1
|
Lee CKW, Xu Y, Yuan Q, Chan YH, Poon WY, Zhong H, Chen S, Li MG. Advanced 3D Food Printing with Simultaneous Cooking and Generative AI Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408282. [PMID: 40012406 PMCID: PMC11962674 DOI: 10.1002/adma.202408282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 02/11/2025] [Indexed: 02/28/2025]
Abstract
3D food printing is an indispensable technology for emerging food technologies. However, conventional nonconcurrent postprocessing methods limit the final food quality, including the unappealing nature of food ink modification, imperfections in retaining the desired food shape, and the risk of microbial contamination. Here, an artificial intelligence (AI)-enhanced solution is developed to achieve extrusion-based printing with simultaneous infrared heating, enabling in-line and rapid cooking of complex starch-based food. Noncontact graphene heaters as cooking sources present outstanding food quality control with microbial studies, microstructure analysis, and heat transfer simulation models. This integrative 3D food printing method with AI-enhanced food pattern generation and in-situ cooking significantly expands the applications for customized food creation. It paves the way for the broader adoption of heating-based 3D printing of functional materials.
Collapse
Affiliation(s)
- Connie Kong Wai Lee
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| | - Yang Xu
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| | - Qiaoyaxiao Yuan
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| | - Yee Him Chan
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| | - Wing Yan Poon
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| | - Haosong Zhong
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| | - Siyu Chen
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| | - Mitch Guijun Li
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
- Joint Laboratory for Wave Functional Materials ResearchThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SAR999077China
| |
Collapse
|
2
|
McAnulty MJ, Plumier BM, Miller AL, Tomasula PM. Effect of pH adjustments on a novel micellar casein-based edible 3-dimensional printing formulation. J Dairy Sci 2025; 108:3314-3323. [PMID: 39947605 DOI: 10.3168/jds.2024-25768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 04/20/2025]
Abstract
Three-dimensional (3D) food printing holds the potential to help reduce food waste by precise portion control and use of materials that are produced in excess or are otherwise discarded. This relatively new technology is likely to undergo decreases in equipment costs. To take advantage of such prospects, we developed a novel micellar casein-based edible 3D printing formulation. Our formulation relies on a highly concentrated micellar casein solution (27.75%, wt/wt, final) along with pH adjustments (3.5, 4.0, 4.8, 6.7, 7.2, and 8.2) at chilled temperature (4-9°C) to avoid premature aggregation. In comparison to the natural pH of 6.7, both alkalinization and acidification past the isoelectric point of 4.6 enhanced both elastic and viscous moduli that enable for shape retention during and after extrusion from a 3D food printer. However, alkalinization led to smaller increases in the viscous modulus and did not lead to the shape retention that acidification to 4.0 or 3.5 does. Both acidification and alkalinization also resulted in rougher surface textures compared with the formulation at pH 6.7. Whereas the pH 4.8 formulation had inferior shape retention qualities compared with those at the other pH values tested, it had optimized water resilience, defined here as minimized swelling and dissolution of dried structures placed in water. Overall, we present a novel casein-based 3D printing formulation that could be printed while chilled, and with properties that could be modified by pH adjustments.
Collapse
Affiliation(s)
- Michael J McAnulty
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038.
| | - Benjamin M Plumier
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038
| | - Amanda L Miller
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038
| | - Peggy M Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038
| |
Collapse
|
3
|
Zhang H, Hua S, Liu M, Chuang R, Gao X, Li H, Xia N, Xiao C. Citric Acid Improves Egg White Protein Foaming Characteristics and Meringue 3D Printing Performance. Foods 2025; 14:198. [PMID: 39856865 PMCID: PMC11765449 DOI: 10.3390/foods14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Meringue has limited the use of meringue for personalization because of its thermally unstable system. Citric acid (CA) enhancement of egg white protein (EWP) foaming properties is proposed for the preparation of 3D-printed meringues. The results showed that CA increased the viscosity, exposure of hydrophobic groups (79.8% increase), and free sulfhydryl content (from 5 µmol/g to 34.8 µmol/g) of the EWP, thereby increasing the foaminess (from 50% to 178.2%). CA treatment increased the rates of adsorption, stretching, and orientation of EWP at the air-water interface to form multiple layers, resulting in a delay in foam thinning. The secondary structure of CA-treated EWP remained intact, and the exposure of amino acid residues in the tertiary structure increased with the expansion of the hydrophobic region. CA-treated EWP-prepared protein creams had a suitable viscosity (from 233.4 Pa·s to 1007 Pa·s at 0.1 s-1), shear thinning, structural restorability, and elasticity, which ensured good fidelity of their printed samples. Experiments involving 3D printing of CA-treated EWP showed that CA could significantly enhance the 3D printing fidelity of EWP. Our study could provide new ideas for the development of customizable 3D-printed foam food products.
