1
|
Baig MS, Karade SK, Ahmad A, Khan MA, Haque A, Webster TJ, Faiyazuddin M, Al-Qahtani NH. Lipid-based nanoparticles: innovations in ocular drug delivery. Front Mol Biosci 2024; 11:1421959. [PMID: 39355534 PMCID: PMC11442363 DOI: 10.3389/fmolb.2024.1421959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Ocular drug delivery presents significant challenges due to intricate anatomy and the various barriers (corneal, tear, conjunctival, blood-aqueous, blood-retinal, and degradative enzymes) within the eye. Lipid-based nanoparticles (LNPs) have emerged as promising carriers for ocular drug delivery due to their ability to enhance drug solubility, improve bioavailability, and provide sustained release. LNPs, particularly solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and cationic nanostructured lipid carriers (CNLCs), have emerged as promising solutions for enhancing ocular drug delivery. This review provides a comprehensive summary of lipid nanoparticle-based drug delivery systems, emphasizing their biocompatibility and efficiency in ocular applications. We evaluated research and review articles sourced from databases such as Google Scholar, TandFonline, SpringerLink, and ScienceDirect, focusing on studies published between 2013 and 2023. The review discusses the materials and methodologies employed in the preparation of SLNs, NLCs, and CNLCs, focusing on their application as proficient carriers for ocular drug delivery. CNLCs, in particular, demonstrate superior effectiveness attributed due to their electrostatic bioadhesion to ocular tissues, enhancing drug delivery. However, continued research efforts are essential to further optimize CNLC formulations and validate their clinical utility, ensuring advancements in ocular drug delivery technology for improved patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam’s Kalsekar Technical Campus School of Pharmacy, Affiliated to the University of Mumbai, New Panvel, Maharashtra, India
| | | | - Anas Ahmad
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mohd. Ashif Khan
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anzarul Haque
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
| | - Thomas J. Webster
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials, UFPI, Teresina, Brazil
- Division of Pre-College and Undergraduate Studies, Brown University, Providence, RI, United States
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Noora H. Al-Qahtani
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
- Center for Advanced Materials, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Lüdtke FL, Fernandes JM, Gonçalves RFS, Martins JT, Berni P, Ribeiro APB, Vicente AA, Pinheiro AC. Performance of β-carotene-loaded nanostructured lipid carriers under dynamic in vitro digestion system: Influence of the emulsifier type. J Food Sci 2024; 89:3290-3305. [PMID: 38767864 DOI: 10.1111/1750-3841.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
A better understanding of how emulsifier type could differently influence the behavior of nanostructured lipid carriers (NLC) under the gastrointestinal digestion process, as well as at the cellular level, is of utmost importance for the NLC-based formulations' optimization and risk assessment in the food field. In this study, NLC composed by fully hydrogenated soybean and high-oleic sunflower oils were prepared using soy lecithin (NLC Lβ) or Tween 80 (NLC Tβ) as an emulsifier. β-Carotene was entrapped within NLC developed as a promising strategy to overcome β-carotene's low bioavailability and stability. The effect of emulsifier type on the digestibility of β-carotene-loaded NLC was evaluated using an in vitro dynamic digestion model mimicking peristalsis motion. The influence of β-carotene-loaded NLC on cell viability was assessed using Caco-2 cells in vitro. NLC Tβ remained stable in the gastric compartment, presenting particle size (PS) similar to the initial NLC (PS: 245.68 and 218.18 nm, respectively), while NLC Lβ showed lower stability (PS > 1000 nm) in stomach and duodenum phases. NLC Tβ also provided high β-carotene protection and delivery capacity (i.e., β-carotene bioaccessibility increased 10-fold). Based on the results of digestion studies, NLC Tβ has shown better physical stability during the passage through the in vitro dynamic gastrointestinal system than NLC Lβ. Moreover, the developed NLC did not compromise cell viability up to 25 µg/mL of β-carotene. Thus, the NLC developed proved to be a biocompatible structure and able to incorporate and protect β-carotene for further food applications. PRACTICAL APPLICATION: The findings of this study hold significant implications for industrial applications in terms of developing nanostructured lipid carriers from natural raw materials widely available and used to produce other lipid-based products in the food industry, as an alternative to synthetic ones. In this respect, the β-carotene-loaded NLC developed in this study would find a great industrial application in the food industry, which is in constant search to develop functional foods capable of increasing the bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Fernanda L Lüdtke
