1
|
Wu P, Zhang P, Chen XD. Assessing food digestion in the elderly using in vitro gastrointestinal models. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:273-300. [PMID: 40155086 DOI: 10.1016/bs.afnr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
With the global population of individuals aged 65 and older projected to exceed 1.5 billion by 2050, understanding the impact of aging on digestion and nutrient absorption is essential for addressing the nutritional needs of the elderly. This review explores the limitations of traditional in vivo studies and underscores the growing importance of in vitro gastrointestinal models as an ethical and cost-effective alternative for investigating digestion in the elderly. The review provides a comprehensive analysis of age-related physiological changes in the gastrointestinal tract (GIT), and critically evaluates how static and dynamic in vitro models have been adapted to simulate these changes. We also discuss the significant challenges these models face in accurately replicating the complexities of elderly digestion, particularly in mimicking the interactions between digestive processes and the gut microbiome. By addressing these challenges, particularly through the development of more physiologically relevant and personalized in vitro models, this review highlights the potential to enhance our understanding of elderly digestion and improve nutritional strategies, ultimately contributing to better health outcomes for the aging population.
Collapse
Affiliation(s)
- Peng Wu
- Life Quality Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou Industrial Park Campus, Jiangsu, P.R. China.
| | - Ping Zhang
- Life Quality Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou Industrial Park Campus, Jiangsu, P.R. China
| | - Xiao Dong Chen
- Life Quality Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou Industrial Park Campus, Jiangsu, P.R. China.
| |
Collapse
|
2
|
Lavoisier A, Chevalier S, Henry G, Ossemond J, Harel-Oger M, Garric G, Dupont D, Morzel M. Impact of age on the digestion of cream cheese formulated with opposite caseins to whey proteins ratios: An in vitro study. Food Res Int 2024; 190:114621. [PMID: 38945576 DOI: 10.1016/j.foodres.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Ageing leads to changes in the functionality of the digestive tract but the effect of age on digestion and absorption of nutrients remains unclear. The objective of this study was to investigate in vitro the digestion of two high-protein dairy products similar to cream cheese (24 % w/w proteins, 20 % w/w lipids) with opposite casein to whey protein ratios, 80:20 (WP-20), and 20:80 (WP-80). The new static digestion model adapted to the general older adult population (≥65 y.) proposed by INFOGEST was used, as well as the standard version of the protocol. Kinetics of proteolysis and lipolysis were compared between both models for each product, in the gastric and intestinal phases of digestion. In both cream cheeses, the degree of protein hydrolysis (DH-P) was significantly lower for older adults than for young adults at the end of the gastric phase (-19 % for WP-20, and -44 % for WP-80), and at the end of the intestinal phase (-16 % for WP-20, and -20 % for WP-80). The degree of lipid hydrolysis (DH-L) was also significantly lower for older adults than for young adults at the end of the digestion for WP-20 (-30 %), but interestingly it was not the case for WP-80 (similar DH-L were measured). Free fatty acids were also released faster from WP-80 than from WP-20 in both digestion conditions: after 5 min of intestinal digestion DH-L was already ≈32 % for WP-80 against 14 % for WP-20. This was attributed to the opposite casein to whey protein ratios, leading to the formation of different gel structures resulting in different patterns of deconstruction in the gastrointestinal tract. This study highlights the fact that it is essential to carefully consider the composition, structure, and digestibility of foods to develop products adapted to the specific needs of the older adult population.
Collapse
Affiliation(s)
| | | | - Gwénaële Henry
- INRAE - UMR STLO, 85 rue de Saint Brieuc, Rennes, France
| | | | | | - Gilles Garric
- INRAE - UMR STLO, 85 rue de Saint Brieuc, Rennes, France
| | - Didier Dupont
- INRAE - UMR STLO, 85 rue de Saint Brieuc, Rennes, France
| | - Martine Morzel
- INRAE - UMR STLO, 85 rue de Saint Brieuc, Rennes, France
| |
Collapse
|
3
|
Cao X, Zhao F, Lin Z, Sun X, Zeng X, Liu H, Li Y, Yuan Z, Su Y, Wang C, Zhou G. In vitro digestion mimicking conditions in adults and elderly reveals digestive characteristics of pork from different cooking ways. Food Res Int 2024; 183:114204. [PMID: 38760136 DOI: 10.1016/j.foodres.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
This study aimed to investigate the impact of three cooking ways (sous vide (SV), frying (FR) and roasting (RO)) on pork protein digestion characteristics under conditions simulating healthy adult (control, C) and elderly individuals with achlorhydria (EA). Changes in degree of hydrolysis (DH), SDS-PAGE profiles, zeta potential, particle size and secondary structure during digestion were evaluated. Our results revealed the EA condition markedly affected the protein digestion process of pork with different cooking ways. The DH values of SV (25.62%), FR (21.38%) and RO (19.40%) under the EA condition were significantly lower than those of under the control condition (38.32%, 33.00% and 30.86%, respectively). Moreover, differences were also observed among three cooking ways under the EA condition. For a given cooking way, the differences between control and EA conditions gradually diminished from the gastric to the intestinal phase. Under a certain digestion condition, SV maintained the highest degree of digestion throughout the process, particularly under the EA condition. Therefore, we conclude that pork cooked by sous vide is more recommendable for the elderly considering protein digestibility.
