1
|
Lakhani KG, Salimi M, Idrissi AE, Hamid R, Motamedi E. Nanocellulose-hydrogel hybrids: A review on synthesis and applications in agriculture, food packaging and water remediation. Int J Biol Macromol 2025; 309:143081. [PMID: 40222524 DOI: 10.1016/j.ijbiomac.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The growing demand for sustainable and environment-friendly materials has driven extensive research on biopolymers for applications in agriculture, food science, and environmental remediation. Among these, nanocellulose-hydrogel hybrids (NC-HHs) have gained significant attention as an innovative class of bio-based materials that uniquely combine the remarkable physicochemical properties of nanocellulose with the functional versatility of hydrogels. These hybrids are characterised by exceptional water retention, mechanical strength and biodegradability, enabling advances in precision agriculture, smart food preservation and contaminant remediation. This review provides a comprehensive understanding of the synthesis, properties, and multifunctional applications of NC-HHs, emphasising their innovative role in sustainability. In agriculture, NC-HHs enhance soil moisture retention, support plant growth, and serve as carriers for controlled-release fertilizers, optimizing water and nutrient use efficiency. In the food industry, they enable intelligent packaging solutions that extend shelf life, monitor food freshness, and inhibit microbial growth. Additionally, NC-HHs present groundbreaking strategies for environmental remediation by effectively immobilizing pollutants in water and soil. Beyond summarizing recent advances, this review presents an in-depth mechanistic perspective on the interactions between NC and HH, critically evaluating their structure-property relationships, functional adaptability and application-specific performance. By integrating recent advances in nanocellulose functionalisation, polymer chemistry and the development of responsive hydrogels, this review critically examines the key technological innovations and future prospects of NC-HHs, underscoring their transformative potential in addressing global challenges related to food security, environmental sustainability, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Komal G Lakhani
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Mehri Salimi
- Department of Soil and Water Research, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
| | - Ayoub El Idrissi
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
2
|
Nagano T, Higashimura Y, Nakano M, Nishiuchi T, Lelo AP. High-viscosity dietary fibers modulate gut microbiota and liver metabolism to prevent obesity in high-fat diet-fed mice. Int J Biol Macromol 2025; 298:139962. [PMID: 39826739 DOI: 10.1016/j.ijbiomac.2025.139962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Obesity and metabolic disorders are rising global health concerns, emphasizing the need for effective dietary interventions. High-viscosity dietary fibers such as bacterial cellulose (BC) and guar gum (GG) have unique properties that may complement each other in modulating gut microbiota and metabolic health. This study investigates their effects in high-fat diet-fed mice. BC and GG increase Bacteroides, which degrade polysaccharides and produce short-chain fatty acids (SCFAs), supporting metabolic health. BC enhances bile acid excretion and enriches Faecalibaculum, Duncaniella, and Paramuribaculum, promoting gut barrier integrity and reducing inflammation, potentially improving bile acid turnover and lipid metabolism. GG more effectively increases butyrate production by enhancing butyrate-producing bacteria, such as Clostridium XIVa and Kineothrix, and promotes Bifidobacterium, strengthening anti-inflammatory effects and gut barrier function. Both fibers upregulate bile acid biosynthesis, but BC's non-fermentable nature leads to higher bile acid excretion, while GG's fermentation causes lower excretion and broader liver metabolic changes. Both fibers reduce body weight, fat accumulation, and cholesterol levels, highlighting their potential in managing obesity and metabolic disorders. The complementary effects of BC and GG underscore the importance of fiber diversity for targeted dietary strategies to improve metabolic health.