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | | | | | - Joana T Martins
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Paulo Berni
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ana P B Ribeiro
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A Vicente
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Ana C Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| |
Collapse
|
3
|
Stability and bioaccessibility of α-tocopherol-enriched nanoemulsions containing different edible oils as carriers. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Carneiro SB, Kreutz T, Limberger RP, Teixeira HF, da Veiga Júnior VF, Koester LS. Piper aduncum Essential Oil Rich in Dillapiole: Development of Hydrogel-Thickened Nanoemulsion and Nanostructured Lipid Carrier Intended for Skin Delivery. Pharmaceutics 2022; 14:pharmaceutics14112525. [PMID: 36432716 PMCID: PMC9696712 DOI: 10.3390/pharmaceutics14112525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The essential oil extracted from the leaves of Piper aduncum, an aromatic plant from the Amazon region, is rich in dillapiole and presents anti-inflammatory activity. In this study, nanoemulsions (NE) and nanostructured lipid carriers (NLC), which are biocompatible nanostructured systems of a lipid nature, were prepared by high-pressure homogenization for the yet unexplored skin delivery of dillapiole. The addition of hydroxyethylcellulose produced hydrogel-thickened NE or NLC in view to improving the viscosity and skin adherence of the nanoformulations. Formulations were characterized with respect to dillapiole content, droplet size, polydispersity index, zeta potential, morphology, rheological behavior, bioadhesion, skin permeation profile, and in vitro irritancy (HET-CAM). The formulations developed presented spherical, homogeneous nanometric particle size (around 130 nm), narrow polydispersity index (<0.3), and negative zeta potential (around −40 mV). Dillapiole content was slightly lower in NLC compared to NE since the production process involves heating. The hydrogels containing nanocarriers showed pseudoplastic behavior with bioadhesive characteristics. The developed formulations exhibited a controlled release profile, dillapiole delivery up to the dermis, the layer of interest for anti-inflammatory potential, and low irritant potential in the chorioallantoic membrane (HET-CAM). Both hydrogels-thickened NE and NLC seemed to be promising formulations for skin delivery of Piper aduncum essential oil.
Collapse
Affiliation(s)
- Simone Braga Carneiro
- Programa de Pós-Graduação em Inovação Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Av. Gal. Rodrigo Octávio, Coroado I, 1200, Manaus 69067-005, Brazil
| | - Tainá Kreutz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana, 2752, Porto Alegre 90610-000, Brazil
| | - Renata Pereira Limberger
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana, 2752, Porto Alegre 90610-000, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana, 2752, Porto Alegre 90610-000, Brazil
| | - Valdir Florêncio da Veiga Júnior
- Programa de Pós-Graduação em Química, Instituto Militar de Engenharia, Praça General Tibúrcio, Urca, 80, Rio de Janeiro 22290-270, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana, 2752, Porto Alegre 90610-000, Brazil
- Correspondence:
| |
Collapse
|
5
|