Collapse
Affiliation(s)
- Xiangyue Cao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fan Zhao
- School of Chinese Medicine, School of integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyi Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaomei Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haoxi Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yutong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zihang Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Su
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
4
|
Baptista DP, Silva do Carmo A, Gigante ML. Modeling elderly gastrointestinal digestion for the evaluation of the release of bioactive peptides. PROTEIN DIGESTION-DERIVED PEPTIDES 2024:31-58. [DOI: 10.1016/b978-0-443-19141-1.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Lavoisier A, Morzel M, Chevalier S, Henry G, Jardin J, Harel-Oger M, Garric G, Dupont D. In vitro digestion of two protein-rich dairy products in the ageing gastrointestinal tract. Food Funct 2023; 14:9377-9390. [PMID: 37789767 DOI: 10.1039/d3fo02693k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
It is still unclear if changes in protein digestibility and absorption kinetics in old age may affect the anabolic effect of high-protein foods. The objective of this study was to investigate the digestion of two high-protein (10% w/w) dairy products in vitro: a fermented dairy product formulated with a ratio of whey proteins to caseins of 80 to 20% (WBD) and a Skyr containing mainly caseins. The new static in vitro digestion model adapted to the general older adult population (≥65 years) proposed by the INFOGEST international consortium was implemented to investigate the digestion of these products and compared with the standard version of the protocol. Kinetics of proteolysis was compared between both models for each product, in the gastric and intestinal phases of digestion. Protein hydrolysis was studied by the OPA method, SDS-PAGE, and LC-MS/MS, and amino acids were quantified by HPLC. Protein hydrolysis by pepsin was slower with the older adult model than with the young adult model, and consequently, in spite of a longer gastric phase duration, the degree of proteolysis (DH) at the end of the gastric phase was lower. Two different scenarios were observed depending on the type of dairy product studied: -10 and -40% DH for Skyr and WBD, respectively. In the intestinal phase, lower concentrations of free leucine were observed in older adult conditions (approx. -10%), but no significant differences in proteolysis were observed overall between the models. Therefore, the digestion conditions used influenced significantly the rate and extent of proteolysis in the gastric phase but not in the intestinal phase.
Collapse
|
6
|
Zhang J, Liu D, Xie Y, Yuan J, Wang K, Tao X, Hemar Y, Regenstein JM, Liu X, Zhou P. Gastrointestinal digestibility of micellar casein dispersions: Effects of caprine vs bovine origin, and partial colloidal calcium depletion using in vitro digestion models for the adults and elderly. Food Chem 2023; 416:135865. [PMID: 36905711 DOI: 10.1016/j.foodchem.2023.135865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
In vitro coagulation and digestion of caprine and bovine micellar casein concentrate (MCC) with or without partial colloidal calcium depletion (deCa) were studied under simulated adult and elderly conditions. Gastric clots were smaller and looser for caprine than bovine MCC, and were further looser with deCa and under elderly condition for both caprine and bovine MCC. Casein hydrolysis and concomitant formation of large peptides was faster for caprine than bovine MCC, and with deCa and under adult condition for caprine and bovine MCC. Formation of free amino groups and small peptides were faster for caprine MCC, and with deCa and under adult condition. Upon intestinal digestion, proteolysis occurred rapidly, and was faster under adult condition, but showed less differences with increasing digestion between caprine and bovine MCC, and with and without deCa. These results suggested weakened coagulation and greater digestibility for caprine MCC and MCC with deCa under both conditions.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Dasong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Yunqi Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jiajie Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Keyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yacine Hemar
