1
|
Peart L, Gonzalez J, Morel Swols D, Duman D, Saridogan T, Ramzan M, Zafeer MF, Liu XZ, Eshraghi AA, Hoffer ME, Angeli SI, Bademci G, Blanton S, Smith C, Telischi FF, Tekin M. Dispersed DNA variants underlie hearing loss in South Florida's minority population. Hum Genomics 2023; 17:103. [PMID: 37996878 PMCID: PMC10668374 DOI: 10.1186/s40246-023-00556-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND We analyzed the genetic causes of sensorineural hearing loss in racial and ethnic minorities of South Florida by reviewing demographic, phenotypic, and genetic data on 136 patients presenting to the Hereditary Hearing Loss Clinic at the University of Miami. In our retrospective chart review, of these patients, half self-identified as Hispanic, and the self-identified racial distribution was 115 (86%) White, 15 (11%) Black, and 6 (4%) Asian. Our analysis helps to reduce the gap in understanding the prevalence, impact, and genetic factors related to hearing loss among diverse populations. RESULTS The causative gene variant or variants were identified in 54 (40%) patients, with no significant difference in the molecular diagnostic rate between Hispanics and Non-Hispanics. However, the total solve rate based on race was 40%, 47%, and 17% in Whites, Blacks, and Asians, respectively. In Non-Hispanic Whites, 16 different variants were identified in 13 genes, with GJB2 (32%), MYO7A (11%), and SLC26A4 (11%) being the most frequently implicated genes. In White Hispanics, 34 variants were identified in 20 genes, with GJB2 (22%), MYO7A (7%), and STRC-CATSPER2 (7%) being the most common. In the Non-Hispanic Black cohort, the gene distribution was evenly dispersed, with 11 variants occurring in 7 genes, and no variant was identified in 3 Hispanic Black probands. For the Asian cohort, only one gene variant was found out of 6 patients. CONCLUSION This study demonstrates that the diagnostic rate of genetic studies in hearing loss varies according to race in South Florida, with more heterogeneity in racial and ethnic minorities. Further studies to delineate deafness gene variants in underrepresented populations, such as African Americans/Blacks from Hispanic groups, are much needed to reduce racial and ethnic disparities in genetic diagnoses.
Collapse
Affiliation(s)
- LéShon Peart
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joanna Gonzalez
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dayna Morel Swols
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duygu Duman
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Audiology, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Turcin Saridogan
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Memoona Ramzan
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammad Faraz Zafeer
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Xue Zhong Liu
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael E Hoffer
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Simon I Angeli
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan Blanton
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carson Smith
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred F Telischi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Bi Q, Huang S, Wang H, Gao X, Ma M, Han M, Lu S, Kang D, Nourbakhsh A, Yan D, Blanton S, Liu X, Yuan Y, Yao Y, Dai P. Preimplantation genetic testing for hereditary hearing loss in Chinese population. J Assist Reprod Genet 2023:10.1007/s10815-023-02753-8. [PMID: 37017887 PMCID: PMC10352472 DOI: 10.1007/s10815-023-02753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/13/2023] [Indexed: 04/06/2023] Open
Abstract
PURPOSE To evaluate the clinical validity of preimplantation genetic testing (PGT) to prevent hereditary hearing loss (HL) in Chinese population. METHODS A PGT procedure combining multiple annealing and looping-based amplification cycles (MALBAC) and single-nucleotide polymorphisms (SNPs) linkage analyses with a single low-depth next-generation sequencing run was implemented. Forty-three couples carried pathogenic variants in autosomal recessive non-syndromic HL genes, GJB2 and SLC26A4, and four couples carried pathogenic variants in rare HL genes: KCNQ4, PTPN11, PAX3, and USH2A were enrolled. RESULTS Fifty-four in vitro fertilization (IVF) cycles were implemented, 340 blastocysts were cultured, and 303 (89.1%) of these received a definite diagnosis of a disease-causing variant testing, linkage analysis and chromosome screening. A clinical pregnancy of 38 implanted was achieved, and 34 babies were born with normal hearing. The live birth rate was 61.1%. CONCLUSIONS AND RELEVANCE In both the HL population and in hearing individuals at risk of giving birth to offspring with HL in China, there is a practical need for PGT. The whole genome amplification combined with NGS can simplify the PGT process, and the efficiency of PGT process can be improved by establishing a universal SNP bank of common disease-causing gene in particular regions and nationalities. This PGT procedure was demonstrated to be effective and lead to satisfactory clinical outcomes.
Collapse
Affiliation(s)
- Qingling Bi
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
- Departments of Otolaryngology Head & Neck Surgery, China-Japan Friendship Hospital, 2#Yinghua Road, Beijing, 100029, China
| | - Shasha Huang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
| | - Hui Wang
- Reproductive Center, Chinese PLA General Hospital, 28#Fuxing Road, Beijing, 100853, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, China
| | - Minyue Ma
- Reproductive Center, Chinese PLA General Hospital, 28#Fuxing Road, Beijing, 100853, China
| | - Mingyu Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics, 1698 Wangyuan Road, Fengxian District Shanghai, 201400, China
| | - Dongyang Kang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Susan Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yongyi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China.
| | - Yuanqing Yao
- Reproductive Center, Chinese PLA General Hospital, 28#Fuxing Road, Beijing, 100853, China.