Collapse
Affiliation(s)
- Takao Nagano
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Yasuki Higashimura
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Masataka Nakano
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Aaron Pambu Lelo
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
3
|
Jeevanandam J, Castro R, Rodrigues J. Gelatin-based ballistic gel formulated with phytosynthesized nanocellulose from Arundo donax for alpha-amylase enzyme inhibition activity. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 8:100575. [DOI: 10.1016/j.carpta.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
4
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
5
|
Feng J, Qin Z, Farmanfarmaee A, Kong F. Comparing gastric emptying of cellulose nanocrystals with sodium alginate and pectin using a dynamic in vitro stomach model. Int J Biol Macromol 2024; 280:135892. [PMID: 39317287 DOI: 10.1016/j.ijbiomac.2024.135892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cellulose nanocrystals (CNC) are increasingly recognized for their potential in various applications, including packaging, cosmetics, and biomedical engineering. Due to their gelation properties influenced by pH and ionic strength, CNC could impact gastric emptying and satiety, beneficial for managing obesity and diabetes. This study investigated the gastric emptying of CNC (4 % and 8 %, w/w) in comparison with sodium alginate (2 %, w/w) and pectin (2 %, w/w), exploring the effect of divalent cations (Ca2+ and Mg2+) using a dynamic gastric digestion model. CNC, in the presence of Ca2+ and Mg2+, formed a high-viscosity gel network under gastric conditions, leading to delayed gastric emptying. While alginate formed strong gels with Ca2+, it did not significantly delay gastric emptying due to the poor water-holding capacity of its gel network. Pectin showed minimal impact on gastric emptying. Among the treatments, the half-time (t1/2) of gastric emptying for 8 % CNC with Ca2+ was observed to be the longest at 215.4 ± 23.7 min, compared to the shortest times observed with pectin at 15.1 ± 1.4 min. The results suggest that different mechanisms are involved in the gastric emptying effect of different dietary fibers, and CNC is more effective than alginate and pectin assisting in promoting gastric retention and aiding in the management of body weight. This study also introduced a novel application of the dynamic gastric digestion model for estimating digestion energy expenditure, providing insights into the impact of dietary fiber on gastric emptying and satiety enhancement.
Collapse
Affiliation(s)
- Jiannan Feng
- Department of Food Science and Technology, University of Georgia, United States of America
| | - Zijin Qin
- Department of Food Science and Technology, University of Georgia, United States of America
| | - Azin Farmanfarmaee
- Department of Food Science and Technology, University of Georgia, United States of America
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, United States of America.
| |
Collapse
|
6
|
Shipelin VA, Skiba EA, Budaeva VV, Shumakova AA, Trushina EN, Mustafina OK, Markova YM, Riger NA, Gmoshinski IV, Sheveleva SA, Khotimchenko SA, Nikityuk DB. Toxicological Characteristics of Bacterial Nanocellulose in an In Vivo Experiment-Part 2: Immunological Endpoints, Influence on the Intestinal Barrier and Microbiome. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1678. [PMID: 39453014 PMCID: PMC11510458 DOI: 10.3390/nano14201678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Bacterial nanocellulose (BNC) is considered a promising alternative to microcrystalline cellulose, as well as an ingredient in low-calorie dietary products. However, the risks of BNC when consumed with food are not well characterized. The aim of this study is to investigate the impact of BNC on immune function, the intestinal microbiome, intestinal barrier integrity, and allergic sensitization in subacute experiments on rats. Male Wistar rats received BNC with a diet for eight weeks in a dose range of 1-100 mg/kg of body weight. The measurements of serum levels of cytokines, adipokines, iFABP2, indicators of cellular immunity, composition of the intestinal microbiome, and a histological study of the ileal mucosa were performed. In a separate four-week experiment on a model of systemic anaphylaxis to food antigen, BNC at a dose of 100 mg/kg of body weight did not increase the severity of the reaction or change the response of IgG antibodies. Based on dose-response effects on immune function, the non-observed adverse effect level for BNC was less than 100 mg/kg of body weight per day. The effects of BNC on the gut microbiome and the intestinal mucosal barrier were not dose-dependent. Data on the possible presence of prebiotic effects in BNC have been obtained.
Collapse
Affiliation(s)
- Vladimir A. Shipelin
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Ekaterina A. Skiba
- Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Vera V. Budaeva
- Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Antonina A. Shumakova
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Eleonora N. Trushina
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Oksana K. Mustafina
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Yuliya M. Markova
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Nikolay A. Riger
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Ivan V. Gmoshinski
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Svetlana A. Sheveleva
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Sergey A. Khotimchenko
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
- Department of Food Hygiene and Toxicology, Institute of Vocational Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Dmitry B. Nikityuk
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Department of Ecology and Food Safety, Institute of Ecology, Peoples’ Friendship University of Russia Named After Patrice Lumumba, 117198 Moscow, Russia
| |
Collapse
|
7
|
Silva-Carvalho R, Rodrigues PM, Martins D, Rodrigues AC, Sampaio P, Dourado F, Gonçalves C, Gama M. Bacterial Cellulose In Vitro Uptake by Macrophages, Epithelial Cells, and a Triculture Model of the Gastrointestinal Tract. Biomacromolecules 2024; 25:6748-6761. [PMID: 39305251 DOI: 10.1021/acs.biomac.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Bacterial cellulose (BC) has a long-standing human consumption history in different geographies without any report of adverse effects. Despite its unique textural and functional properties, the use of BC in food products in Europe is still restricted due to concerns over its nanosize. Here, we evaluated the potential uptake of celluloses (from plant and microbial sources, processed using different blenders) by macrophages (differentiated THP-1 cells) and human intestinal epithelial cells (Caco-2 and HT29-MTX cells) without (coculture) or with (triculture) Raji-B cells. A carbohydrate-binding module coupled to a green fluorescent protein was employed to observe cellulose in the cell cultures by confocal laser scanning microscopy and stimulated emission depletion microscopy. The methodology demonstrated excellent sensitivity, allowing detection of single nanocrystals within cells. All celluloses were taken up by the macrophages, without significantly compromising the cell's metabolic viability. The viability of the cocultures was also not affected. Furthermore, no internalization was observed in the triculture cell model that was exposed 24 h to BC and Avicel LM310. When (rarely) detected, cellulose particles were found on the apical side of the membrane. Overall, the obtained results suggest that BC should not be absorbed into the human gut.