The influence of cupuaçu extract in the production of biofilms based on babassu coconut mesocarp. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Potential of βC-Loaded Silica Nanoparticles in the Management of L-NAME –Induced Hypertension in Experimental Rats. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Corrêa-Filho LC, Santos DI, Brito L, Moldão-Martins M, Alves VD. Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum L.) Pomace Extract. Bioengineering (Basel) 2022; 9:bioengineering9070311. [PMID: 35877362 PMCID: PMC9312032 DOI: 10.3390/bioengineering9070311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Tomato pomace is rich in carotenoids (mainly lycopene), which are related to important bioactive properties. In general, carotenoids are known to react easily under environmental conditions, which may create a barrier in producing stable functional components for food. This work intended to evaluate the storage stability and in vitro release of lycopene from encapsulated tomato pomace extract, and its bioaccessibility when encapsulates were incorporated in yogurt. Microencapsulation assays were carried out with tomato pomace extract as the core material and arabic gum or inulin (10 and 20 wt%) as wall materials by spray drying (160 and 200 °C). The storage stability results indicate that lycopene degradation was highly influenced by the presence of oxygen and light, even when encapsulated. In vitro release studies revealed that 63% of encapsulated lycopene was released from the arabic gum particles in simulated gastric fluid, whereas for the inulin particles, the release was only around 13%. The feed composition with 20% inulin showed the best protective ability and the one that enabled releasing the bioactives preferentially in the intestine. The bioaccessibility of the microencapsulated lycopene added to yogurt increased during simulated gastrointestinal digestion as compared to the microencapsulated lycopene alone. We anticipate a high potential for the inulin microparticles containing lycopene to be used in functional food formulations.
Collapse
|
9
|
Boonlao N, Ruktanonchai UR, Anal AK. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf B Biointerfaces 2021; 209:112211. [PMID: 34800865 DOI: 10.1016/j.colsurfb.2021.112211] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in antioxidants, vitamins, minerals including carotenoids etc. can boost the immune system to help fight off various infections including SARS- CoV 2 and other viruses. Carotenoids have been gaining attention particularly in food and pharmaceutical industries owing to their diverse functions including their role as pro-vitamin A activity, potent antioxidant properties, and quenching of reactive oxygen (ROS), such as singlet oxygen and lipid peroxides within the lipid bilayer of the cell membrane. Nevertheless, carotenoids being lipophilic, have poor solubility in aqueous medium and are also chemically instable. They are susceptible to degrade under stimuli environmental conditions during food processing, storage and gastrointestinal passage. They also exhibit poor oral bioavailability, thus, their applications in aqueous-based foods are limited. As a consequent, suitable delivery systems including colloids-based are needed to enhance the solubility, stability and bioavailability of carotenoids. This review presents challenges of incorporation and delivery of carotenoids focusing on stability and factors affecting bioavailability. Furthermore, designed factors impacting bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems are explicitly explained. Each delivery system exhibits its own advantages and disadvantages; thus, the delivery systems should be designed based on their targets and their further applications.
Collapse
Affiliation(s)
- Nuntarat Boonlao
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
10
|
Duan L, Zhang L, Yan F, Liu Z, Bao H, Liu T. Solubility of ZnO Nanoparticles in Food Media: An Analysis Using a Novel Semiclosed Dynamic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11065-11073. [PMID: 34499492 DOI: 10.1021/acs.jafc.1c04344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food media can affect the solubility of zinc oxide nanoparticles (ZnO NPs). Moreover, when a single digestive fluid and a three-step digestion system were applied to investigate the fate of ZnO NPs, several contradictory results were obtained. Here, we manipulated a novel semiclosed in vitro dynamic digestion system to investigate the difference in the released ionic zinc (Zn2+) content in three types of artificial fluids in the presence of different food media. The results show that there was a significant difference in the released Zn2+ content between the three different types of digestion systems in the presence of the same food media. In addition, the released Zn2+ content was significantly different when different types of food media were applied to the same digestion system. These results demonstrate that the different levels of released Zn2+ content can be ascribed to the difference in digestion systems and food media.
