1
|
Li Y, Zheng S, Song Y, Jiang Q, Zhang H. Preparation, characterization, and application of composite oleogels based on whey protein isolate and sodium alginate. Int J Biol Macromol 2025; 300:140317. [PMID: 39870279 DOI: 10.1016/j.ijbiomac.2025.140317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Oleogels with solid-like properties can serve as substitutes for fats, thereby avoiding the consumption of high levels of saturated fatty acids. In this study, we developed a protein-polysaccharide composite network oleogel using whey protein isolate (WPI) and sodium alginate (SA) through an emulsion-templated method. Analysis with Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydrogen bonds and van der Waals forces between WPI and SA, which bolstered the oleogel's structure. The enhanced oxidative stability and oil binding capacity of the WPI-SA composite oleogels were attributed to these interactions, as compared to the WPI single-network oleogel. Large-amplitude oscillatory shear testing demonstrated that the WPI-SA composite oleogels exhibited good plastic behavior and irreversible shear thinning, whereas the WPI single-network oleogel displayed more viscous behavior and shear-thinning characteristics. In applications, replacing pork fat entirely with the WPI-SA composite oleogel in Harbin red sausage resulted in a product with similar texture and sensory qualities to the original sausage. These results suggested that the WPI-SA composite oleogel could be a potential suitable fat substitute in the food industry, particularly for meat products.
Collapse
Affiliation(s)
- Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Shijie Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yuanyuan Song
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
2
|
Zhong Y, Wang B, Lv W, Wu Y, Lv Y, Sheng S. Recent research and applications in lipid-based food and lipid-incorporated bioink for 3D printing. Food Chem 2024; 458:140294. [PMID: 38968712 DOI: 10.1016/j.foodchem.2024.140294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Three-dimensional (3D) printing, as an emerging digital production technology, has recently been receiving increasing attention in food processing. It is important to understand the effect of key ingredients of food materials on the printing, which makes it possible to achieve a wider range of structures using few nozzles and to provide tailored nutrition and personalization. This comprehensive review delves into the latest research on 3D-printed lipid-based foods, encompassing a variety of products such as chocolate, processed cheese, as well as meat. It also explores the development and application of food bioinks that incorporate lipids as a pivotal component, including those based on starch, protein, oleogels, bigels, and emulsions, as well as emulsion gels. Moreover, this review identifies the current challenges and presents an outlook on future research directions in the field of 3D food printing, especially the research and application of lipids in food 3D printing.
Collapse
Affiliation(s)
- Yuanliang Zhong
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yiran Wu
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yinqiao Lv
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shaoyang Sheng
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
3
|
Zhang Y, Xu Y, Fang T, Qiu Q, Chen M. Characterization, stability, and curcumin bioaccessibility of buckwheat flower polysaccharide conjugate emulsion. J Food Sci 2024; 89:5378-5394. [PMID: 39086045 DOI: 10.1111/1750-3841.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
In this study, buckwheat flower polysaccharide conjugates (BFPCs) were synthesized and evaluated for their emulsification properties. The stability of BFPC-stabilized emulsions was assessed through particle size analysis, zeta potential measurements, microscopic observations, and rheological tests. Gum Arabic served as a control to compare BFPC's emulsifying efficacy across varying storage conditions, including exposure to metal ions, pH variations, and different heat treatment temperatures. Results showed that BFPC significantly lowered interfacial tension (16.2 mN/m) and effectively stabilized emulsions containing 60 wt% medium-chain triglycerides at a concentration of 1.0 wt%. Over a 20-day storage period, BFPC emulsions demonstrated robust resistance to heat (60-90°C), acidic conditions (pH 2.0-9.0), and ion concentrations (Na+, Ca2+). Moreover, in a high oil phase emulsion, BFPC enhanced the bioavailability of curcumin to 27.05%, markedly higher than the 7.10% observed without emulsification, underscoring its potential in nutrient delivery applications. PRACTICAL APPLICATION: Due to its excellent resistance, long-time emulsifying stability under different conditions, and its good effect in curcumin embedding, BFPC has a broad prospect and can be widely used under various conditions in food industry.
