldehyde on the one hand and the water content on the other hand. The driving forces of hydrogelation were investigated by nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, and polarized light microscopy (POM) measurements. NMR technique was also used to investigate the stability of hydrogels over time, and their morphological particularities were assessed by scanning electron microscopy (SEM). Degradability of the hydrogels was studied in media of four different pH, and preliminary self-healing ability was visually established by injection through a syringe needle. In-depth rheological investigation was conducted in order to monitor the storage and loss moduli, linear viscoelastic regime, and structural recovery capacity. It was concluded that chitosan crosslinking with pyridoxal 5-phosphate is a suitable route to reach self-healing hydrogels with a good balance of mechanical properties/structural recovery, good stability over time, and degradability controlled by pH.
Collapse
|
49
|
Qin C, Yang G, Zhu C, Wei M. Characterization of edible film fabricated with HG-type hawthorn pectin gained using different extraction methods. Carbohydr Polym 2022; 285:119270. [DOI: 10.1016/j.carbpol.2022.119270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
|
50
|
Kim HJ, Roy S, Rhim JW. Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|