Collapse
Affiliation(s)
- Luoyan Duan
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing 100193, P. R. China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, No. 37, Gangue Road, Chaoyang District, Beijing 100022, People's Republic of China
| | - Feiyi Yan
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing 100193, P. R. China
| | - Zhaoping Liu
- China National Center for Food Safety Risk Assessment, No. 37, Gangue Road, Chaoyang District, Beijing 100022, People's Republic of China
| | - Huihui Bao
- China National Center for Food Safety Risk Assessment, No. 37, Gangue Road, Chaoyang District, Beijing 100022, People's Republic of China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Hosseini Berenji R, Pezeshki A, Ghanbarzadeh B, Mohammadi M, Tabibi Azar M, Hamishehkar H, Ahmadzadeh Nobari Azar F, Ghorbani M. Resveratrol entrapped food grade lipid nanocarriers as a potential antioxidant in a mayonnaise. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Maurya VK, Shakya A, Aggarwal M, Gothandam KM, Bohn T, Pareek S. Fate of β-Carotene within Loaded Delivery Systems in Food: State of Knowledge. Antioxidants (Basel) 2021; 10:426. [PMID: 33802152 PMCID: PMC8001630 DOI: 10.3390/antiox10030426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology has opened new opportunities for delivering bioactive agents. Their physiochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility and biodegradability, make these nanomaterials an attractive tool for β-carotene delivery. Delivering β-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target tissues, but also lessens its sensitivity against environmental factors during processing. Regardless of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modification of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered materials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make conventional delivery systems appear archaic and promise better solubilization, protection during processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This review provides information on the state of knowledge on β-carotene nanodelivery systems adopted for developing functional foods, depicting their classifications, compositions, preparation methods, challenges, release and absorption of β-carotene in the gastrointestinal tract (GIT) and possible risks and future prospects.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | - Amita Shakya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| | - Manjeet Aggarwal
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | | | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| |
Collapse
|
13
|
Maurya VK, Singh J, Ranjan V, Gothandam KM, Bohn T, Pareek S. Factors affecting the fate of β-carotene in the human gastrointestinal tract: A narrative review. INT J VITAM NUTR RES 2020; 92:385-405. [PMID: 32781911 DOI: 10.1024/0300-9831/a000674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carotenoids and their metabolites play crucial roles in human health such as in immunity, cell differentiation, embryonic development, maintenance of plasma membrane integrity, and gastrointestinal functions, in addition to counteracting night blindness and other eye-related diseases. However, carotenoid bioavailability is highly variable and often low. The bioavailability of β-carotene, among the most frequently consumed carotenoid from the diet, is determined by food matrix related factors such as carotenoid dose, its location in food the matrix, the physical state in food, the presence of other food compounds in the matrix such as dietary fiber, dietary lipids, other micronutrients present such as minerals, and food processing, influencing also the size of food particles, and the presence of absorption inhibitors (fat replacers and anti-obesity drugs) or enhancers (nano-/micro-formulations). However, also host-related factors such as physiochemical interactions by gastrointestinal secretions (enzyme and salts) and other host-related factors such as surgery, age, disease, obesity, and genetic variations have shown to play a role. This review contributes to the knowledge regarding factors affecting the bioavailability of β-carotene (food and host-relegated), as well as highlights in vitro models employed to evaluate β-carotene bioavailability aspects.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Science, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Jagmeet Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Vijay Ranjan
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | | | - Torsten Bohn
- Luxembourg Institute of Health (LIH), Department of Population Health, Nutrition and Health Group, L-1445 Strassen, Luxembourg
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| |
Collapse
|
14
|
Gao Z, Wu B, Hu B, Cui S, Xu L, Zhang K, Nishinari K, Phillips GO, Fang Y. Novel strategy for enhancing the color intensity of β-Carotene: Enriching onto the oil-water interface. J Colloid Interface Sci 2020; 573:215-222. [PMID: 32278952 DOI: 10.1016/j.jcis.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
A novel strategy to enhance the color intensity of β-carotene (BC), namely, "interfacial enriching", was developed in this work. As the sole emulsifier in W/O emulsion, BC particles were enriched onto the droplet surface through emulsifying process. By increasing the concentration of BC in oil phase from 1 mg/g to 5 mg/g, the average droplet size of the emulsion decreased from 92.2 ± 5.1 μm to 34.0 ± 5.4 μm. Too low (e.g. ≤ 1 mg/g) or too high (e.g. ≥25 mg/g) concentration of BC in the oil phase yielded an insufficient coverage or flocculation of the droplets. By enriching onto the interface, the color intensity of BC were enhanced apparently at the reflectance wavelength ranging from 500 nm to 700 nm, compared with that of the BC encapsulated within the emulsion droplets. This enhancement was due to the higher availability of incident light for the BC particles on the interface than that of the BC particles buried inside the droplets.