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
3
|
Viljoen I, Hendricks C, Malherbe H, Pepper M. Regenerative medicines: A new regulatory paradigm for South Africa. Biochimie 2022; 196:123-130. [DOI: 10.1016/j.biochi.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
|
4
|
Adeyemo A, Faridi R, Chattaraj P, Yousaf R, Tona R, Okorie S, Bharadwaj T, Nouel-Saied LM, Acharya A, Schrauwen I, Morell RJ, Leal SM, Friedman TB, Griffith AJ, Roux I. Genomic analysis of childhood hearing loss in the Yoruba population of Nigeria. Eur J Hum Genet 2021; 30:42-52. [PMID: 34837038 PMCID: PMC8738750 DOI: 10.1038/s41431-021-00984-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Although variant alleles of hundreds of genes are associated with sensorineural deafness in children, the genes and alleles involved remain largely unknown in the Sub-Saharan regions of Africa. We ascertained 56 small families mainly of Yoruba ethno-lingual ancestry in or near Ibadan, Nigeria, that had at least one individual with nonsyndromic, severe-to-profound, prelingual-onset, bilateral hearing loss not attributed to nongenetic factors. We performed a combination of exome and Sanger sequencing analyses to evaluate both nuclear and mitochondrial genomes. No biallelic pathogenic variants were identified in GJB2, a common cause of deafness in many populations. Potential causative variants were identified in genes associated with nonsyndromic hearing loss (CIB2, COL11A1, ILDR1, MYO15A, TMPRSS3, and WFS1), nonsyndromic hearing loss or Usher syndrome (CDH23, MYO7A, PCDH15, and USH2A), and other syndromic forms of hearing loss (CHD7, OPA1, and SPTLC1). Several rare mitochondrial variants, including m.1555A>G, were detected in the gene MT-RNR1 but not in control Yoruba samples. Overall, 20 (33%) of 60 independent cases of hearing loss in this cohort of families were associated with likely causal variants in genes reported to underlie deafness in other populations. None of these likely causal variants were present in more than one family, most were detected as compound heterozygotes, and 77% had not been previously associated with hearing loss. These results indicate an unusually high level of genetic heterogeneity of hearing loss in Ibadan, Nigeria and point to challenges for molecular genetic screening, counseling, and early intervention in this population.
Collapse
Affiliation(s)
- Adebolajo Adeyemo
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Parna Chattaraj
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel Okorie
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Liz M Nouel-Saied
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Griffith
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, TN, 38163, USA
| | - Isabelle Roux
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Van Heurck R, Carminho-Rodrigues MT, Ranza E, Stafuzza C, Quteineh L, Gehrig C, Hammar E, Guipponi M, Abramowicz M, Senn P, Guinand N, Cao-Van H, Paoloni-Giacobino A. Benefits of Exome Sequencing in Children with Suspected Isolated Hearing Loss. Genes (Basel) 2021; 12:genes12081277. [PMID: 34440452 PMCID: PMC8391342 DOI: 10.3390/genes12081277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: Hearing loss is characterized by an extensive genetic heterogeneity and remains a common disorder in children. Molecular diagnosis is of particular benefit in children, and permits the early identification of clinically-unrecognized hearing loss syndromes, which permits effective clinical management and follow-up, including genetic counselling. Methods: We performed whole-exome sequencing with the analysis of a panel of 189 genes associated with hearing loss in a prospective cohort of 61 children and 9 adults presenting mainly with isolated hearing loss. Results: The overall diagnostic rate using exome sequencing was 47.2% (52.5% in children; 22% in adults). In children with confirmed molecular results, 17/32 (53.2%) showed autosomal recessive inheritance patterns, 14/32 (43.75%) showed an autosomal dominant condition, and one case had X-linked hearing loss. In adults, the two patients showed an autosomal dominant inheritance pattern. Among the 32 children, 17 (53.1%) had nonsyndromic hearing loss and 15 (46.7%) had syndromic hearing loss. One adult was diagnosed with syndromic hearing loss and one with nonsyndromic hearing loss. The most common causative genes were STRC (5 cases), GJB2 (3 cases), COL11A1 (3 cases), and ACTG1 (3 cases). Conclusions: Exome sequencing has a high diagnostic yield in children with hearing loss and can reveal a syndromic hearing loss form before other organs/systems become involved, allowing the surveillance of unrecognized present and/or future complications associated with these syndromes.
Collapse
Affiliation(s)
- Roxane Van Heurck
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Maria Teresa Carminho-Rodrigues
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Emmanuelle Ranza
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Caterina Stafuzza
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Lina Quteineh
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Corinne Gehrig
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Eva Hammar
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Michel Guipponi
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Marc Abramowicz
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Pascal Senn
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Nils Guinand
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Helene Cao-Van
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Ariane Paoloni-Giacobino
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
- Correspondence:
| |
Collapse
|
6
|
Spectrum of MYO7A Mutations in an Indigenous South African Population Further Elucidates the Nonsyndromic Autosomal Recessive Phenotype of DFNB2 to Include Both Homozygous and Compound Heterozygous Mutations. Genes (Basel) 2021; 12:genes12020274. [PMID: 33671976 PMCID: PMC7919343 DOI: 10.3390/genes12020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
MYO7A gene encodes unconventional myosin VIIA, which, when mutated, causes a phenotypic spectrum ranging from recessive hearing loss DFNB2 to deaf-blindness, Usher Type 1B (USH1B). MYO7A mutations are reported in nine DFNB2 families to date, none from sub-Saharan Africa.In DNA, from a cohort of 94 individuals representing 92 families from the Limpopo province of South Africa, eight MYO7A variations were detected among 10 individuals. Family studies identified homozygous and compound heterozygous mutations in 17 individuals out of 32 available family members. Four mutations were novel, p.Gly329Asp, p.Arg373His, p.Tyr1780Ser, and p.Pro2126Leufs*5. Two variations, p.Ser617Pro and p.Thr381Met, previously listed as of uncertain significance (ClinVar), were confirmed to be pathogenic. The identified mutations are predicted to interfere with the conformational properties of myosin VIIA through interruption or abrogation of multiple interactions between the mutant and neighbouring residues. Specifically, p.Pro2126Leufs*5, is predicted to abolish the critical site for the interactions between the tail and the motor domain essential for the autoregulation, leaving a non-functional, unregulated protein that causes hearing loss. We have identified MYO7A as a possible key deafness gene among indigenous sub-Saharan Africans. The spectrum of MYO7A mutations in this South African population points to DFNB2 as a specific entity that may occur in a homozygous or in a compound heterozygous state.