- Institute of Advanced Studies, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
7
|
Ma Y, Xu J, Guo R, Teng G, Chen Y, Xu X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Sun Y, Wang R, Li Q, Ma Y. Influence of storage time on protein composition and simulated digestion of UHT milk and centrifugation presterilized UHT milk in vitro. J Dairy Sci 2023; 106:3109-3122. [PMID: 37002142 DOI: 10.3168/jds.2022-22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/06/2022] [Indexed: 03/31/2023]
Abstract
The centrifugation presterilizing UHT (C-UHT) sterilization method removes 90% of the microorganism and somatic cells from raw milk using high-speed centrifugation following UHT treatment. This study aimed to study the changes in protein composition and plasmin in the UHT and C-UHT milk. The digestive characteristics, composition, and peptide spectrum of milk protein sterilized with the 2 technologies were studied using a dynamic digestive system of a simulated human stomach. The Pierce bicinchoninic acid assay, laser scanning confocal microscope, liquid chromatography-tandem mass spectrometry, and AA analysis were used to study the digestive fluid at different time points of gastric digestion in vitro. The results demonstrated that C-UHT milk had considerably higher protein degradation than UHT milk. Different processes resulted during the cleavage of milk proteins at different sites during digestion, resulting in different derived peptides. The results showed there was no significant effect of UHT and C-UHT on the peptide spectrum of milk proteins, but C-UHT could release relatively more bioactive peptides and free AA.
Collapse
Affiliation(s)
- Yue Sun
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001.
| | - Qiming Li
- New Hope Dairy Co. Ltd., Chengdu, Sichuan, China, 610063; Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu, China, 610000
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001
| |
Collapse
|
9
|
Impact of elderly gastrointestinal alterations on gastric emptying and enzymatic hydrolysis of skim milk: An in vitro study using a dynamic stomach system. Food Chem 2023; 402:134365. [DOI: 10.1016/j.foodchem.2022.134365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
|
10
|
Calcium bioaccessibility increased during gastrointestinal digestion of α-lactalbumin and β-lactoglobulin. Food Res Int 2023; 164:112415. [PMID: 36737996 DOI: 10.1016/j.foodres.2022.112415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Calcium bioaccessibility depends on the amount of soluble calcium under intestinal digestion. The changes in calcium during in vitro static digestion of α-lactalbumin and β-lactoglobulin in presence of calcium chloride (0 mM, 20 mM and 50 mM) were followed by combining electrochemical determination of free calcium with the determination of soluble calcium by inductively coupled plasma optical emission spectroscopy. α-Lactalbumin and, more evident, β-lactoglobulin were found to increase calcium bioaccessibility with increasing intestinal digestion time by around 5% and 10%, respectively, due to the complex binding of calcium to peptides formed from protein hydrolysis by gastrointestinal enzymes. In vitro digested samples of β-lactoglobulin in presence of CaCl2 had nearly twice as much complex bound calcium as α-lactalbumin samples. The calcium bioaccessibility decreased significantly with the increasing concentration of added calcium chloride, although the amount of calcium chloride had little effect on the extension of digestion of α-lactalbumin and β-lactoglobulin. Simulated digestion fluids were found to have a negative effect on calcium bioaccessibility, especially the presence of hydrogen phosphate, and the amount of precipitated calcium increased significantly with increasing amount of added calcium chloride. Based on analysis and visualization by sequences of the peptides formed during digestion of α-lactalbumin and β-lactoglobulin, it was observed that peptides containing aspartic acid and glutamic acid acting as calcium chelators, may prevent precipitation of calcium in the intestines and increase calcium bioaccessibility. These results provide knowledge for the design of new dairy based functional foods to prevent calcium deficiency.