Collapse
Affiliation(s)
- Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Binxian Wu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Bing Hu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Shaohua Cui
- Wewow Nutrition and Health Center, Wewow Health Company, Guangzhou 510623, PR China
| | - Longquan Xu
- China Tobacco Guizhou Industrial Co., Ltd., Kaifa Avenue, Guiyang 550000, PR China
| | - Ke Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Glyn O Phillips
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int J Biol Macromol 2020; 152:154-170. [DOI: 10.1016/j.ijbiomac.2020.02.276] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
|
16
|
Resende D, Costa Lima SA, Reis S. Nanoencapsulation approaches for oral delivery of vitamin A. Colloids Surf B Biointerfaces 2020; 193:111121. [PMID: 32464354 DOI: 10.1016/j.colsurfb.2020.111121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023]
Abstract
Vitamin A is essential to human health. Encapsulation in lipid nanoparticles was used to overcome vitamin A poor water solubility in beverages. This work aimed to develop and characterize lipid nanoparticles, containing vitamin A, for food fortification, assuring its stability and oral bioaccessibility. Lipid nanoparticles optimized for the oral administration of vitamin A using the hot homogenization method. The nanoparticles subjected to conditions used in food processing suffered no changes in their size or vitamin content. In vitro assays simulating gastrointestinal digestion suggested that the nanoparticles are not altered in the stomach, and the biocompatibility of the formulations showed no toxicity in fibroblasts. With the developed nanoparticles 80% of the added vitamin reached the intestine in the digestibility assay, demonstrating suitability as a nanotechnology application in the food research for the food industry.
Collapse
Affiliation(s)
- Daniela Resende
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
17
|
Coelho AG, Dos Santos WRP, Dos Santos AA, da Silva MG, Cunha FVM, Mendes AN, Arcanjo DDR. Plant-Derived Butters as Lipid Nanocarriers: A Systematic and Prospective Review. RECENT PATENTS ON NANOTECHNOLOGY 2020; 14:262-275. [PMID: 32442090 DOI: 10.2174/1872210514666200522213144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/29/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pharmaceutical nanotechnology represents an efficient alternative for the delivery of pharmacologically active plant-derived compounds, considering their protective capacity, oral bioavailability and drug vectorization capacity. In this context, butters obtained from plant seeds have emerged as promising products for the development of pharmacologically active nanostructures. They possess a complex lipid composition, allowing the formation of different emulsion systems with solid cores, since this mixture of different triglycerides is solid at room temperature and body temperature. Therefore, the systematic mapping around the technological development of nanostructures produced from plant-derived butters is potentially valuable for researchers interested in novel alternative formulations for pharmacological therapy, with potential industrial, economic, health and societal impacts. METHODS Systematic review was carried out by the search of scientific papers and patents deposited in official databases concerning the development of nanostructured pharmaceutical products using plantderived butters as starting material. The publications obtained were subjected to sorting and analysis by applying the following inclusion/exclusion criteria. RESULTS The Solid Lipid Nanoparticle (SLN) was the type of nanostructure produced in all the analyzed scientific papers, due to the physicochemical characteristics of the lipid constituents of plantderived butters. In this sense, 54% of the articles have reported the use of Cocoa Butter for the production of nanostructures; 28% for Shea Butter; 6% for Cupuacu Butter, 6% for Murumuru Butter and 6% for Bacuri Butter. DISCUSSION In the technological prospection, only two patents exhibited SLN as an invention based on cocoa butter and on shea butter, respectively. The production methods employed have included: phase inversion temperature, microemulsion, hot high pressure homogenization, high shear homogenization and ultrasonication. CONCLUSION In light of this prospective review, the encouragement of novel studies in lipids-based nanotechnology is evident, considering the small number of findings so far, in order to stimulate new research involving plant-derived butters from easily cultivated fruits in tropical regions, then stimulating the pharmaceutical development of new therapeutic alternatives using biocompatible and sustainable raw materials.