Collapse
Affiliation(s)
- Ricardo Silva-Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Patrícia M Rodrigues
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Daniela Martins
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Cristina Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Fernando Dourado
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Liu YH, Xu Y, He YT, Wen JL, Yuan TQ. Lignocellulosic biomass-derived functional nanocellulose for food-related applications: A review. Int J Biol Macromol 2024; 277:134536. [PMID: 39111481 DOI: 10.1016/j.ijbiomac.2024.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
In recent years, nanocellulose (NC) has gained significant attention due to its remarkable properties, such as adjustable surface chemistry, extraordinary biological properties, low toxicity and low density. This review summarizes the preparation of NC derived from lignocellulosic biomass (LCB), including cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and lignin-containing cellulose nanofibrils (LCNF). It focuses on examining the impact of non-cellulosic components such as lignin and hemicellulose on the functionality of NC. Additionally, various surface modification strategies of NC were discussed, including esterification, etherification and silylation. The review also emphasizes the progress of NC application in areas such as Pickering emulsions, food packaging materials, food additives, and hydrogels. Finally, the prospects for producing NC from LCB and its application in food-related fields are examined. This work aims to demonstrate the effective benefits of preparing NC from lignocellulosic biomass and its potential application in the food industry.
Collapse
Affiliation(s)
- Yi-Hui Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Yu-Tong He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Shipelin VA, Skiba EA, Budayeva VV, Shumakova AA, Kolobanov AI, Sokolov IE, Maisaya KZ, Guseva GV, Trusov NV, Masyutin AG, Delegan YA, Kocharovskaya YN, Bogun AG, Gmoshinski IV, Khotimchenko SA, Nikityuk DB. Toxicological Characteristics of Bacterial Nanocellulose in an In Vivo Experiment-Part 1: The Systemic Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:768. [PMID: 38727362 PMCID: PMC11085383 DOI: 10.3390/nano14090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Bacterial nanocellulose (BNC) is being considered as a potential replacement for microcrystalline cellulose as a food additive and a source of dietary fiber due to its unique properties. However, studies on the risks of consuming BNC in food are limited, and it is not yet approved for use in food in the US, EU, and Russia. AIM This study aims to perform a toxicological and hygienic assessment of the safety of BNC in a subacute 8-week administration in rats. METHODS BNC was administered to male Wistar rats in doses of 0, 1.0, 10.0, and 100 mg/kg body weight for 8 weeks. Various parameters such as anxiety levels, cognitive function, organ masses, blood serum and liver biochemistry, oxidative stress markers, vitamin levels, antioxidant gene expression, and liver and kidney histology were evaluated. RESULTS Low and medium doses of BNC increased anxiety levels and liver glutathione, while high doses led to elevated LDL cholesterol, creatinine, and uric acid levels. Liver tissue showed signs of degeneration at high doses. BNC did not significantly affect vitamin levels. CONCLUSION The adverse effects of BNC are either not dose-dependent or fall within normal physiological ranges. Any effects on rats are likely due to micronutrient deficiencies or impacts on intestinal microbiota.