Collapse
Affiliation(s)
- Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
4
|
Hamilton AN, Gibson KE. Impact of Storage Conditions on Salmonella enterica and Listeria monocytogenes in Pre- and Post-Printed 3D Food Ink. J Food Prot 2025; 88:100409. [PMID: 39551263 DOI: 10.1016/j.jfp.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
3D food printers (3DFPs) allow for the customization of physicochemical properties of foods in new ways. Storage conditions for food ink capsules and printed food inks have not been investigated. This study aimed to determine the impact of storage temperature, time, and method (pre- vs. postprinting) on Salmonella enterica and Listeria monocytogenes. A bacterial cocktail was cultured in minimal media and added to a protein cookie food ink at ∼6.5 log CFU/g. The inoculated food ink was divided into 18 capsules (50 g/capsule); half were 3D printed. The remaining capsules and printed products were stored at three temperatures [20 °C, 4 °C, -18 °C]. Selective media (XLT-4 and CHROMagar Listeria) were used for pathogen enumeration. Aerobic plate count and yeast counts were performed at each time point. The pH and water activity (aw) of the food ink were measured at the initial and final timepoints. A significant four-way interaction effect was observed between microorganism type (L. monocytogenes/Salmonella), time, temperature, and storage method (capsule/print) (p = 0.014). Significant findings include (1) at -18 °C, concentrations of L. monocytogenes decreased between Day 0 and Day 1, (2) at 20 °C, concentrations of S. enterica were significantly higher in the capsule than in the printed food on Day 1 (p < 0.0001), and (3) at 4 °C, concentrations of S. enterica were significantly higher in the printed food on Day 5 compared to Day 1 (p < 0.0001) with a 0.9 (95% CI: 0.89, 0.91) log increase. In addition, a significant three-way interaction effect was found between microorganism type (yeast/aerobic counts), time, and temperature (p = 0.024). Yeast counts remained steady at all temperatures, while aerobic counts increased at 4 °C. Minimal differences were observed between Listeria and Salmonella and their responses to varying storage conditions over time indicating that storage method and temperature may be less important for a low-water activity product such as protein cookie food ink.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States.
| |
Collapse
|
5
|
Liu Y, Sun J, Wen Z, Wang J, Roopesh MS, Pan D, Du L. Functionality enhancement of pea protein isolate through cold plasma modification for 3D printing application. Food Res Int 2024; 197:115267. [PMID: 39593346 DOI: 10.1016/j.foodres.2024.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Pea protein isolate (PPI) is a valued sustainable protein source, but its relatively poor functional properties limit its applications. This study reports on the effects of cold argon plasma (CP) treatment of a 15 % (w/w) PPI solution on the functionality, structure, and oxidative characteristics of PPI, as well as its application in 3D-printed plant-based meat. Results indicate that hydroxyl radicals and high-energy excited-state argon atoms are the primary active substances. A decrease in free sulfhydryl content and an increase in carbonyl content were observed in treated PPI, indicating oxidative modification. Compared to the control group, the gel strength of PPI was increased by 62.5 % and the storage modulus was significantly improved after 6 min treatment, forming a more ordered and highly cross-linked 3D gel network. Additionally, CP significantly improved the water-holding capacity, oil-holding capacity, emulsifying activity, and emulsion stability of PPI. The α-helix and random coil content in PPI decreased, while the β-sheet content increased, resulting in a more ordered secondary structure after CP treatment. Compared to untreated PPI, the consistency coefficient (K) increased from 36.00 to 47.68 Pa·sn. The treated PPI exhibited higher apparent viscosity and storage modulus and demonstrated better 3D printing performance and self-supporting ability. This study demonstrates that CP can significantly enhance the functional properties of PPI, providing great potential and prospects for improving the printability of 3D printing materials and developing plant protein foods with low-allergenicity.