Collapse
Affiliation(s)
- Angélica G Coelho
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Webysten R P Dos Santos
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Andressa A Dos Santos
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Maisa G da Silva
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Francisco V Macedo Cunha
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Anderson N Mendes
- Laboratory of Innovation on Science and Technology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Daniel D R Arcanjo
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
18
|
Selvakumar S, Janakiraman AB, Michael ML, Jeyan Arthur M, Chinnaswamy A. Formulation and characterization of β‐carotene loaded solid lipid nanoparticles. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sivakamasundari Selvakumar
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| | | | - Maria Leena Michael
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| | - Moses Jeyan Arthur
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| | | |
Collapse
|
19
|
Berni P, Pinheiro AC, Bourbon AI, Guimarães M, Canniatti-Brazaca SG, Vicente AA. Characterization of the behavior of carotenoids from pitanga ( Eugenia uniflora) and buriti ( Mauritia flexuosa) during microemulsion production and in a dynamic gastrointestinal system. Journal of Food Science and Technology 2019; 57:650-662. [PMID: 32116374 DOI: 10.1007/s13197-019-04097-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/10/2018] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Uncommon tropical fruits are emerging as raw-material for new food products with health benefits. This work aimed at formulating and processing microemulsions from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) fruits, since they are very rich in carotenoids (particularly lycopene and β-carotene), in order to encapsulate and increase carotenoids' bioaccessibility. Pitanga and buriti microemulsions were produced by applying a direct processing (high-speed homogenization at 15,000 rpm and ultrasound with 20 kHz probe at 40% amplitude) of the whole pulp together with surfactant (Tween 80 or Whey Protein Isolate at 2%) and corn oil (5%). All treatments (HSH-US for 0-4, 4-0, 4-4, 4-8 min-min) applied were able to increase the amount of carotenoid released. However, the processing also decreased the total amount of carotenoids in the whole pulp of studied fruits. The impact of processing during microemulsion production was not severe. The overall data suggest that the presence of surfactant and oil during processing may protect the carotenoids in fruits and microemulsions. Final recovery of total carotenoids, after passing the samples through a dynamic gastrointestinal system that simulates the human digestion, was higher for microemulsions than for whole pulps. High losses of total carotenoids in buriti and β-carotene and lycopene in pitanga occurred during jejunum and ileum phases. The present work confirms that it is possible to increase β-carotene and lycopene bioaccessibility from fruits by directly processing microemulsions (p < 0.01).