Collapse
Affiliation(s)
- Vladimir A. Shipelin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Ekaterina A. Skiba
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Vera V. Budayeva
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Antonina A. Shumakova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Alexey I. Kolobanov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Ilya E. Sokolov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Kirill Z. Maisaya
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Galina V. Guseva
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Nikita V. Trusov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | | | - Yanina A. Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences”, 142290 Pushchino, Russia; (Y.A.D.); (Y.N.K.)
| | - Yulia N. Kocharovskaya
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences”, 142290 Pushchino, Russia; (Y.A.D.); (Y.N.K.)
| | - Alexander G. Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences”, 142290 Pushchino, Russia; (Y.A.D.); (Y.N.K.)
| | - Ivan V. Gmoshinski
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Sergey A. Khotimchenko
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Dmitry B. Nikityuk
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Department of Ecology and Food Safety, Institute of Ecology, Patrice Lumumba Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
10
|
Liu L, Fisher KD, Bussey WD. Comparison of Emulsion Stabilizers: Application for the Enhancement of the Bioactivity of Lemongrass Essential Oil. Polymers (Basel) 2024; 16:415. [PMID: 38337303 DOI: 10.3390/polym16030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Recent focus on cellulose nanomaterials, particularly biodegradable and biocompatible cellulose nanocrystals (CNCs), has prompted their use as emulsion stabilizers. CNCs, when combined with salt, demonstrate enhanced emulsion stabilization. This study explored three emulsion stabilizers: Tween 80, soybean CNCs with salt (salted CNCs), and a combination of salted CNCs with Tween 80. Soybean CNCs, derived from soybean stover, were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Antifungal testing against Aspergillus flavus revealed increased bioactivity in all lemongrass essential oil (EO)-loaded emulsions compared to pure essential oil. In addition, all three emulsions exhibited a slight reduction in antifungal activity after 30 days of room temperature storage. The release experiment revealed that the EO-loaded nanoemulsion exhibited a slow-release profile. The nanoemulsion stabilized by salted CNCs and Tween 80 exhibited significantly lower release rates when compared to the nanoemulsion stabilized solely by Tween 80, attributed to the gel network formed by salted CNCs. The findings of this study highlight the efficacy of cellulose nanocrystals procured from soybean byproducts in conjunction with synthetic surfactants to create nanoencapsulated essential oils, resulting in improved antimicrobial efficacy and the achievement of sustained release properties.
Collapse
Affiliation(s)
- Lingling Liu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
| | - Kaleb D Fisher
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | - William D Bussey
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
11
|
Liu L, Abiol KAE, Friest MA, Fisher KD. Synergistic Stabilization of Nanoemulsion Using Nonionic Surfactants and Salt-Sensitive Cellulose Nanocrystals. Polymers (Basel) 2023; 15:4682. [PMID: 38139935 PMCID: PMC10747914 DOI: 10.3390/polym15244682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Soybean stover is a lignocellulose biomass that is rich in cellulose. In the present study, soybean cellulose nanocrystals (CNCs) were prepared from soybean stover by alkaline treatment, bleaching treatment, acid hydrolysis, dialysis and ultrasonication. The as-prepared soybean CNC was characterized by transmission electron microscopy (TEM), zetasizer and rheometer. The effects of NaCl on the particle size, zeta potential, and viscosity of soybean CNC was studied. Soybean CNC was explored as an emulsion stabilizer for lemongrass-essential-oil-loaded emulsions. Soybean CNCs could stabilize the oil-in-water emulsion against coalescence but not flocculation. The addition of NaCl reduced the creaming index and enhanced the encapsulation efficiency and freeze-thaw stability of the CNC-stabilized emulsion. Salted CNC (i.e., CNC in the presence of NaCl) enhanced the thermodynamic stability (i.e., heating-cooling and freeze-thaw stability) of Tween 80 stabilized emulsion, while unsalted CNC did not. Synergistic effects existed between Tween 80 and salted CNC in stabilizing oil-in-water emulsions. The nanoemulsion stabilized with Tween 80 and salted CNC had a mean particle size of ~70 nm, and it was stable against all thermodynamic stability tests. This is the first study to report the synergistic interaction between salted CNC and small molecular weight surfactants (e.g., Tween 80) to improve the thermodynamic stability of nanoemulsion.