Collapse
|
11
|
Wang K, Liu D, Tao X, Zhang J, Huppertz T, Regenstein JM, Liu X, Zhou P. Decalcification strongly affects in vitro gastrointestinal digestion of bovine casein micelles under infant, adult and elderly conditions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Melchior S, Moretton M, Alongi M, Calligaris S, Cristina Nicoli M, Anese M. Comparison of protein in vitro digestibility under adult and elderly conditions: The case study of wheat, pea, rice, and whey proteins. Food Res Int 2023; 163:112147. [PMID: 36596099 DOI: 10.1016/j.foodres.2022.112147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
In this study an in vitro static digestion method mimicking the elderly gastrointestinal conditions was designed by adapting the physiological parameters described in the INFOGEST standardized static in vitro digestion protocol, i.e., pH, digestive phase duration, concentrations of enzymes and bile salts, to the aged GI transit. The digestibility of proteins from different sources (pea, rice, wheat, and milk whey) was then assessed. Protein digestive behaviour was monitored after gastric and intestinal phases by BCA assay and SDS-PAGE to assess protein hydrolysis both from a quantitative and a qualitative point of view. Digested samples were also analysed for physical characteristics in terms of particle size and zeta potential. Data acquired under elderly gastrointestinal conditions were compared to those obtained by using the INFOGEST protocol designed to study adult digestion. Results clearly showed that the elderly gastrointestinal conditions deeply affected proteolysis leading to a general reduction of protein digestibility in comparison to the adult model. The proteolysis extent depended on the protein source with whey and rice proteins showing about 20% reduction using the model mimicking the elderly gut, followed by pea (about 10% reduction) and wheat (about 4% reduction) proteins. The knowledge of protein digestibility under elderly gastrointestinal conditions generated in this study could be useful in the attempt to develop age-tailored products.
Collapse
Affiliation(s)
- Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Marilisa Alongi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Maria Cristina Nicoli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| |
Collapse
|
13
|
Makran M, Miedes D, Cilla A, Barberá R, Garcia-Llatas G, Alegría A. Understanding the influence of simulated elderly gastrointestinal conditions on nutrient digestibility and functional properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Garvey SM, Guice JL, Hollins MD, Best CH, Tinker KM. Fungal digestive enzymes promote macronutrient hydrolysis in the INFOGEST static in vitro simulation of digestion. Food Chem 2022; 386:132777. [PMID: 35364497 DOI: 10.1016/j.foodchem.2022.132777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
The objective of this study was to test the hydrolytic efficacy of 6 fungal enzymes in the INFOGEST static in vitro simulation of gastrointestinal (GI) digestion. First, the INFOGEST protocol was adapted for testing of exogenous enzymes. Second, a dose-response study of 3 individual fungal proteases, a lipase, and an amylase with glucoamylase demonstrated improved dietary protein, lipid, and carbohydrate hydrolysis, respectively, from an oral nutritional supplement (ONS) under simulated gastric or GI conditions, compared to pepsin and pancreatin-based control conditions. Third, a combination of the 6 enzymes (BC-006) improved macronutrient digestion, including enhanced release of individual amino acids from ONS and mixed meal substrates. Finally, we validated digestive models of aging and proton pump inhibitor (PPI) use, and showed that BC-006 improved gastric digestion under these compromised digestive conditions. The INFOGEST static simulation is a feasible tool to rapidly screen and profile exogenous enzymes for digestive efficacy in vitro.
Collapse
Affiliation(s)
- Sean M Garvey
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA.
| | - Justin L Guice
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Morgan D Hollins
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Caroline H Best
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Kelly M Tinker
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA.
| |
Collapse
|
15
|
Wang C, Zhao F, Bai Y, Li C, Xu X, Kristiansen K, Zhou G. Effect of gastrointestinal alterations mimicking elderly conditions on in vitro digestion of meat and soy proteins. Food Chem 2022; 383:132465. [PMID: 35183956 DOI: 10.1016/j.foodchem.2022.132465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/08/2023]
Abstract
Among the physiological functions declining with aging, decreased secretion of gastric fluid, achlorhydria, is commonly observed. We evaluated the digestion of meat (chicken, beef, and pork) and soy proteins using in vitro conditions mimicking gastrointestinal (GI) digestion in adults (control, C) and elderly individuals with achlorhydria (EA). Changes in degrees of hydrolysis (DH), SDS-PAGE profiles, peptide concentrations, and proteomic profiles during digestion were investigated. Digestion under the EA conditions markedly decreased DH, especially for soy proteins. SDS-PAGE profiling and proteomics showed that myofibrillar/sarcoplasmic proteins from meat and glycinin/beta-conglycinin from soy were most affected by digestion conditions. Our results indicated that differences in the digestibility of meat protein between EA and control conditions gradually narrowed from the gastric to the intestinal phase for meat protein, while a pronounced difference persisted in the intestinal phase for soy protein. Our work provides new insight of value for future dietary recommendations for elderly individuals.
Collapse
Affiliation(s)
- Chong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Fan Zhao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yun Bai
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark; Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 166555, PR China; BGI-Shenzhen, Shenzhen 518083, PR China.