Collapse
Affiliation(s)
- Paulo Berni
- 1Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13416-900 Brazil
| | - Ana Cristina Pinheiro
- 2Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- 3Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana Isabel Bourbon
- 2Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Maura Guimarães
- 2Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Solange G Canniatti-Brazaca
- 1Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13416-900 Brazil
| | - Antonio A Vicente
- 2Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Gomes GVL, Sola MR, Rochetti AL, Fukumasu H, Vicente AA, Pinho SC. β-carotene and α-tocopherol coencapsulated in nanostructured lipid carriers of murumuru ( Astrocaryum murumuru) butter produced by phase inversion temperature method: characterisation, dynamic in vitro digestion and cell viability study. J Microencapsul 2019; 36:43-52. [PMID: 30836027 DOI: 10.1080/02652048.2019.1585982] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrophobic bioactives can be more easily incorporated into food and have their bioavailability enhanced if nanostructured lipid carriers (NLC) are used as carriers. In the present study, beta-carotene-loaded NLC were produced by low emulsification using murumuru butter and a mixture of Span 80 and Cremophor RH40 as surfactants. Their average diameter was 35 nm and alpha-tocopherol was required to protect the encapsulated β-carotene. Besides the evaluation of their physicochemical stability, NLC were submitted to dynamic in vitro digestion and cell viability assays with Caco-2 and HEPG cells. The bioaccessibility of beta-carotene in the dynamic system was about 42%. Regarding cell viability, results indicated NLC were toxic to the cell cultures tested. Such high toxicity is probably related to the type of surfactant used and to the extremely reduced particle size, which may have led to an intense and fast permeation of the NLC through the cells.
Collapse
Affiliation(s)
- G V L Gomes
- a Department of Food Engineering , School of Animal Science and Food Engineering, University of São Paulo (USP) , Pirassununga , Brazil
| | - M R Sola
- a Department of Food Engineering , School of Animal Science and Food Engineering, University of São Paulo (USP) , Pirassununga , Brazil
| | - A L Rochetti
- b Department of Veterinary Medicine , School of Animal Science and Food Engineering, University of São Paulo (USP) , Pirassununga , Brazil
| | - H Fukumasu
- b Department of Veterinary Medicine , School of Animal Science and Food Engineering, University of São Paulo (USP) , Pirassununga , Brazil
| | - A A Vicente
- c CEB, Centre of Biological Engineering, University of Minho , Campus de Gualtar , Portugal
| | - S C Pinho
- a Department of Food Engineering , School of Animal Science and Food Engineering, University of São Paulo (USP) , Pirassununga , Brazil
| |
Collapse
|
21
|
|
22
|
Ren G, Sun Z, Wang Z, Zheng X, Xu Z, Sun D. Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. J Colloid Interface Sci 2019; 540:177-184. [DOI: 10.1016/j.jcis.2019.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
|
23
|
|
24
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
25
|
Moradi S, Anarjan N. Preparation and characterization of α-tocopherol nanocapsules based on gum Arabic-stabilized nanoemulsions. Food Sci Biotechnol 2018; 28:413-421. [PMID: 30956853 DOI: 10.1007/s10068-018-0478-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
The preparation of water dispersed α-tocopherol nanocapsules through solvent-displacement technique using gum Arabic (GA) as natural stabilizing and emulsifying biopolymer, for a first time was aimed in current research. The effects of GA concentrations on physicochemical and biological characteristics of prepared nanocapsules, namely, mean particle size, size distribution, zeta potential, rheological properties, turbidity, in vitro antioxidant activity and cellular uptake were evaluated, subsequently. The result indicated that the mono modal size distributed water dispersible α-tocopherol nanocapsules could be successfully attained using selected technique in sizes ranged from 10.01 to 171.2 nm and zeta potential of - 13.5 to - 47.8 mv. The prepared nanocapsules showed the dilatant rheological properties and acceptable radical scavenging (antioxidant activity). The cellular uptake of samples were increased up to 12 times more than microsized α-tocopherol. Consequently, the prepared water dispersed nanosized α-tocopherol can effectively be used in water based food and beverage formulations as nutrition enhancer or natural preservatives.