Collapse
|
7
|
Chiereghin C, Robusto M, Mauri L, Primignani P, Castorina P, Ambrosetti U, Duga S, Asselta R, Soldà G. SLC22A4 Gene in Hereditary Non-syndromic Hearing Loss: Recurrence and Incomplete Penetrance of the p.C113Y Mutation in Northwest Africa. Front Genet 2021; 12:606630. [PMID: 33643381 PMCID: PMC7902881 DOI: 10.3389/fgene.2021.606630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Inherited hearing loss is extremely heterogeneous both clinically and genetically. In addition, the spectrum of deafness-causing genetic variants differs greatly among geographical areas and ethnicities. The identification of the causal mutation in affected families allows early diagnosis, clinical follow-up, and genetic counseling. A large consanguineous family of Moroccan origin affected by autosomal recessive sensorineural hearing loss (ARSNHL) was subjected to genome-wide linkage analysis and exome sequencing. Exome-wide variant analysis and prioritization identified the SLC22A4 p.C113Y missense variant (rs768484124) as the most likely cause of ARSNHL in the family, falling within the unique significant (LOD score>3) linkage region on chromosome 5. Indeed, the same variant was previously reported in two Tunisian ARSNHL pedigrees. The variant is present in the homozygous state in all six affected individuals, but also in one normal-hearing sibling, suggesting incomplete penetrance. The mutation is absent in about 1,000 individuals from the Greater Middle East Variome study cohort, including individuals from the North African population, as well as in an additional seven deaf patients from the same geographical area, recruited and screened for mutations in the SLC22A4 gene. This study represents the first independent replication of the involvement of SLC22A4 in ARSNHL, highlighting the importance of the gene, and of the p.C113Y mutation, at least in the Northwest African population.
Collapse
Affiliation(s)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Lucia Mauri
- S. S. Genetica Medica, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Paola Primignani
- S. S. Genetica Medica, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Pierangela Castorina
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Milan, Italy
| | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Milan, Italy
| | - Stefano Duga
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Rosanna Asselta
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Giulia Soldà
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
8
|
Wonkam A, Manyisa N, Bope CD, Dandara C, Chimusa ER. Whole exome sequencing reveals pathogenic variants in MYO3A, MYO15A and COL9A3 and differential frequencies in ancestral alleles in hearing impairment genes among individuals from Cameroon. Hum Mol Genet 2021; 29:3729-3743. [PMID: 33078831 PMCID: PMC7861016 DOI: 10.1093/hmg/ddaa225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
There is scarcity of known gene variants of hearing impairment (HI) in African populations. This knowledge deficit is ultimately affecting the development of genetic diagnoses. We used whole exome sequencing to investigate gene variants, pathways of interactive genes and the fractions of ancestral overderived alleles for 159 HI genes among 18 Cameroonian patients with non-syndromic HI (NSHI) and 129 ethnically matched controls. Pathogenic and likely pathogenic (PLP) variants were found in MYO3A, MYO15A and COL9A3, with a resolution rate of 50% (9/18 patients). The study identified significant genetic differentiation in novel population-specific gene variants at FOXD4L2, DHRS2L6, RPL3L and VTN between HI patients and controls. These gene variants are found in functional/co-expressed interactive networks with other known HI-associated genes and in the same pathways with VTN being a hub protein, that is, focal adhesion pathway and regulation of the actin cytoskeleton (P-values <0.05). The results suggest that these novel population-specific gene variants are possible modifiers of the HI phenotypes. We found a high proportion of ancestral allele versus derived at low HI patients-specific minor allele frequency in the range of 0.0-0.1. The results showed a relatively low pickup rate of PLP variants in known genes in this group of Cameroonian patients with NSHI. In addition, findings may signal an evolutionary enrichment of some variants of HI genes in patients, as the result of polygenic adaptation, and suggest the possibility of multigenic influence on the phenotype of congenital HI, which deserves further investigations.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Noluthando Manyisa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Christian D Bope
- Department of Mathematics and Department of Computer Science, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
9
|
Wonkam A, Lebeko K, Mowla S, Noubiap JJ, Chong M, Pare G. Whole exome sequencing reveals a biallelic frameshift mutation in GRXCR2 in hearing impairment in Cameroon. Mol Genet Genomic Med 2021; 9:e1609. [PMID: 33528103 PMCID: PMC8104159 DOI: 10.1002/mgg3.1609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hearing impairment (HI) genes are poorly studied in African populations. METHODS We used whole exome sequencing (WES) to investigate pathogenic and likely pathogenic (PLP) variants in 10 individuals with HI, from four multiplex families from Cameroon, two of which were previously unresolved with a targeted gene enrichment (TGE) panel of 116 genes. In silico protein modelling, western blotting and live imaging of transfected HEK293 cells were performed to study protein structure and functions. RESULTS All PLP variants previously identified with TGE were replicated. In one previously unresolved family, we found a homozygous frameshift PLP variant in GRXCR2 (OMIM: 615762), NM_001080516.1(GRXCR2):c.251delC p.(Ile85SerfsTer33), in two affected siblings; and additionally, in 1/80 unrelated individuals affected with non-syndromic hearing impairment (NSHI). The GRXCR2-c.251delC variant introduced a premature stop codon, leading to truncation and loss of a zinc-finger domain. Fluorescence confocal microscopy tracked the wild-type GRXCR2 protein to the cellular membrane, unlike the mutated GRXCR2 protein. CONCLUSION This study confirms GRXCR2 as a HI-associated gene. GRXCR2 should be included to the currently available TGE panels for HI diagnosis.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Department of Medicine, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kamogelo Lebeko
- Department of Medicine, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shaheen Mowla
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jean Jacques Noubiap
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Mike Chong
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Guillaume Pare
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Belcher R, Virgin F, Duis J, Wootten C. Genetic and Non-genetic Workup for Pediatric Congenital Hearing Loss. Front Pediatr 2021; 9:536730. [PMID: 33829002 PMCID: PMC8020033 DOI: 10.3389/fped.2021.536730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
Hearing loss is one of the most common concerns for presentation for a geneticist. Presentation prior to the age of one (congenital hearing loss), profound sensorineural hearing loss (SNHL), and bilateral hearing loss are sensitive and should raise concern for genetic causes of hearing loss and prompt referral for genetic testing. Genetic testing particularly in this instance offers the opportunity for anticipatory guidance including possible course of the hearing loss over time and also connection and evaluation for additional congenital anomalies that may be associated with an underlying syndrome vs. isolated genetic hearing loss.