Collapse
Affiliation(s)
- Ye Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jiayu Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Zimo Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
6
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Abedini A, Sohrabvandi S, Sadighara P, Hosseini H, Farhoodi M, Assadpour E, Alizadeh Sani M, Zhang F, Seyyedi-Mansour S, Jafari SM. Personalized nutrition with 3D-printed foods: A systematic review on the impact of different additives. Adv Colloid Interface Sci 2024; 328:103181. [PMID: 38749383 DOI: 10.1016/j.cis.2024.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Three-dimensional (3D) printing is one of the world's top novel technologies in the food industry due to the production of food in different conditions and places (restaurants, homes, catering, schools, for dysphagia patients, and astronauts' food) and the production of personalized food. Nowadays, 3D printers are used in the main food industries, including meat, dairy, cereals, fruits, and vegetables, and have been able to produce successfully on a small scale. However, due to the expansion of this technology, it has challenges such as high-scale production, selection of printable food, formulation optimization, and food production according to the consumer's opinion. Food additives (gums, enzymes, proteins, starches, polyphenols, spices, probiotics, algae, edible insects, oils, salts, vitamins, flavors, and by-products) are one of the main components of the formulation that can be effective in food production according to the consumer's attitude. Food additives can have the highest impact on textural and sensory characteristics, which can be effective in improving consumer attitudes and reducing food neophobia. Most of the 3D-printed food cannot be printed without the presence of hydrocolloids, because the proper flow of the selected formulation is one of the key factors in improving the quality of the printed product. Functional additives such as probiotics can be useful for specific purposes and functional food production. Food personalization for specific diseases with 3D printing technology requires a change in the formulation, which is closely related to the selection of correct food additives. For example, the production of 3D-printed plant-based steaks is not possible without the presence of additives, or the production of food for dysphagia patients is possible in many cases by adding hydrocolloids. In general, additives can improve the textural, rheological, nutritional, and sensory characteristics of 3D printed foods; so, investigating the mechanism of the additives on all the characteristics of the printed product can provide a wide perspective for industrial production and future studies.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Sepidar Seyyedi-Mansour
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxia e Alimentacion (IAA)- CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Pan Y, Sun Q, Liu Y, Wei S, Han Z, Zheng O, Ji H, Zhang B, Liu S. Investigation on 3D printing of shrimp surimi under different printing parameters and thermal processing conditions. Curr Res Food Sci 2024; 8:100745. [PMID: 38694555 PMCID: PMC11061261 DOI: 10.1016/j.crfs.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
Improving the printing accuracy and stability of shrimp surimi and finding appropriate printing parameters and suitable thermal processing method can help to develop high value-added 3D printing products of shrimp surimi. It was found that in order to make the 3D printing products of shrimp surimi have higher printing adaptability (printing accuracy and printing stability reach more than 97%), by choosing nozzle diameter of 1.20 mm and setting the printing height of the nozzle to 2.00 mm, the layers of the printed products were better fused with each other, and the printing accuracy of the products could be greatly improved; there was no uneven discharge and filament breakage when the nozzle moved at the speed of 30 mm/s; and the products were internally compact and had good stability when the printing filling rate was 80%. In addition, the deformation rates of steamed, boiled and deep-fried shrimp surimi products were significantly higher than those of oven-baked and microwaved shrimp surimi products (P < 0.05). Microwave heating had a greater effect on the deformation and color of shrimp surimi products, and was not favored by the evaluators. In terms of deformation rate, sensory score, and textural characteristic, the oven-baked thermal processing method was selected to obtain higher sensory evaluation scores and lower deformation rates of shrimp surimi 3D printed products. In the future, DIY design can be carried out in 3D printing products of shrimp surimi to meet the needs of different groups of people for modern food.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
9
|
Jiang Q, Wei X, Liu Q, Zhang T, Chen Q, Yu X, Jiang H. Rheo-fermentation properties of bread dough with different gluten contents processed by 3D printing. Food Chem 2024; 433:137318. [PMID: 37678121 DOI: 10.1016/j.foodchem.2023.137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
The rheological properties of dough closely correlate to a dough's ability to be three-dimensionally (3D) printed, but only weakly characterize its fermentation and baking process. This study aimed to use rheo-fermentation properties to predict rheological properties of dough, thereby obtaining indirect information on both 3D printing properties and post-processing characteristics. The 3D printing behavior and baking quality of the dough were measured. A gluten content of 13% was found to be the most suitable for 3D printing and exhibited desirable performance during fermentation and baking. Pearson correlation analysis revealed a strong correlation between rheological properties and rheo-fermentation properties. Using partial least squares regression-based models, the coefficients of determination of the prediction for rheological parameters (G', G″, η*) were 0.920, 0.854 and 0.863, respectively, with corresponding residual prediction deviation values of 3.063, 3.774, and 4.773. These findings suggest that 3D printing of bread dough products can be easily and successfully accomplished.