Collapse
Affiliation(s)
- Lingling Liu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
| | - Kyle A. E. Abiol
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50010, USA
| | - Mason A. Friest
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA
| | - Kaleb D. Fisher
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
12
|
Müller M, Drexel R, Burkhart M, Dähnhardt-Pfeiffer S, Wien L, Herrmann C, Knoll T, Metzger C, Briesen H, Wagner S, Meier F, Kohl Y. Ex vivo models for intestinal translocation studies of cellulose nanocrystals. IN VITRO MODELS 2023; 2:181-194. [PMID: 39872170 PMCID: PMC11756450 DOI: 10.1007/s44164-023-00056-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 01/29/2025]
Abstract
Purpose Cellulose nanocrystals (CNC) play a promising role in the development of new advanced materials. The growing demand of CNC-containing products in the food industry will lead to an increased human exposure through oral uptake. To date, there is a dearth of studies reporting on the risks which CNC pose to human health following ingestion. In vitro models, which lack physiological accuracy, are often used to justify animal experiments in the field of nanosafety assessment. Nevertheless, ex vivo models of the intestine pose promising alternatives to in vivo experiments. Methods Two ex vivo models, a microfluidic chip based on porcine intestinal mucus and the Ussing chamber apparatus with tissue from abattoirs, which aim to complement in vitro models, are characterized by investigating the transport and toxicity of CNC through them in comparison to an in vitro triple co-culture model. Silver nanoparticles were included in this study as well-known and characterized nanomaterials for comparative purposes. Results Study results show that CNC cross the intestinal mucus layer but do not pass the intestinal tissue barrier ex vivo and in vitro; furthermore, no toxic effects were observed under exposure conditions tested. Conclusion These ex vivo models present complementary methods to the existing standardized in vitro and in silico methods to support data generation under physiologically relevant conditions without the use of animals. This multi-model approach offers an enhanced understanding of the complex interaction between new materials and human tissue and aligns with the flexible approach of IATA (Integrated Approaches to Testing and Assessment) and NAMs (New Approach Methods) for chemical and drug safety assessment. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00056-x.
Collapse
Affiliation(s)
- Michelle Müller
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, Rankinestr. 1, 86899 Landsberg am Lech, Germany
| | - Marie Burkhart
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | | | - Lena Wien
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Thorsten Knoll
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Sylvia Wagner
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Florian Meier
- Postnova Analytics GmbH, Rankinestr. 1, 86899 Landsberg am Lech, Germany
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| |
Collapse
|
13
|
Zaini HM, Saallah S, Roslan J, Sulaiman NS, Munsu E, Wahab NA, Pindi W. Banana biomass waste: A prospective nanocellulose source and its potential application in food industry - A review. Heliyon 2023; 9:e18734. [PMID: 37554779 PMCID: PMC10404743 DOI: 10.1016/j.heliyon.2023.e18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Bananas are among the most produced and consumed fruit all over the world. However, a vast amount of banana biomass is generated because banana trees bear fruit only once in their lifetime. This massive amount of biomass waste is either disposed of in agricultural fields, combusted, or dumped at plantations, thus posing environmental concerns. Nanocellulose (NC) extraction from this source can be one approach to improve the value of banana biomass. Owing to its superb properties, such as high surface area and aspect ratio, good tensile strength, and high thermal stability, this has facilitated nanocellulose application in the food industry either as a functional ingredient, an additive or in food packaging. In this review, two different applications of banana biomass NC were identified: (i) food packaging and (ii) food stabilizers. Relevant publications were reviewed, focusing on the nanocellulose extraction from several banana biomass applications as food additives, as well as on the safety and regulatory aspects. Ultimately, further research is required to prompt a perspicuous conclusion about banana biomass NC safety, its potential hazards in food applications, as well as its validated standards for future commercialization.
Collapse
Affiliation(s)
- Hana Mohd Zaini
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jumardi Roslan
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Elisha Munsu
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Noorakmar A. Wahab
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Functional Foods Research Group, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
14
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
15
|
He X, Sun C, Khalesi H, Yang Y, Zhao J, Zhang Y, Wen Y, Fang Y. Comparison of cellulose derivatives for Ca 2+ and Zn 2+ adsorption: Binding behavior and in vivo bioavailability. Carbohydr Polym 2022; 294:119837. [PMID: 35868780 DOI: 10.1016/j.carbpol.2022.119837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Cellulose with distinct colloidal states exhibited different adsorption capability for ions and whether the intake of cellulose would bring positive or negative influence on the mineral bioavailability is inconclusive. This work investigated the binding behavior of carboxymethyl cellulose (CMC), TEMPO-oxidized nanofibrillated/nanocrystalline cellulose (TOCNF/TOCNC), and microcrystalline cellulose (MCC) with Ca2+and Zn2+ and compared their effects on mineral bioavailability in vitro and in vivo. The results suggested that CMC displayed a higher adsorption capability (36.6 mg g-1 for Ca2+ and 66.2 mg g-1 for Zn2+) than the other types of cellulose because of the strong interaction between carboxyl groups of cellulose and the ions. Although the cellulose derivatives had adverse effects on ion adsorption in vitro, the fermentability endowed by TOCNF/TOCNC counterbalanced the negative impacts in vivo. The findings suggested that the colloidal states of cellulose affected the bioavailability of minerals and could provide useful guidance for applications of specific cellulose.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hoda Khalesi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuyan Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingwen Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