Collapse
Affiliation(s)
- Ryan Belcher
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| | - Frank Virgin
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| | - Jessica Duis
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| | - Christopher Wootten
- Division of Pediatric Otolaryngology, Vanderbilt Department of Otolaryngology - Head and Neck Surgery, Monroe Carell Jr. Children's Hospital, Nashville, TN, United States
| |
Collapse
|
11
|
Vona B, Doll J, Hofrichter MA, Haaf T. Non-syndromic hearing loss: clinical and diagnostic challenges. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Hereditary hearing loss is clinically and genetically heterogeneous. There are presently over 120 genes that have been associated with non-syndromic hearing loss and many more that are associated with syndromic forms. Despite an increasing number of genes that have been implemented into routine molecular genetic diagnostic testing, the diagnostic yield from European patient cohorts with hereditary hearing loss remains around the 50 % mark. This attests to the many gaps of knowledge the field is currently working toward resolving. It can be expected that many more genes await identification. However, it can also be expected, for example, that the mutational signatures of the known genes are still unclear, especially variants in non-coding or regulatory regions influencing gene expression. This review summarizes several challenges in the clinical and diagnostic setting for hereditary hearing loss with emphasis on syndromes that mimic non-syndromic forms of hearing loss in young children and other factors that heavily influence diagnostic rates. A molecular genetic diagnosis for patients with hearing loss opens several additional avenues, such as patient tailored selection of the best currently available treatment modalities, an understanding of the prognosis, and supporting family planning decisions. In the near future, a genetic diagnosis may enable patients to engage in preclinical trials for the development of therapeutics.
Collapse
Affiliation(s)
- Barbara Vona
- Tübingen Hearing Research Centre, Department of Otolaryngology – Head & Neck Surgery , Eberhard Karls University , Elfriede-Aulhorn-Strasse 5 , Tübingen , Germany
| | - Julia Doll
- Institute of Human Genetics , Julius Maximilians University , Würzburg , Germany
| | | | - Thomas Haaf
- Institute of Human Genetics , Julius-Maximilians University Würzburg , Biozentrum, Am Hubland , Würzburg , Germany
| |
Collapse
|
12
|
Bolz HJ. Usher syndrome: diagnostic approach, differential diagnoses and proposal of an updated function-based genetic classification. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Usher syndrome (USH) manifests with congenital and apparently isolated hearing loss, followed by retinal degeneration in later life. Therefore, and because of its high prevalence in the congenitally hearing-impaired population, USH is one of the most relevant deafness syndromes. Next-generation sequencing (NGS)-based testing can now provide most analyzed USH patients with a molecular diagnosis, based on mutations in 11 genes. Given the availability of several excellent articles on the clinical and biochemical basis of USH, this short review focuses on critical assessment of new genes announced as USH genes, clinical and genetic differential diagnoses and therapeutic developments. Because obsolete loci, disproved USH genes and the inclusion of genes whose mutations cause similar phenotypes have increasingly blurred genetic classification, a revision based on phenotype restricted to genes related to the Usher protein complex is proposed.
Collapse
Affiliation(s)
- Hanno J. Bolz
- Senckenberg Centre for Human Genetics , Weismüllerstr. 50 , Frankfurt am Main , Germany
| |
Collapse
|
13
|
Combined hearing screening and genetic screening of deafness among Hakka newborns in China. Int J Pediatr Otorhinolaryngol 2020; 136:110120. [PMID: 32574949 DOI: 10.1016/j.ijporl.2020.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Hearing loss (HL) can severely impact the quality of human life. To explore strategies for clinical interventions, we investigated hearing screening coupled with genetic testing of deafness among Hakka newborns. METHODS The testing was performed on 4205 newborns who born in Heyuan of Guangdong province between December 2018 and November 2019. Hearing screening used otoacoustic emission(OAE) coupled with automatic auditory brainstem response(AABR). A total of 13 hot spot mutations in GJB2, SLC26A4, mtDNA, and GJB3 genes were screened using PCR accompanied by flow-through hybridization technology. RESULTS Among the 4205 newborns, the number of 47 individuals who failed the hearing testing accounted for 1.12%(47/4205). The genetic screening displayed that 176 individuals(4.19%,176/4205) discovered to carry more than one mutant site. The gene carrier frequency of GJB2, SLC26A4, GJB3, and mtDNA was 2.24%, 1.76%, 0.19%, and 0.07% respectively. The most carried mutations were GJB2 c.235del (2.05%), followed by SLC26A4 c.IVS7-2A > G(1.38%). A total of 216 (5.14%, 216/4205) high-risk children detected by combined hearing screening and genetic screening of deafness. Pairwise comparison (1.12% vs 4.19% vs 5.14%) showed significant differences for the positive rate of detection(χ 2 = 11.045, P < 0.001). The difference was no statistical significance between neonatal demographics information and genetic mutations using logistic regression analysis(all P > 0.05). CONCLUSIONS Among Hakka newborns in Heyuan, the carrier rate of GJB2 c.235delC was the highest. Combining with two screening methods will effectually increase the detection rate of neonatal deafness and play an essential role in clinical intervention.