Collapse
Affiliation(s)
- Qian Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xing Wei
- Shaanxi Rural Science and Technology Development Center, Xi'an 710000, China
| | - Qianchen Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Teng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Qin Chen
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hao Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
10
|
Wen Y, Che QT, Wang S, Park HJ, Kim HW. Elaboration of dimensional quality in 3D-printed food: Key factors in process steps. Compr Rev Food Sci Food Saf 2024; 23:e13267. [PMID: 38284586 DOI: 10.1111/1541-4337.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 01/30/2024]
Abstract
Three-dimensional (3D) printing has been applied to produce food products with intricate and fancy shapes. Dimensional quality, such as dimensional stability, surface smoothness, shape fidelity, and resolution, are essential for the attractive appearance of 3D-printed food. Various methods have been extensively studied and proposed to control the dimensional quality of printed foods, but few papers focused on comprehensively and deeply summarizing the key factors of the dimensional quality of printed products at each stage-before, during, and after printing-of the 3D printing process. Therefore, the effects of pretreatment, printing parameters and rheological properties, and cooking and storage on the dimensional quality of the printed foods are summarized, and solutions are also provided for improving the dimensional quality of the printed products at each step. Before printing, incorporating additives or applying physical, chemical, or biological pretreatments can improve the dimensional quality of carbohydrate-based, protein-based, or lipid-based printed food. During printing, controlling the printing parameters and modifying the rheological properties of inks can affect the shape of printed products. Furthermore, post-processing is essential for some printed foods. After printing, changing formulations, incorporating additives, and selecting post-processing methods and conditions may help achieve the desired shape of 3D-printed or 4D-printed products during cooking. Additives help in the storage stability of printed food. Finally, various opportunities have been proposed to regulate the dimensional properties of 3D-printed structures. This review provides detailed guidelines for researchers and users of 3D printers to produce various printed foods with the desired shapes and appearances.
Collapse
Affiliation(s)
- Yaxin Wen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Quang Tuan Che
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyun Woo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hamilton AN, Mirmahdi RS, Ubeyitogullari A, Romana CK, Baum JI, Gibson KE. From bytes to bites: Advancing the food industry with three-dimensional food printing. Compr Rev Food Sci Food Saf 2024; 23:e13293. [PMID: 38284594 DOI: 10.1111/1541-4337.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
The rapid advancement of three-dimensional (3D) printing (i.e., a type of additive manufacturing) technology has brought about significant advances in various industries, including the food industry. Among its many potential benefits, 3D food printing offers a promising solution to deliver products meeting the unique nutritional needs of diverse populations while also promoting sustainability within the food system. However, this is an emerging field, and there are several aspects to consider when planning for use of 3D food printing for large-scale food production. This comprehensive review explores the importance of food safety when using 3D printing to produce food products, including pathogens of concern, machine hygiene, and cleanability, as well as the role of macronutrients and storage conditions in microbial risks. Furthermore, postprocessing factors such as packaging, transportation, and dispensing of 3D-printed foods are discussed. Finally, this review delves into barriers of implementation of 3D food printers and presents both the limitations and opportunities of 3D food printing technology.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Razieh S Mirmahdi
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Department of Biological and Agricultural Engineering, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Chetanjot K Romana
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Jamie I Baum
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Wu S, Sun W, Yang Y, Jia R, Zhan S, Ou C, Huang T. Phosphorylated Fish Gelatin and the Quality of Jelly Gels: Gelling and Microbiomics Analysis. Foods 2023; 12:3682. [PMID: 37835334 PMCID: PMC10572387 DOI: 10.3390/foods12193682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphorylated fish gelatin (PFG) exhibited preferable physical and chemical properties than fish gelatin (FG) in our previous study. To investigate the application values of PFG, the effects of different ratios (2:1, 1:1 and 1:2) of FG(PFG)/κ carrageenan (κC) on the quality of jelly gels (JGs) were investigated. The sensory quality of PFG:κC (1:2)/FG:κC (1:2) was found to be superior based on sensory evaluations, which was also verified with the results for texture, rheology, etc. Moreover, the structural changes in JGs were related to the introduction of phosphoric acid groups into the molecular chain of gelatin and the protein-polysaccharide interactions. According to the storage results, PFG jelly had better storage quality, higher hardness and chewiness values than those of FG jelly. High-throughput sequencing of JG microbial analysis showed that the addition of PFG changed the amount of microorganisms, microbial species abundance and the microbial composition of JGs, which were also closely related to the storage quality of JGs. In conclusion, the applications of PFG have promising potential to improve the quality of confectionery.