Collapse
Affiliation(s)
- Yu Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Yanghui Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Tianqi Fang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Qing Qiu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Maobin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Han Y, Li L, Wei F, Zhang F, Pan Z, Wei Y, Wang L. Dandelion polysaccharides improve the emulsifying properties and antioxidant capacities of emulsions stabilized by whey protein isolate. Food Chem X 2024; 21:101218. [PMID: 38384685 PMCID: PMC10878858 DOI: 10.1016/j.fochx.2024.101218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
In this study, the effects of dandelion polysaccharide (DP) and its carboxymethylated derivative (CMDP) on the emulsifying characteristics and antioxidant capacities of emulsions stabilized by whey protein isolate (WPI) were determined. The addition of both DP and CMDP reduced the particle size and zeta potential of the emulsions. Using 1.0 % WPI and 1.0 % CMDP as emulsifier, the emulsifying activity index (EAI) and emulsifying stability index (ESI) were 32.61 ± 0.11 m2/g and 42.58 ± 0.13 min, respectively, which were higher than the corresponding values of 27.19 ± 0.18 m2/g and 36.17 ± 0.15 min with 1.0 % WPI and 1.0 % DP. Fourier-transform infrared spectroscopy (FT-IR), far-ultraviolet circular dichroism (Far-UV CD), and fluorescence (FS) spectra analyses confirmed that the α-helix and β-sheet structures in WPI-polysaccharide complexes were reduced compared with those in pure WPI, whereas the random-coil content was enhanced by the addition of polysaccharides. Moreover, DP and CMDP effectively improved the antioxidant capacity and inhibited oxidation of the emulsions during storage. Therefore, DP and its carboxymethylated derivative exhibit great potential to be applied in the emulsion-based delivery system.
Collapse
Affiliation(s)
- Yujun Han
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lianyu Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fangming Wei
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fengjie Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoyang Pan
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yanhui Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Libo Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Fan H, Zhu P, Hui G, Shen Y, Yong Z, Xie Q, Wang M. Mechanism of synergistic stabilization of emulsions by amorphous taro starch and protein and emulsion stability. Food Chem 2023; 424:136342. [PMID: 37209438 DOI: 10.1016/j.foodchem.2023.136342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Amorphous taro starch (TS)/whey protein isolate (WPI) mixtures were prepared using pasting treatment. The TS/WPI mixtures and their stabilized emulsions were characterized to determine the emulsion stability and the mechanism of synergistic stabilization of emulsions. As WPI content increased from 0% to 13%, the paste final viscosity and retrogradation ratio of the TS/WPI mixture gradually decreased from 3683 cP to 2532 cP and from 80.65% to 30.51%, respectively. As the WPI content increased from 0% to 10%, the emulsion droplet size decreased gradually from 96.81 μm to 10.32 μm, and the storage modulus G' and stabilities of freeze-thaw, centrifugal, and storage increased gradually. Confocal laser scanning microscopy revealed that WPI and TS were mainly distributed at the oil-water interface and droplet interstice, respectively. Thermal treatment, pH, and ionic strength had little influence on the appearance but had different influences on the droplet size and G', and the rates of droplet size and G' increase under storage varied with different environmental factors.
Collapse
Affiliation(s)
- Huan Fan
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Peilei Zhu
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gan Hui
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Yue Shen
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Zongjie Yong
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wang
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Guo L, Fan L, Zhou Y, Li J. Constitution and reconstitution of microcapsules with high diacylglycerol oil loading capacity based on whey protein isolate / octenyl succinic anhydride starch/ inulin matrix. Int J Biol Macromol 2023; 242:124667. [PMID: 37121416 DOI: 10.1016/j.ijbiomac.2023.124667] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The aim of this study was to constitute microcapsule systems with high oil loading capacity by octenyl succinic anhydride (OSA) starch, whey protein isolate (WPI) and inulin (IN) substrates to provide a new method for encapsulating diacylglycerol oil. Specifically, this study characterizes the physicochemical properties and reconstitution capacity of highly oil loading diacylglycerol microcapsules by comparing the wall encapsulation capacity of the binary wall system OSA-IN, WPI-IN and the ternary wall system WPI-OSA (1:9, 5:5, 9:1)-IN for diacylglycerol oil. It was found that WPI-OSA (5:5)-IN significantly improved the water solubility of microcapsules (86.11 %) compared to OSA-IN microcapsules, and the addition of WPI made the surface of microcapsules smoother and increased the thermal stability and solubility of microcapsules; the addition of OSA enhanced the wettability of microcapsules compared to WPI-IN. In addition, WPI-OSA (5:5)-IN microcapsules have the highest encapsulation efficiency (96.03 %), high emulsion stability after reconstitution, and the smallest droplet size (212.83 nm) after 28 d. Therefore, the WPI-OSA-IN composite system is suitable for the production of highly oil-loaded microencapsulated systems with excellent reconstitution ability to expand the application of diacylglycerol oil.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Development of emulsion-based edible inks for 3D printing applications: Pickering emulsion gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Xu M, Li J, Wang Y, Liu J, Liu P, Wang Q, Che Z. Complex coacervation of soy protein isolate-limited enzymatic hydrolysates and sodium alginate: Formation mechanism and its application. Food Sci Nutr 2022; 10:4178-4188. [PMID: 36514769 PMCID: PMC9731524 DOI: 10.1002/fsn3.3009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