Collapse
|
14
|
Budde BS, Aly MA, Mohamed MR, Breß A, Altmüller J, Motameny S, Kawalia A, Thiele H, Konrad K, Becker C, Toliat MR, Nürnberg G, Sayed EAF, Mohamed ES, Pfister M, Nürnberg P. Comprehensive molecular analysis of 61 Egyptian families with hereditary nonsyndromic hearing loss. Clin Genet 2020; 98:32-42. [DOI: 10.1111/cge.13754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Birgit S. Budde
- Cologne Center for Genomics University of Cologne Cologne Germany
| | - Maha Abdelgaber Aly
- Cologne Center for Genomics University of Cologne Cologne Germany
- Audiology Unit, Department of Otolaryngology, Faculty of Medicine Assiut University Egypt
| | - Mostafa R. Mohamed
- Audiology Unit, Department of Otolaryngology, Faculty of Medicine Assiut University Egypt
| | - Andreas Breß
- Department of Otolaryngology University of Tübingen Tübingen Germany
| | - Janine Altmüller
- Cologne Center for Genomics University of Cologne Cologne Germany
| | - Susanne Motameny
- Cologne Center for Genomics University of Cologne Cologne Germany
| | - Amit Kawalia
- Cologne Center for Genomics University of Cologne Cologne Germany
| | - Holger Thiele
- Cologne Center for Genomics University of Cologne Cologne Germany
| | - Kathryn Konrad
- Cologne Center for Genomics University of Cologne Cologne Germany
| | - Christian Becker
- Cologne Center for Genomics University of Cologne Cologne Germany
| | | | - Gudrun Nürnberg
- Cologne Center for Genomics University of Cologne Cologne Germany
| | | | - Enass Sayed Mohamed
- Audiology Unit, Department of Otolaryngology, Faculty of Medicine Assiut University Egypt
| | - Markus Pfister
- Department of Otolaryngology University of Tübingen Tübingen Germany
- HNO Sarnen GmbH & Swisstinnitus AG Sarnen Switzerland
| | - Peter Nürnberg
- Cologne Center for Genomics University of Cologne Cologne Germany
- Center for Molecular Medicine Cologne University of Cologne Cologne Germany
- ATLAS Biolabs GmbH Berlin Germany
| |
Collapse
|
15
|
Abstract
The incidence of hearing impairment (HI) is higher in low- and middle-income countries when compared to high-income countries. There is therefore a necessity to estimate the burden of this condition in developing world. The aim of our study was to use a systematic approach to provide summarized data on the prevalence, etiologies, clinical patterns and genetics of HI in Cameroon. We searched PubMed, Scopus, African Journals Online, AFROLIB and African Index Medicus to identify relevant studies on HI in Cameroon, published from inception to 31 October, 2019, with no language restrictions. Reference lists of included studies were also scrutinized, and data were summarized narratively. This study is registered with PROSPERO, number CRD42019142788. We screened 333 records, of which 17 studies were finally included in the review. The prevalence of HI in Cameroon ranges from 0.9% to 3.6% in population-based studies and increases with age. Environmental factors contribute to 52.6% to 62.2% of HI cases, with meningitis, impacted wax and age-related disorder being the most common ones. Hereditary HI comprises 0.8% to 14.8% of all cases. In 32.6% to 37% of HI cases, the origin remains unknown. Non-syndromic hearing impairment (NSHI) is the most frequent clinical entity and accounts for 86.1% to 92.5% of cases of HI of genetic origin. Waardenburg and Usher syndromes account for 50% to 57.14% and 8.9% to 42.9% of genetic syndromic cases, respectively. No pathogenic mutation was described in GJB6 gene, and the prevalence of pathogenic mutations in GJB2 gene ranged from 0% to 0.5%. The prevalence of pathogenic mutations in other known NSHI genes was <10% in Cameroonian probands. Environmental factors are the leading etiology of HI in Cameroon, and mutations in most important HI genes are infrequent in Cameroon. Whole genome sequencing therefore appears as the most effective way to identify variants associated with HI in Cameroon and sub-Saharan Africa in general.
Collapse
|
16
|
Wonkam Tingang E, Noubiap JJ, F. Fokouo JV, Oluwole OG, Nguefack S, Chimusa ER, Wonkam A. Hearing Impairment Overview in Africa: the Case of Cameroon. Genes (Basel) 2020; 11:genes11020233. [PMID: 32098311 PMCID: PMC7073999 DOI: 10.3390/genes11020233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/27/2023] Open
Abstract
The incidence of hearing impairment (HI) is higher in low- and middle-income countries when compared to high-income countries. There is therefore a necessity to estimate the burden of this condition in developing world. The aim of our study was to use a systematic approach to provide summarized data on the prevalence, etiologies, clinical patterns and genetics of HI in Cameroon. We searched PubMed, Scopus, African Journals Online, AFROLIB and African Index Medicus to identify relevant studies on HI in Cameroon, published from inception to 31 October, 2019, with no language restrictions. Reference lists of included studies were also scrutinized, and data were summarized narratively. This study is registered with PROSPERO, number CRD42019142788. We screened 333 records, of which 17 studies were finally included in the review. The prevalence of HI in Cameroon ranges from 0.9% to 3.6% in population-based studies and increases with age. Environmental factors contribute to 52.6% to 62.2% of HI cases, with meningitis, impacted wax and age-related disorder being the most common ones. Hereditary HI comprises 0.8% to 14.8% of all cases. In 32.6% to 37% of HI cases, the origin remains unknown. Non-syndromic hearing impairment (NSHI) is the most frequent clinical entity and accounts for 86.1% to 92.5% of cases of HI of genetic origin. Waardenburg and Usher syndromes account for 50% to 57.14% and 8.9% to 42.9% of genetic syndromic cases, respectively. No pathogenic mutation was described in GJB6 gene, and the prevalence of pathogenic mutations in GJB2 gene ranged from 0% to 0.5%. The prevalence of pathogenic mutations in other known NSHI genes was <10% in Cameroonian probands. Environmental factors are the leading etiology of HI in Cameroon, and mutations in most important HI genes are infrequent in Cameroon. Whole genome sequencing therefore appears as the most effective way to identify variants associated with HI in Cameroon and sub-Saharan Africa in general.