16
|
Vital N, Ventura C, Kranendonk M, Silva MJ, Louro H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3375. [PMID: 36234501 PMCID: PMC9565252 DOI: 10.3390/nano12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanomaterials (CNMs) have emerged recently as an important group of sustainable bio-based nanomaterials (NMs) with potential applications in multiple sectors, including the food, food packaging, and biomedical fields. The widening of these applications leads to increased human oral exposure to these NMs and, potentially, to adverse health outcomes. Presently, the potential hazards regarding oral exposure to CNMs are insufficiently characterised. There is a need to understand and manage the potential adverse effects that might result from the ingestion of CNMs before products using CNMs reach commercialisation. This work reviews the potential applications of CNMs in the food and biomedical sectors along with the existing toxicological in vitro and in vivo studies, while also identifying current knowledge gaps. Relevant considerations when performing toxicological studies following oral exposure to CNMs are highlighted. An increasing number of studies have been published in the last years, overall showing that ingested CNMs are not toxic to the gastrointestinal tract (GIT), suggestive of the biocompatibility of the majority of the tested CNMs. However, in vitro and in vivo genotoxicity studies, as well as long-term carcinogenic or reproductive toxicity studies, are not yet available. These studies are needed to support a wider use of CNMs in applications that can lead to human oral ingestion, thereby promoting a safe and sustainable-by-design approach.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
17
|
DeLoid GM, Cao X, Coreas R, Bitounis D, Singh D, Zhong W, Demokritou P. Incineration-Generated Polyethylene Micro-Nanoplastics Increase Triglyceride Lipolysis and Absorption in an In Vitro Small Intestinal Epithelium Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12288-12297. [PMID: 35973094 PMCID: PMC9559972 DOI: 10.1021/acs.est.2c03195] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite mounting evidence of micro-nanoplastics (MNPs) in food and drinking water, little is known of the potential health risks of ingested MNPs, and nothing is known of their potential impact on nutrient digestion and absorption. We assessed the effects of environmentally relevant secondary MNPs generated by incineration of polyethylene (PE-I), on digestion and absorption of fat in a high fat food model using a 3-phase in vitro simulated digestion coupled with a tri-culture small intestinal epithelium model. The presence of 400 μg/mL PE-I increased fat digestion by 33% and increased fat absorption by 147 and 145% 1 and 2 h after exposure. Analysis of the PE-I lipid corona during digestion revealed predominantly triacylglycerols with enrichment of fatty acids in the small intestinal phase. Protein corona analysis showed enrichment of triacylglycerol lipase and depletion of β-casein in the small intestinal phase. These findings suggest digestion of triacylglycerol by lipase on the surface of lipid-coated MNPs as a potential mechanism. Further studies are needed to investigate the mechanisms underlying the greater observed increase in fat absorption, to verify these results in an animal model, and to determine the MNP properties governing their effects on lipid digestion and absorption.
Collapse
Affiliation(s)
- Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roxana Coreas
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Dimitrios Bitounis
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dilpreet Singh
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Bertsch P, Steingoetter A, Arnold M, Scheuble N, Bergfreund J, Fedele S, Liu D, Parker HL, Langhans W, Rehfeld JF, Fischer P. Lipid emulsion interfacial design modulates human in vivo digestion and satiation hormone response. Food Funct 2022; 13:9010-9020. [PMID: 35942900 PMCID: PMC9426722 DOI: 10.1039/d2fo01247b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Lipid emulsions (LEs) with tailored digestibility have the potential to modulate satiation or act as delivery systems for lipophilic nutrients and drugs. The digestion of LEs is governed by their interfacial emulsifier layer which determines their gastric structuring and accessibility for lipases. A plethora of LEs that potentially modulate digestion have been proposed in recent years, however, in vivo validations of altered LE digestion remain scarce. Here, we report on the in vivo digestion and satiation of three novel LEs stabilized by whey protein isolate (WPI), thermo-gelling methylcellulose (MC), or cellulose nanocrystals (CNCs) in comparison to an extensively studied surfactant-stabilized LE. LE digestion and satiation were determined in terms of gastric emptying, postprandial plasma hormone and metabolite levels characteristic for lipid digestion, perceived hunger/fullness sensations, and postprandial food intake. No major variations in gastric fat emptying were observed despite distinct gastric structuring of the LEs. The plasma satiation hormone and metabolite response was fastest and highest for WPI-stabilized LEs, indicating a limited capability of proteins to prevent lipolysis due to fast hydrolysis under gastric conditions and displacement by lipases. MC-stabilized LEs show a similar gastric structuring as surfactant-stabilized LEs but slightly reduced hormone and metabolite responses, suggesting that thermo-gelling MC prevents lipase adsorption more effectively. Ultimately, CNC-stabilized LEs showed a drastic reduction (>70%) in plasma hormone and metabolite responses. This confirms the efficiency of particle (Pickering) stabilized LEs to prevent lipolysis proposed in literature based on in vitro experiments. Subjects reported more hunger and less fullness after consumption of LEs stabilized with MC and CNCs which were able to limit satiation responses. We do not find evidence for the widely postulated ileal brake, i.e. that delivery of undigested nutrients to the ileum triggers increased satiation. On the contrary, we find decreased satiation for LEs that are able to delay lipolysis. No differences in food intake were observed 5 h after LE consumption. In conclusion, LE interfacial design modulates in vivo digestion and satiation response in humans. In particular, Pickering LEs show extraordinary capability to prevent lipolysis and qualify as oral delivery systems for lipophilic nutrients and drugs.