The complex coacervation of soybean protein isolate and polysaccharide has been widely applied for preparing biopolymer materials like microcapsule. In this study, hydrolytic soy protein isolate (HSPI) was prepared by mild hydrolysis of soy protein isolate (SPI) with fungal protease 400 (F400). The degree of hydrolysis (DH) for the enzymatic products was controlled at 1%-5%. Emulsification, oxidation resistance, and thermal stability were used to evaluate the performances of HSPI with different DH. The results showed that the HSPI with the hydrolysis degree of 2% had the optimal property. Subsequently, the complex polymer of HSPI/SA was prepared by the coalescence reaction of HSPI and sodium alginate (SA). The turbidity curves manifested the optimal complex coacervation occurred at the ratio of 7:1 (HSPI:SA). Fourier transform infrared spectroscopy (FTIR) presented that the reaction involved electrostatic interactions between -NH3 + in HSPI and -COO- in SA. Isothermal titration calorimetry experiments indicated that the complex coacervation reactions of HSPI and SA arose spontaneously. The microencapsulation by complex coacervation of HSPI and SA was further produced for embedding sweet orange oil. The thermogravimetric analysis (TGA) result revealed that the microencapsulation system of HSPI/SA had a better heat resistance than that using the SPI/SA complex polymer.
Collapse
Affiliation(s)
- Min Xu
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Jiayi Li
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Ying Wang
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Jiamin Liu
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Ping Liu
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Qin Wang
- Department of Nutrition & Food scienceUniversity of MarylandCollege ParkMarylandUSA
| | - Zhenming Che
- School of Food and BioengineeringXihua UniversityChengduChina
| |
Collapse
|
9
|
Zhu H, Xu L, Wang J, Zhang Z, Xu X, Yang K, Sun P, Liao X, Cai M. Rheological behaviors of ethanol-fractional polysaccharides from Dendrobium officinale in aqueous solution: Effects of concentration, temperature, pH, and metal ions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Hou F, Yang S, Ma X, Gong Z, Wang Y, Wang W. Characterization of Physicochemical Properties of Oil-in-Water Emulsions Stabilized by Tremella fuciformis Polysaccharides. Foods 2022; 11:foods11193020. [PMID: 36230096 PMCID: PMC9563765 DOI: 10.3390/foods11193020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, emulsions stabilized by Tremella fuciformis polysaccharides (TFP) were prepared and the physiochemical properties were assessed. Results showed that the TFP emulsions illustrated the highest emulsifying activity (EAI) and emulsifying stability (ESI) when the concentration of TFP and oil were 0.8% and 10% (wt%). The higher pH value was in favor of the emulsifying properties, while the addition of NaCl impaired the stability, and the greater the concentration, the lower the EAI and ESI. Besides, the emulsifying and rheological properties and stability analysis were evaluated in comparison with gum arabic, pectin, and carboxymethyl cellulose emulsions. It was discovered that TFP illustrated better storage and freeze-thaw stability, which was proved by the result of zeta-potential and particle size. The rheological measurement revealed that all the emulsions behaved as pseudoplastic fluids, while TFP displayed a higher viscosity. Meanwhile, TFP emulsions tended to form a more stable network structure according to the analysis of the parameters obtained from the Herschel–Bulkley model. FTIR spectra suggested that the O-H bond could be destructed without the formation of new covalent bonds during the emulsion preparation. Therefore, this study would be of great importance for the research of emulsions stabilized by TFP as a natural food emulsifier.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuhui Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaobin Ma
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Zhiqing Gong
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
11
|
Nhouchi Z, Watuzola R, Pense-Lheritier AM. A review on octenyl succinic anhydride modified starch-based Pickering-emulsion: Instabilities and ingredients interactions. J Texture Stud 2022; 53:581-600. [PMID: 35119704 DOI: 10.1111/jtxs.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
Abstract
Pickering emulsions endow attractive features and a wide versatility in both food and nonfood fields. In the last decades, a noticeable interest has emerged toward the use of octenyl succinic anhydride (OSA)-starch to improve the long-term stability in such systems. In this review, instabilities were pointed out, where a new kinetic equilibrium was observed in Pickering emulsions assigned to migration and size variations of particles. These features were monitored using rheological measurements to understand microstructure and droplets mobility. The elastic modulus (G'), the viscous modulus (G″), and tan(δ) values were attributed to the transition from solid to fluid and assigned to the instability of the formulation regardless of the type of the system configuration. The novelties in using OSA-modified starch, were also exposed. The chemical modification of starch decreased creaming for months. Interaction between OSA-modified starches and some ionic components (potassium, magnesium, and calcium) as well as hydrocolloids and proteins reduced creaming and coalescence due to dense interfacial film. Furthermore, the key parameters (oil fraction, fatty acids composition, oxidative stress oil polarity, and oil viscosity) that govern oil phase in Pickering emulsion, were analyzed. These parameters were found to be positively correlated to the stability of Pickering emulsions.