Collapse
Affiliation(s)
- Edmond Wonkam Tingang
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
| | - Jean Jacques Noubiap
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide 5000, Australia;
| | | | - Oluwafemi Gabriel Oluwole
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
| | - Séraphin Nguefack
- Department of Paediatrics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé 1364, Cameroon;
- Paediatrics unit, Gynaeco-Obstetric and Paediatric Hospital, Yaoundé 4362, Cameroon
| | - Emile R. Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-21-4066-307
| |
Collapse
|
17
|
M. Adadey S, Tingang Wonkam E, Twumasi Aboagye E, Quansah D, Asante-Poku A, Quaye O, K. Amedofu G, A. Awandare G, Wonkam A. Enhancing Genetic Medicine: Rapid and Cost-Effective Molecular Diagnosis for a GJB2 Founder Mutation for Hearing Impairment in Ghana. Genes (Basel) 2020; 11:genes11020132. [PMID: 32012697 PMCID: PMC7074138 DOI: 10.3390/genes11020132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
In Ghana, gap-junction protein β 2 (GJB2) variants account for about 25.9% of familial hearing impairment (HI) cases. The GJB2-p.Arg143Trp (NM_004004.6:c.427C>T/OMIM: 121011.0009/rs80338948) variant remains the most frequent variant associated with congenital HI in Ghana, but has not yet been investigated in clinical practice. We therefore sought to design a rapid and cost-effective test to detect this variant. We sampled 20 hearing-impaired and 10 normal hearing family members from 8 families segregating autosomal recessive non syndromic HI. In addition, a total of 111 unrelated isolated individuals with HI were selected, as well as 50 normal hearing control participants. A restriction fragment length polymorphism (RFLP) test was designed, using the restriction enzyme NciI optimized and validated with Sanger sequencing, for rapid genotyping of the common GJB2-p.Arg143Trp variant. All hearing-impaired participants from 7/8 families were homozygous positive for the GJB2-p.Arg143Trp mutation using the NciI-RFLP test, which was confirmed with Sanger sequencing. The investigation of 111 individuals with isolated non-syndromic HI that were previously Sanger sequenced found that the sensitivity of the GJB2-p.Arg143Trp NciI-RFLP testing was 100%. All the 50 control subjects with normal hearing were found to be negative for the variant. Although the test is extremely valuable, it is not 100% specific because it cannot differentiate between other mutations at the recognition site of the restriction enzyme. The GJB2-p.Arg143Trp NciI-RFLP-based diagnostic test had a high sensitivity for genotyping the most common GJB2 pathogenic and founder variant (p.Arg143Trp) within the Ghanaian populations. We recommend the adoption and implementation of this test for hearing impairment genetic clinical investigations to complement the newborn hearing screening program in Ghana. The present study is a practical case scenario of enhancing genetic medicine in Africa.
Collapse
Affiliation(s)
- Samuel M. Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra P. O. Box LG 54, Ghana; (S.M.A.); (E.T.A.); (D.Q.); (A.A.-P.); (O.Q.); (G.A.A.)
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Edmond Tingang Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Elvis Twumasi Aboagye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra P. O. Box LG 54, Ghana; (S.M.A.); (E.T.A.); (D.Q.); (A.A.-P.); (O.Q.); (G.A.A.)
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra P. O. Box LG 54, Ghana; (S.M.A.); (E.T.A.); (D.Q.); (A.A.-P.); (O.Q.); (G.A.A.)
| | - Adwoa Asante-Poku
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra P. O. Box LG 54, Ghana; (S.M.A.); (E.T.A.); (D.Q.); (A.A.-P.); (O.Q.); (G.A.A.)
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra P. O. Box LG 54, Ghana; (S.M.A.); (E.T.A.); (D.Q.); (A.A.-P.); (O.Q.); (G.A.A.)
| | - Geoffrey K. Amedofu
- Department of Eye Ear Nose & Throat, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK-039-5028, Ghana;
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra P. O. Box LG 54, Ghana; (S.M.A.); (E.T.A.); (D.Q.); (A.A.-P.); (O.Q.); (G.A.A.)
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
- Correspondence: ; Tel.: +27-21-4066-307
| |
Collapse
|
18
|
The Hearing Impairment Ontology: A Tool for Unifying Hearing Impairment Knowledge to Enhance Collaborative Research. Genes (Basel) 2019; 10:genes10120960. [PMID: 31766582 PMCID: PMC6947307 DOI: 10.3390/genes10120960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hearing impairment (HI) is a common sensory disorder that is defined as the partial or complete inability to detect sound in one or both ears. This diverse pathology is associated with a myriad of phenotypic expressions and can be non-syndromic or syndromic. HI can be caused by various genetic, environmental, and/or unknown factors. Some ontologies capture some HI forms, phenotypes, and syndromes, but there is no comprehensive knowledge portal which includes aspects specific to the HI disease state. This hampers inter-study comparability, integration, and interoperability within and across disciplines. This work describes the HI Ontology (HIO) that was developed based on the Sickle Cell Disease Ontology (SCDO) model. This is a collaboratively developed resource built around the ‘Hearing Impairment’ concept by a group of experts in different aspects of HI and ontologies. HIO is the first comprehensive, standardized, hierarchical, and logical representation of existing HI knowledge. HIO allows researchers and clinicians alike to readily access standardized HI-related knowledge in a single location and promotes collaborations and HI information sharing, including epidemiological, socio-environmental, biomedical, genetic, and phenotypic information. Furthermore, this ontology illustrates the adaptability of the SCDO framework for use in developing a disease-specific ontology.
Collapse
|
19
|
Taiber S, Avraham KB. Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges. Neurosci Lett 2019; 713:134527. [PMID: 31586696 PMCID: PMC7219656 DOI: 10.1016/j.neulet.2019.134527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/01/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023]
Abstract
More than 15 years have passed since the official completion of the Human Genome Project. Predominantly due to this project, over one hundred genes have now been linked to hearing loss. Although major advancements have been made in the understanding of underlying pathologies in deafness as a consequence of these gene discoveries, biological treatments for these conditions are still not available and current treatments rely on amplification or prosthetics. A promising approach for developing treatments for genetic hearing loss is the most simplistic one, that of gene therapy. Gene therapy would intuitively be ideal for these conditions since it is directed at the very source of the problem. Recent achievements in this field in laboratory models spike hope and optimism among scientists, patients, and industry, and suggest that this approach can mature into clinical trials in the coming years. Here we review the existing literature and discuss the different aspects of developing gene therapy for genetic hearing loss.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
GJB2 and GJB6 Mutations in Hereditary Recessive Non-Syndromic Hearing Impairment in Cameroon. Genes (Basel) 2019; 10:genes10110844. [PMID: 31731535 PMCID: PMC6895965 DOI: 10.3390/genes10110844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate GJB2 (connexin 26) and GJB6 (connexin 30) mutations associated with familial non-syndromic childhood hearing impairment (HI) in Cameroon. We selected only families segregating HI, with at least two affected individuals and with strong evidence of non-environmental causes. DNA was extracted from peripheral blood, and the entire coding region of GJB2 was interrogated using Sanger sequencing. Multiplex PCR and Sanger sequencing were used to analyze the prevalence of the GJB6-D3S1830 deletion. A total of 93 patients, belonging to 41 families, were included in the analysis. Hearing impairment was sensorineural in 51 out of 54 (94.4%) patients. Pedigree analysis suggested autosomal recessive inheritance in 85.4% (35/41) of families. Hearing impairment was inherited in an autosomal dominant and mitochondrial mode in 12.2% (5/41) and 2.4% (1/41) of families, respectively. Most HI participants were non-syndromic (92.5%; 86/93). Four patients from two families presented with type 2 Waardenburg syndrome, and three cases of type 2 Usher syndrome were identified in one family. No GJB2 mutations were found in any of the 29 families with non-syndromic HI. Additionally, the GJB6-D3S1830 deletion was not identified in any of the HI patients. This study confirms that mutations in the GJB2 gene and the del(GJB6-D13S1830) mutation do not contribute to familial HI in Cameroon.