Collapse
Affiliation(s)
- Seiran Moradi
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Navideh Anarjan
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
26
|
Chaves MA, Pinho SCD. Effect of production parameters and stress conditions on beta-carotene-loaded lipid particles produced with palm stearin and whey protein isolate. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.03517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Microencapsulation is currently used by the food industry for different purposes, including the protection of ingredients against factors such as oxidation and volatilization, as well as to increase the bioavailability and bioaccessibility of nutrients. The current study aimed to encapsulate beta-carotene in solid lipid microparticles stabilized with whey protein isolate (WPI), and also investigate their integrity during storage and under stress conditions such as different ionic strengths, sucrose concentrations and thermal treatments. Solid lipid microparticles were produced using palm stearin, a food grade vegetable fat, using a single-step high shear process. Of the different formulations used for lipid microparticle production, characterization studies showed that the greatest stability was obtained with systems produced using 1.25% (w/v) whey protein isolate, 5% (w/v) palm stearin and 0.2% (w/v) xanthan gum. This formulation was applied for the production of beta-carotene-loaded solid lipid microparticles, with different concentrations of alpha-tocopherol, in order to verify its possible antioxidant activity. The results showed that the addition of alpha-tocopherol to the dispersions provided an increase in encapsulation efficiency after 40 days of storage that ranged from 29.4% to 30.8% when compared to the system without it. Furthermore, the solid lipid microparticles remained stable even when submitted to high ionic strength and to heating in the proposed temperature range (40 °C to 80 °C), highlighting their feasible application under typical food processing conditions.
Collapse
|
27
|
Huang J, Wang Q, Sun R, Li T, Xia N, Xia Q. Antioxidant Activity, In Vitro Digestibility and Stability of Flaxseed Oil and Quercetin Co-Loaded Submicron Emulsions. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan Huang
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Qiang Wang
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Rui Sun
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Tong Li
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Nan Xia
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Qiang Xia
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| |
Collapse
|
28
|
Bovi GG, Petrus RR, Pinho SC. Feasibility of incorporating buriti (Mauritia flexuosa
L.) oil nanoemulsions in isotonic sports drink. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13499] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Graziele G. Bovi
- Department of Food Engineering; School of Animal Science and Food Engineering; University of Sao Paulo (USP); Av Duque de Caxias Norte 225 - Jd Elite Pirassununga SP 13635-900 Brazil
- Department of Horticultural Engineering; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB); Max-Eyth-Allee 100 14469 Potsdam Germany
| | - Rodrigo R. Petrus
- Department of Food Engineering; School of Animal Science and Food Engineering; University of Sao Paulo (USP); Av Duque de Caxias Norte 225 - Jd Elite Pirassununga SP 13635-900 Brazil
| | - Samantha C. Pinho
- Department of Food Engineering; School of Animal Science and Food Engineering; University of Sao Paulo (USP); Av Duque de Caxias Norte 225 - Jd Elite Pirassununga SP 13635-900 Brazil
| |
Collapse
|
29
|
Moraes-Lovison M, Marostegan LF, Peres MS, Menezes IF, Ghiraldi M, Rodrigues RA, Fernandes AM, Pinho SC. Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.061] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Brito-Oliveira TC, Molina CV, Netto FM, Pinho SC. Encapsulation of Beta-carotene in Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate: Production Parameters, Alpha-tocopherol Coencapsulation and Stability Under Stress Conditions. J Food Sci 2017; 82:659-669. [DOI: 10.1111/1750-3841.13642] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/27/2016] [Accepted: 01/05/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Thais C. Brito-Oliveira
- Dept. of Food Engineering, School of Animal Science and Food Engineering; Univ. of São Paulo (USP); Pirassununga SP Brazil
| | - Camila V. Molina
- Dept. of Food Engineering, School of Animal Science and Food Engineering; Univ. of São Paulo (USP); Pirassununga SP Brazil
| | - Flávia M. Netto
- Dept. of Food and Nutrition; State Univ. of Campinas (UNICAMP); Campinas SP Brazil
| | - Samantha C. Pinho
- Dept. of Food Engineering, School of Animal Science and Food Engineering; Univ. of São Paulo (USP); Pirassununga SP Brazil
| |
Collapse
|