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Wang C, Zhao F, Bai Y, Li C, Xu X, Kristiansen K, Zhou G. In vitro digestion mimicking conditions in young and elderly reveals marked differences between profiles and potential bioactivity of peptides from meat and soy proteins. Food Res Int 2022; 157:111215. [DOI: 10.1016/j.foodres.2022.111215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
|
17
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
18
|
Li S, Pan Z, Ye A, Cui J, Dave A, Singh H. Structural and rheological properties of the clots formed by ruminant milks during dynamic in vitro gastric digestion: Effects of processing and species. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Wang R, Mohammadi M, Mahboubi A, Taherzadeh MJ. In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered 2021; 12:3040-3064. [PMID: 34187302 PMCID: PMC8806420 DOI: 10.1080/21655979.2021.1940769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 10/28/2022] Open
Abstract
Digestive systems in human, animals, and fish are biological reactors and membranes to digest food and extract nutrients. Therefore, static and dynamic models of in-vitro digestion systems are developed to study e.g. novel food and feed before in-vivo studies. Such models are well developed for human, but not to the same extent for animals and fish. On the other hand, recent advances in aquaculture nutrition have created several potential fish meal replacements, and the assessment of their nutrient digestibility is critical in the application as a fish meal replacement. Using an in-vitro method, the assessment of an ingredient digestibility could be faster and less expensive compared to using an in-vivo experiment. An in-vitro method has been widely used to assess food nutrient digestibility for humans; however, its application for fish is still in the early stages. Both the human and fish as monogastric vertebrates share similar gastrointestinal systems; thus, the concept from the application for humans could be applied for fish. This review aims to improve the in-vitro digestion protocol for fish by adapting the concept from then study for humans, summarizing the current available in-vitro digestion model developed for human and fish in-vitro digestion study, identifying challenges specifically for fish required to be tackled and suggesting an engineering approach to adapt the human in-vitro gastrointestinal model to fish. Protocols to conduct in-vitro digestion study for fish are then proposed.
Collapse
Affiliation(s)
- Ricky Wang
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Mahtab Mohammadi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | | |
Collapse
|
20
|
Bhat ZF, Morton JD, El-Din A. Bekhit A, Kumar S, Bhat HF. Processing technologies for improved digestibility of milk proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
|
22
|
Li S, Ye A, Pan Z, Cui J, Dave A, Singh H. Dynamic in vitro gastric digestion behavior of goat milk: Effects of homogenization and heat treatments. J Dairy Sci 2021; 105:965-980. [PMID: 34802734 DOI: 10.3168/jds.2021-20980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023]
Abstract
The gastric digestion behavior of differently processed goat milks was investigated using a dynamic in vitro gastric digestion model, the human gastric simulator. Homogenization and heat treatment of goat milk resulted in gastric clots with highly fragmented structures. They also delayed the pH reduction during digestion, altered the chemical composition of the clots and the emptied digesta, promoted the release of calcium from the clots, and accelerated the hydrolysis and the emptying of milk proteins. The apparent density of the protein particles and the location of the homogenized fat globules changed during the digestion process, as shown in the emptied digesta of the homogenized goat milks. The effects of processing on the digestion behavior of goat milk were broadly similar to those previously reported for cow milk. However, the overall gastric digestion process of goat milk was more affected by homogenization than by heat treatments.
Collapse
Affiliation(s)
- Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Zheng Pan
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Jian Cui
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Anant Dave
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
23
|
Ji X, Cui Y, Liu X, Zhu H, Zheng J, Song S, Gao F, Zhu J, Liu X, Guan J. The digestion property evaluation of oil embedded in soybean protein–phospholipid nanocomposite aggregate particle. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xuyang Ji
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Yaoming Cui
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Xue Liu
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Hao Zhu
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Jianzhang Zheng
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Shijia Song
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Feng Gao
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Jinfeng Zhu
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Xinyu Liu
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| | - Junjun Guan
- College of Biological Engineering, Henan University of Technology Zhengzhou China
| |
Collapse
|
24
|
Orlien V, Aalaei K, Poojary MM, Nielsen DS, Ahrné L, Carrascal JR. Effect of processing on in vitro digestibility (IVPD) of food proteins. Crit Rev Food Sci Nutr 2021; 63:2790-2839. [PMID: 34590513 DOI: 10.1080/10408398.2021.1980763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteins are important macronutrients for the human body to grow and function throughout life. Although proteins are found in most foods, their very dissimilar digestibility must be taking into consideration when addressing the nutritional composition of a diet. This review presents a comprehensive summary of the in vitro digestibility of proteins from plants, milk, muscle, and egg. It is evident from this work that protein digestibility greatly varies among foods, this variability being dependent not only upon the protein source, but also the food matrix and the molecular interactions between proteins and other food components (food formulation), as well as the conditions during food processing and storage. Different approaches have been applied to assess in vitro protein digestibility (IVPD), varying in both the enzyme assay and quantification method used. In general, animal proteins tend to show higher IVPD. Harsh technological treatments tend to reduce IVPD, except for plant proteins, in which thermal degradation of anti-nutritional compounds results in improved IVPD. However, in order to improve the current knowledge about protein digestibility there is a vital need for understanding dependency on a protein source, molecular interaction, processing and formulation and relationships between. Such knowledge can be used to develop new food products with enhanced protein bioaccessibility.