Collapse
Affiliation(s)
- Shiyu Wu
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Yihui Yang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Ru Jia
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Changrong Ou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| |
Collapse
|
13
|
Raja V, Moses JA, Anandharamakrishnan C. Effect of 3D printing conditions and post-printing fermentation on pearl millet fortified idli. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2401-2412. [PMID: 36571560 DOI: 10.1002/jsfa.12410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Three-dimensional (3D) printing is an emerging technology with numerous applications in the development of novel foods to meet personalized and special dietary needs. Using 3D printing, foods with modified textures and consistency can be prepared conveniently. In this work, an indigenous rice-black gram batter was fortified with pearl millet flour and 3D printed in the in-house developed extrusion-based food printer, Controlled Additive-manufacturing Robotic Kit (CARK™). The impact of material supply composition was investigated along with optimization of different printing parameters and an in-depth analysis of post-printing fermentation kinetics was undertaken. The shape changes in the 3D printed constructs during fermentation were analyzed using a pixel-count-based image-processing technique that correlates with the change in surface area. RESULTS The addition of millet flour resulted in accelerated fermentation. At 20% w/w level, better printability with higher precision and layer definition was obtained at 800 mm min-1 of printing speed, 360 rpm extrusion motor speed, and 1.22 mm nozzle diameter with an extrusion rate of 15.57 mm3 s-1 . The constructs of pearl millet flour (PMF) fortified idli batter have shown good structural stability and creep recovery. Fermentation-assisted shape change was found to be significantly influenced by infill levels. Both raw and steamed constructs with 40% infill showed around 37% lower hardness than 100% infill constructs due to a porous inner structure with reduced expansion in the surface area/volume during fermentation. CONCLUSION The results of the study provide insights into the scope of printing fermented foods through the food-to-food fortification approach and textural modification of foods using 3D printing by varying the infill levels. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vijayakumar Raja
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| |
Collapse
|
14
|
Dhal S, Anis A, Shaikh HM, Alhamidi A, Pal K. Effect of Mixing Time on Properties of Whole Wheat Flour-Based Cookie Doughs and Cookies. Foods 2023; 12:941. [PMID: 36900458 PMCID: PMC10001416 DOI: 10.3390/foods12050941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This study investigated if whole wheat flour-based cookie dough's physical properties were affected by mixing time (1 to 10 min). The cookie dough quality was assessed using texture (spreadability and stress relaxation), moisture content, and impedance analysis. The distributed components were better organized in dough mixed for 3 min when compared with the other times. The segmentation analysis of the dough micrographs suggested that higher mixing time resulted in the formation of water agglomeration. The infrared spectrum of the samples was analyzed based on the water populations, amide I region, and starch crystallinity. The analysis of the amide I region (1700-1600 cm-1) suggested that β-turns and β-sheets were the dominating protein secondary structures in the dough matrix. Conversely, most samples' secondary structures (α-helices and random coil) were negligible or absent. MT3 dough exhibited the lowest impedance in the impedance tests. Test baking of the cookies from doughs mixed at different times was performed. There was no discernible change in appearance due to the change in the mixing time. Surface cracking was noticeable on all cookies, a trait often associated with cookies made with wheat flour that contributed to the impression of an uneven surface. There was not much variation in cookie size attributes. Cookies ranged in moisture content from 11 to 13.5%. MT5 (mixing time of 5 min) cookies demonstrated the strongest hydrogen bonding. Overall, it was observed that the cookies hardened as mixing time rose. The texture attributes of the MT5 cookies were more reproducible than the other cookie samples. In summary, it can be concluded that the whole wheat flour cookies prepared with a creaming time and mixing time of 5 min each resulted in good quality cookies. Therefore, this study evaluated the effect of mixing time on the physical and structural properties of the dough and, eventually, its impact on the baked product.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Arfat Anis
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hamid M Shaikh
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdullah Alhamidi