Collapse
Affiliation(s)
- Zeineb Nhouchi
- School of Industrial Biology - EBI, EBInnov, Cergy, France
| | | | | |
Collapse
|
12
|
Iqbal S, Zhang P, Wu P, Yin Q, Hidayat K, Chen XD. Modulation of viscosity, microstructure and lipolysis of W/O emulsions by cellulose ethers during in vitro digestion in the dynamic and semi-dynamic gastrointestinal models. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Duan F, Zhang Y, Wang Y, Zhang X, Zhao W, Zhang H. Study on stability of grape seed oil/rice hydrolyzed protein emulsion. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, the stability mechanism of grape seed oil/rice hydrolyzed protein emulsion was studied. The grape seed oil (10% v/v) and rice hydrolyzed protein (2% w/v) were homogenized under high pressure to prepare the emulsion. It was observed by CLSM and Multiple light scatterometer that the emulsion had long-term storage stability, and the average particle size of droplets was 0.984–1.363 µm. ζ-potential ranged from −37.733 mV to −25.633 mV. It is found that the emulsion has strong resistance to temperature, ions and other environmental factors from the macroscopic and microscopic structure, and no emulsion stratification phenomenon occurs. The composite emulsion can be used in the field of food industry and fine chemical industry, which can provide nutrition and functionality of products, its research has certain value and has a wide space for development.
Collapse
Affiliation(s)
- Fangyu Duan
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Ying Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Yue Wang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Xu Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Wei Zhao
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Hao Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| |
Collapse
|
14
|
Iqbal S, Zhang P, Wu P, Deng R, Chen XD. Impact of amylose from maize starch on the microstructure, rheology and lipolysis of W/O emulsions during simulated semi‐dynamic gastrointestinal digestion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shahid Iqbal
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Ping Zhang
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Peng Wu
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Renpan Deng
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003 China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
15
|
Ge A, Iqbal S, Chen XD. Alteration in rheology and microstructure of O/W emulsions using controlled soy protein isolate-polysaccharide aggregation in aqueous phases. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Xu H, Yang L, Chen Y, Shi L, Zhang J, Jin J, Wei W, Jin Q, Wang X. WITHDRAWN: Effects of MCC to CMC ratios on room temperature-storage stabilities and whipping capabilities of whipping creams. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hu M, Liu G, Zhang W, Du X, Qi B, Li Y. Co-encapsulation of (-)-epigallocatechin-3-gallate and quercetin in double emulsion hydrogel beads: Microstructures, functional properties, and digestion behaviors. Food Chem 2021; 373:131427. [PMID: 34710677 DOI: 10.1016/j.foodchem.2021.131427] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Co-loaded (-)-epigallocatechin-3-gallate (EGCG) and quercetin double emulsions and hydrogel beads were prepared, and their structure, functions, and digestion characteristics were investigated. The double emulsion particles were adsorbed by the cross-linked chains of the hydrogel beads. The encapsulation efficiencies of EGCG and quercetin within the hydrogel beads were higher than those within the double emulsion, while the antioxidant activities of the double emulsions were higher than those of the hydrogel beads. A lower amount of free fatty acids (FFAs) was released from the hydrogel beads than that released from the double emulsions. The bioavailability of EGCG was higher in the hydrogel beads than those in the double emulsions, while the quercetin bioavailability was not significantly different expect for the ratio of 3:7. The hydrogel beads remained intact in the stomach; however, numerous oil spills occurred in the small intestine. These data may improve double-emulsion-based delivery systems for controlled lipolysis and the release of co-encapsulated hydrophilic and lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guannan Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoqian Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin 150028, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin 150028, China; Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150028, China.
| |
Collapse
|