Collapse
|
21
|
Raymond M, Walker E, Dave I, Dedhia K. Genetic testing for congenital non-syndromic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2019; 124:68-75. [PMID: 31163360 DOI: 10.1016/j.ijporl.2019.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Approximately 60% of congenital pediatric hearing loss is of genetic etiology. To evaluate non-syndromic sensorineural hearing loss (NSSNHL), guidelines emphasize the use of comprehensive genetic testing (CGT) with next generation sequencing (NGS), yet these tests have limited accessibility, and potential CGT results may not be well understood. Thus, our objective was to analyze genetic testing practices and results for pediatric patients with NSSNHL. METHODS This was a retrospective chart review of pediatric patients (<18 years) diagnosed with NSSNHL from 2014 to 2017 at a tertiary pediatric hospital. Demographics, clinical data, CGT results, genetic testing practices and referral patterns were recorded and descriptively analyzed. Logistic regression models identified patient characteristics associated with pathogenic variants (PV) and variants of unknown significance (VOUS). RESULTS 430 patients with congenital NSSNHL were included in the study. Genetic testing was ordered for 28% (n = 122) and resulted for 16% (n = 68). Most of the ordered tests (89%, n = 109) were the CGT panel. A majority (62%, n = 97) of the time in which genetic testing was not ordered, a referral for genetics consultation was placed. Amongst those with CGT results, a definitive genetic etiology was identified in 25% (n = 13), with less than half due to variants of GJB2/6. At least one PV was identified for 33% (n = 18), while at least one VOUS for 93% (n = 51). There were no significant differences in PV presence or number of VOUS across any characteristic except race. When compared to Caucasians, African Americans had significantly higher rates of VOUS with a rate ratio and 95% CI of 1.61 [1.11-2.34], p = 0.01, and Asians trended towards higher rates (1.96 [0.95-4.05], p = 0.06). CONCLUSIONS CGT is of high utility in the identification of relevant genetic variants and definitive genetic etiologies for pediatric patients with NSSNHL. Though guidelines recommend the early use of CGT, there are many barriers to appropriate testing and counseling, leading to low rates of CGT use at this single institution.
Collapse
Affiliation(s)
- Mallory Raymond
- Emory University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Division of Pediatric Otolaryngology, USA
| | - Elizabeth Walker
- Emory University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Division of Pediatric Otolaryngology, USA
| | - Ishaan Dave
- Emory University School of Medicine, Department of Pediatrics, USA
| | - Kavita Dedhia
- Emory University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Division of Pediatric Otolaryngology, USA.
| |
Collapse
|
22
|
Chakchouk I, Zhang D, Zhang Z, Francioli LC, Santos-Cortez RLP, Schrauwen I, Leal SM. Disparities in discovery of pathogenic variants for autosomal recessive non-syndromic hearing impairment by ancestry. Eur J Hum Genet 2019; 27:1456-1465. [PMID: 31053783 PMCID: PMC6777454 DOI: 10.1038/s41431-019-0417-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
Hearing impairment (HI) is characterized by extensive genetic heterogeneity. To determine the population-specific contribution of known autosomal recessive nonsyndromic (ARNS)HI genes and variants to HI etiology; pathogenic and likely pathogenic (PLP) ARNSHI variants were selected from ClinVar and the Deafness Variation Database and their frequencies were obtained from gnomAD for seven populations. ARNSHI prevalence due to PLP variants varies greatly by population ranging from 96.9 affected per 100,000 individuals for Ashkenazi Jews to 5.2 affected per 100,000 individuals for Africans/African Americans. For Europeans, Finns have the lowest prevalence due to ARNSHI PLP variants with 9.5 affected per 100,000 individuals. For East Asians, Latinos, non-Finish Europeans, and South Asians, ARNSHI prevalence due to PLP variants ranges from 17.1 to 33.7 affected per 100,000 individuals. ARNSHI variants that were previously reported in a single ancestry or family were observed in additional populations, e.g., USH1C p.(Q723*) reported in a Chinese family was the most prevalent pathogenic variant observed in gnomAD for African/African Americans. Variability between populations is due to how extensively ARNSHI has been studied, ARNSHI prevalence and ancestry specific ARNSHI variant architecture which is impacted by population history. Our study demonstrates that additional gene and variant discovery studies are necessary for all populations and particularly for individuals of African ancestry.