Collapse
Affiliation(s)
- Pascal Bertsch
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Andreas Steingoetter
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Nathalie Scheuble
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Jotam Bergfreund
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Shahana Fedele
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Dian Liu
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Helen L Parker
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Northern Medical Physics and Clinical Engineering, Royal Victoria Infirmary, Newcastle upon Tyne NHS Trust Hospitals, Newcastle upon Tyne, UK
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Fischer
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Dai X, Wang X, Gu J, Song Z, Guo H, Shi M, Li H. Mechanism associated with the positive effect of nanocellulose on nitrogen retention in a manure composting system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115308. [PMID: 35658259 DOI: 10.1016/j.jenvman.2022.115308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Additives can play important roles in effectively inhibiting nitrogen losses during livestock manure composting due to the activities of microbes. This study investigated the effects of adding nanocellulose at 300 mg/kg, 600 mg/kg, and 900 mg/kg (NC900) on nitrogen conversion, nitrogen conversion functional genes, and related microorganisms during composting. The results showed that compared with the control, nanocellulose hindered the ammoniation reaction. In addition, NC900 promoted nitrification, interfered with the denitrification process, and reduced the abundance of the nirK gene, thereby increasing the nitrate nitrogen content and decreasing ammonia spillover. NC900 promoted nitrogen fixation by increasing the abundance of members of Rhizobiales, which play important roles in nitrogen fixation. In general, compared with the control, NC900 improved the retention of nitrogen by controlling ammonia emissions. The results obtained in this study demonstrate that nanocellulose can be applied in the treatment of organic solid waste and agricultural production.
Collapse
Affiliation(s)
- Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meiling Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
20
|
Tracking Bacterial Nanocellulose in Animal Tissues by Fluorescence Microscopy. NANOMATERIALS 2022; 12:nano12152605. [PMID: 35957036 PMCID: PMC9370207 DOI: 10.3390/nano12152605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
The potential of nanomaterials in food technology is nowadays well-established. However, their commercial use requires a careful risk assessment, in particular concerning the fate of nanomaterials in the human body. Bacterial nanocellulose (BNC), a nanofibrillar polysaccharide, has been used as a food product for many years in Asia. However, given its nano-character, several toxicological studies must be performed, according to the European Food Safety Agency’s guidance. Those should especially answer the question of whether nanoparticulate cellulose is absorbed in the gastrointestinal tract. This raises the need to develop a screening technique capable of detecting isolated nanosized particles in biological tissues. Herein, the potential of a cellulose-binding module fused to a green fluorescent protein (GFP–CBM) to detect single bacterial cellulose nanocrystals (BCNC) obtained by acid hydrolysis was assessed. Adsorption studies were performed to characterize the interaction of GFP–CBM with BNC and BCNC. Correlative electron light microscopy was used to demonstrate that isolated BCNC may be detected by fluorescence microscopy. The uptake of BCNC by macrophages was also assessed. Finally, an exploratory 21-day repeated-dose study was performed, wherein Wistar rats were fed daily with BNC. The presence of BNC or BCNC throughout the GIT was observed only in the intestinal lumen, suggesting that cellulose particles were not absorbed. While a more comprehensive toxicological study is necessary, these results strengthen the idea that BNC can be considered a safe food additive.