Collapse
Affiliation(s)
- Vibeke Orlien
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jorge Ruiz Carrascal
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| |
Collapse
|
25
|
Guo Y, Wei Y, Cai Z, Hou B, Zhang H. Stability of acidified milk drinks induced by various polysaccharide stabilizers: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Lee S, Jo K, Jeong HG, Choi YS, Yong HI, Jung S. Understanding protein digestion in infants and the elderly: Current in vitro digestion models. Crit Rev Food Sci Nutr 2021; 63:975-992. [PMID: 34346822 DOI: 10.1080/10408398.2021.1957765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The last decades have witnessed a surge of interest in the fate of dietary proteins during gastrointestinal (GI) digestion. Although several in vitro digestion models are available as alternatives to clinical experiments, most of them focus on the digestive conditions of healthy young adults. This study investigates the static/dynamic models used to simulate digestion in infants and the elderly and considers the related in vivo conditions. The in vitro digestive protocols targeting these two groups are summarized, and the challenges associated with the further development of in vitro digestion models are discussed. Static models rely on several factors (e.g., enzyme concentration, pH, reaction time, and rotation speed) to differentiate digestive conditions depending on age. Dynamic models can more accurately simulate the complex digestion process and allow the inclusion of further parameters (sequential secretion of digestive fluids, gradual changes in pH, peristaltic mixing, GI emptying, and the inoculation of luminal microbiota). In the case of infants, age or growth stage clarification and the differentiation of digestive protocols between full-term and preterm infants are required, whereas protocols dealing with various health statuses are required in the case of the elderly, as this group is prone to oral cavity and GI function deterioration.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
27
|
Aalaei K, Khakimov B, De Gobba C, Ahrné L. Gastric Digestion of Milk Proteins in Adult and Elderly: Effect of High-Pressure Processing. Foods 2021; 10:786. [PMID: 33917309 PMCID: PMC8067359 DOI: 10.3390/foods10040786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Reduced physiological capability of the human gastrointestinal tract with increasing age has recently attracted considerable attention to the potential of novel technologies to modify food digestion. Thus, the aim of this study was to investigate gastric digestion of milk proteins after application of high-pressure processing (HPP) at 400 MPa 15 min, 600 MPa 5 min and 600 MPa 15 min using two static in vitro models of adults (INFOGEST) and the elderly in comparison to a fresh untreated raw milk. Peptides distribution classified based on the number of amino acids (AA) (<10, 11-15, 16-20, 21-30, >30 AA) were investigated after 0, 5, 10 and 30 min of digestion using LC-MS and multivariate data analysis. Our results show significantly less efficient protein digestion of all investigated milks in the elderly model indicated by higher percentages of longer peptides during digestion, except for the HPP milk 400 MPa 15 min, which indicated an improved and comparable digestion in the elderly as in the adult model. Furthermore, increasing the pressurization time at 600 MPa did not have a significant effect on the peptides profile during the digestion. More efficient digestion of whey proteins in HPP milks, with the majority of peptides in the 16-20 AA range, compared to fresh milk was also noticed. According to the findings of this study, HPP at 400 MPa 15 min showed the most efficient digestion of major milk proteins and thus may be considered a suitable process to improve bioaccessibility of milk proteins, especially in products intended for the elderly.
Collapse
Affiliation(s)
- Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark; (B.K.); (C.D.G.); (L.A.)
| | | | | | | |
Collapse
|