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
15
|
Lv Y, Lv W, Li G, Zhong Y. The research progress of physical regulation techniques in 3D food printing. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Derossi A, Corradini M, Caporizzi R, Oral M, Severini C. Accelerating the process development of innovative food products by prototyping through 3D printing technology. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Osama K, Siddiqui MH, Makroo HA, Younis K. Development of cookies enriched with fiber and calcium-rich Neolamarckia cadamba fruit powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Wang X, Zhang M, Phuhongsung P, Mujumdar AS. Impact of internal structural design on quality and nutritional properties of 3D printed food products during post-printing: a critical review. Crit Rev Food Sci Nutr 2022; 64:3713-3724. [PMID: 36260286 DOI: 10.1080/10408398.2022.2134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
3D food printing (3DFP) provides an excellent opportunity to deposit layers of multiple food materials to create unique complex structures of products with more engaging visuals, specific textures, and customized nutritional properties. Many printed products require post-printing processing which can result in sensory variance, texture changes, and even nutritional modification. Hence it is necessary to implement the design of the complex internal structure to ensure the desired quality of the printed products following post-printing. 3-D printing of various types of food products, for example, chocolate, cheese, meat, vegetables, fruits, fish, eggs, cereal-based products, and so on, has been examined with regard to post-printing requirements. This review aims to summarize the current work on the latest developments in 3DFP technology concerning the internal structure design of 3D printed products and its effect on quality during post-printing. The quality parameters include: textural, physical, morphological, and dimensional characteristics as well as nutritional properties. Furthermore, post-printing modifications such as 4D are also analyzed.
Collapse
Affiliation(s)
- Xiaotuo Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- College of Intelligent Agriculture, Suzhou Polytechnic Institute of Agriculture, Soochow, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Pattarapon Phuhongsung
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Li X, Fan L, Li J. Extrusion-based 3D printing of high internal phase emulsions stabilized by co-assembled β-cyclodextrin and chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Demei K, Zhang M, Phuhongsung P, Mujumdar AS. 3D food printing: Controlling characteristics and improving technological effect during food processing. Food Res Int 2022; 156:111120. [DOI: 10.1016/j.foodres.2022.111120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
|
21
|
Pulatsu E, Su JW, Lin J, Lin M. Utilization of Ethyl Cellulose in the Osmotically-Driven and Anisotropically-Actuated 4D Printing Concept of Edible Food Composites. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Falsafi SR, Maghsoudlou Y, Aalami M, Jafari SM, Raeisi M, Nishinari K, Rostamabadi H. Application of multi-criteria decision-making for optimizing the formulation of functional cookies containing different types of resistant starches: A physicochemical, organoleptic, in-vitro and in-vivo study. Food Chem 2022; 393:133376. [PMID: 35661608 DOI: 10.1016/j.foodchem.2022.133376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/04/2022]
Abstract
This research aimed to develop a healthy cookie formulation containing different types of resistant starch, through the application of TOPSIS approach, as a potent feature of MCDM methodologies. Physicochemical investigations reveled that a harder, denser and less sticky dough was produced by the addition of both types of RS. The baking of these doughs resulted in the production of crumblier cookies of less spread ratio, lower porous crumb and whiter surface/crumb. Moreover, in-vitro digestibility of the cookies demonstrated that the baking process can adversely reduce the resistance of RS4 to the enzymolysis reactions. This phenomenon was further corroborated by in-vivo studies where the RS4 enriched cookies were less capable in reducing the postprandial blood glucose. TOPSIS, through successful solving of the multiple criteria decision 9 (alternatives) × 15 (evaluated attributes) matrix suggested that the cookie containing 15% RS is the best alternative in all aspects, possessing acceptable physicochemical/organoleptic attributes, and in-vivo/in-vitro dietary fiber.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yahya Maghsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mehran Aalami
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Mojtaba Raeisi
- Food, Drug and Natural Products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Nutrition, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|