Collapse
|
21
|
Brand W, van Kesteren PCE, Swart E, Oomen AG. Overview of potential adverse health effects of oral exposure to nanocellulose. Nanotoxicology 2022; 16:217-246. [PMID: 35624082 DOI: 10.1080/17435390.2022.2069057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocellulose is an emerging material for which several food-related applications are foreseen, for example, novel food, functional food, food additive or in food contact materials. Nanocellulose materials can display a range of possible shapes (fibers, crystals), sizes and surface modifications. For food-related applications in the EU, information on the safety of substances must be assessed. The present review summarizes the current knowledge on (possible) adverse health effects of nanocellulose upon oral exposure, keeping EU regulatory aspects in mind. The overview indicates that toxicity data, especially from in vivo studies, are limited and outcomes are not unambiguous. The hazard assessment is further complicated by: the diversity in morphologies and surface modifications, lack of standard reference materials, limited knowledge about intestinal fate and absorption, analytical difficulties in biological matrices, dispersion issues, the possible presence of impurities and interferences within biological assays. Two subchronic in vivo toxicity studies show no indications of toxicity for two specific nanocellulose materials, even at high doses. However, these studies may have missed certain early or nano-specific toxic effects, such as inflammation potential, for which other, subacute studies provide some indications. Most in vitro studies show no cytotoxicity; however, several indicate that effects on oxidative stress and inflammatory responses depend on differences in size or surface treatments. Further, too few studies assessed genotoxicity of nanocelluloses. Therefore, immunotoxicity, oxidative stress and genotoxicity require further attention, as do absorption and effects on nutrient uptake. Recommendations for future research facilitating the safety assessment and safe-by-design of nanocellulose in food-related applications are provided.
Collapse
Affiliation(s)
- Walter Brand
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Petra C E van Kesteren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elmer Swart
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
22
|
Zhang K, Wang W, Zhao K, Ma Y, Wang Y, Li Y. Recent development in foodborne nanocellulose: Preparation, properties, and applications in food industry. FOOD BIOSCI 2021; 44:101410. [DOI: 10.1016/j.fbio.2021.101410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Guo Z, DeLoid GM, Cao X, Bitounis D, Sampathkumar K, Woei Ng K, Joachim Loo SC, Philip D. Effects of ingested nanocellulose and nanochitosan materials on carbohydrate digestion and absorption in an in vitro small intestinal epithelium model. ENVIRONMENTAL SCIENCE. NANO 2021; 8:2554-2568. [PMID: 34840801 PMCID: PMC8622715 DOI: 10.1039/d1en00233c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanoscale materials derived from natural biopolymers like cellulose and chitosan have many potentially useful agri-food and oral drug delivery applications. Because of their large and potentially bioactive surface areas and other unique physico-chemical properties, it is essential when evaluating their toxicological impact to assess potential effects on the digestion and absorption of co-ingested nutrients. Here, the effects of cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and chitosan nanoparticles (Chnp) on the digestion and absorption of carbohydrates were studied. Starch digestion was assessed by measuring maltose released during simulated digestion of starch solutions. Glucose absorption was assessed by measuring translocation from the resulting digestas across an in vitro transwell tri-culture model of the small intestinal epithelium and calculating the area under the curve increase in absorbed glucose, analogous to the glycemic index. At 1% w/w, CNF and Chnp had small but significant effects (11% decrease and 14% increase, respectively) and CNC had no effect on starch hydrolysis during simulated digestion of a 1% w/w rice starch solution. In addition, at 2% w/w CNC had no effect on amylolysis in 1% solutions of either rice, corn, or wheat starch. Similarly, absorption of glucose from digestas of starch solutions (i.e., from maltose), was unaffected by 1% w/w CNF or CNC, but was slightly increased (10%, p<0.05) by 1% Chnp, possibly due to the slightly higher maltose concentration in the Chnp-containing digestas. In contrast, all of the test materials caused sharp increases (~1.2, 1.5, and 1.6 fold for CNC, CNF, and Chnp, respectively) in absorption of glucose from starch-free digestas spiked with free glucose at a concentration corresponding to complete hydrolysis of 1% w/w starch. The potential for ingested cellulose and chitosan nanomaterials to increase glucose absorption could have important health implications. Further studies are needed to elucidate the mechanisms underlying the observed increases and to evaluate the potential glycemic effects in an intact in vivo system.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798, Singapore, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798, Singapore, Singapore
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Say Chye Joachim Loo
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798, Singapore, Singapore
| | - Demokritou Philip
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798, Singapore, Singapore
| |
Collapse
|
25
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano (deceased) V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021; 19:e06768. [PMID: 34377190 PMCID: PMC8331059 DOI: 10.2903/j.efsa.2021.6768] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.
Collapse
|