Collapse
Affiliation(s)
- Imen Chakchouk
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Di Zhang
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhihui Zhang
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
| | - Laurent C Francioli
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
Abstract
OBJECTIVE Literature review of the genetic etiology of hearing loss (HL) in the African American (AA) population. DATA SOURCES PubMed, EBSCO, and CINAHL were accessed from 1966 to 2018. REVIEW METHODS PRISMA guidelines were followed. Search terms included permutations of "hearing loss," "African American," "black," and "genetic"; "African American" was then cross-referenced against documented HL genes. AA subjects included in multiethnic cohorts of genetic HL testing were identified by searching the key terms "hearing loss" and "ethnic cohort" and "genetic." The Q-Genie tool was used in the quality assessment of included studies. An allele frequency meta-analysis of pathogenic GJB2 variants in the AA population was performed and stratified by hearing status. RESULTS Four hundred seventeen articles were reviewed, and 26 met our inclusion criteria. Ten studies were included in the GJB2 meta-analysis. In the general AA population, pathogenic GJB2 variants are rare, including the 35delG allele, which displayed a carrier frequency of 0.05%. Pathogenic variants were discovered in seven nonsyndromic HL genes (GJB2, MYO3A, TECTA, STRC, OTOF, MYH14, TMC1), eight syndromic HL genes, and one mitochondrial HL gene. Recent comprehensive genetic testing using custom genetic HL testing platforms has yielded only a 26% molecular diagnosis rate for HL etiologies in the AA population. CONCLUSIONS Investigators should be encouraged to provide an ethnic breakdown of results. Sparse literature and poor diagnosis rates indicate that genes involved in HL in the AA population have yet to be identified. Future explorative investigations using next-generation sequencing technologies, such as whole-exome sequencing, into the AA population are warranted.
Collapse
|
24
|
Zhou Y, Li C, Li M, Zhao Z, Tian S, Xia H, Liu P, Han Y, Ren R, Chen J, Jia C, Guo W. Mutation analysis of common deafness genes among 1,201 patients with non-syndromic hearing loss in Shanxi Province. Mol Genet Genomic Med 2019; 7:e537. [PMID: 30693673 PMCID: PMC6418354 DOI: 10.1002/mgg3.537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/12/2018] [Accepted: 11/16/2018] [Indexed: 12/24/2022] Open
Abstract
Background Hearing impairment is one of most frequent birth defects, which affects nearly 1 in every 1,000 live births. However, the molecular etiology of non‐syndromic deafness in China is not well studied. Here, we have investigated the presence of mutations in three genes commonly mutated in non‐syndromic deafness patients in Shanxi Province, which has the highest frequency of birth defects in China. Methods In total, 1,201 unrelated non‐syndromic deafness patients and 300 healthy individuals were enrolled. The hearing ability was confirmed by audiologic evaluation. Three major deafness‐related genes (GJB2, SLC26A4 (PDS), and mtDNA 12S rRNA) of all individuals enrolled were analyzed by Sanger sequencing. Results The results showed that GJB2 mutations accounted for 21.23% (255/1,201) in the patient group, with c.235delC, a hotspot mutation, accounting for 10.99% (132/1,201). Moreover, 11 new GJB2 mutations were identified. SLC26A4 mutations accounted for 9.33% (112/1,201) in the patient group, with IVS7‐2A>G as the most prevalent mutation accounting for 4.75% (57/1,201). In addition, 15 patients (1.25%) were found to carry mtDNA 12S rRNA c.1555A>G mutation, while only two cases had the mtDNA 12S rRNA c.1494C>T. Conclusion In our research, it was found that c.235delC in GJB2 and c.919‐2A>G (IVS7‐2A>G) in SLC26A4 were the highest frequency pathogenic variants in Shanxi Province. Taken together, our data will enrich the database of deafness mutations and will help clinical diagnosis, treatment, and genetic counseling of hearing impairment.
Collapse
Affiliation(s)
- Yongan Zhou
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Chao Li
- The Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Li
- The Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhonghua Zhao
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Shuxiong Tian
- The Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hou Xia
- The Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peixian Liu
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Yaxin Han
- The Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruirui Ren
- The Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianping Chen
- The Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Caihong Jia
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Wei Guo
- Xinzhou Traditional Chinese Medicine Hospital, Xinzhou, Shanxi, China
| |
Collapse
|
25
|
Richard EM, Santos-Cortez RLP, Faridi R, Rehman AU, Lee K, Shahzad M, Acharya A, Khan AA, Imtiaz A, Chakchouk I, Takla C, Abbe I, Rafeeq M, Liaqat K, Chaudhry T, Bamshad MJ, Schrauwen I, Khan SN, Morell RJ, Zafar S, Ansar M, Ahmed ZM, Ahmad W, Riazuddin S, Friedman TB, Leal SM, Riazuddin S. Global genetic insight contributed by consanguineous Pakistani families segregating hearing loss. Hum Mutat 2019; 40:53-72. [PMID: 30303587 PMCID: PMC6296877 DOI: 10.1002/humu.23666] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022]
Abstract
Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.
Collapse
Affiliation(s)
- Elodie M. Richard
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Regie LP. Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Asma A. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Imen Chakchouk
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christina Takla
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izoduwa Abbe
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Rafeeq
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Robert J. Morell
- The Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892
| | - Saba Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 59300, Pakistan
| | - Muhammad Ansar
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sheik Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54500, Pakistan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| |
Collapse
|
26
|
Krause A, Seymour H, Ramsay M. Common and Founder Mutations for Monogenic Traits in Sub-Saharan African Populations. Annu Rev Genomics Hum Genet 2018; 19:149-175. [DOI: 10.1146/annurev-genom-083117-021256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review highlights molecular genetic studies of monogenic traits where common pathogenic mutations occur in black families from sub-Saharan Africa. Examples of founder mutations have been identified for oculocutaneous albinism, cystic fibrosis, Fanconi anemia, and Gaucher disease. Although there are few studies from Africa, some of the mutations traverse populations across the continent, and they are almost all different from the common mutations observed in non-African populations. Myotonic dystrophy is curiously absent among Africans, and nonsyndromic deafness does not arise from mutations in GJB2 and GJB7. Locus heterogeneity is present for Huntington disease, with two common triplet expansion loci in Africa, HTT and JPH3. These findings have important clinical consequences for diagnosis, treatment, and genetic counseling in affected families. We currently have just a glimpse of the molecular etiology of monogenic diseases in sub-Saharan Africa, a proverbial “ears of the hippo” situation.
Collapse
Affiliation(s)
- Amanda Krause
- Division of Human Genetics, National Health Laboratory Service, and Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service, and Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service, and Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
27
|
Shi X, Zhang Y, Qiu S, Zhuang W, Yuan N, Sun T, Gao J, Qiao Y, Liu K. A Novel GJB2 compound heterozygous mutation c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) causes sensorineural hearing loss in a Chinese family. J Clin Lab Anal 2018; 32:e22444. [PMID: 29665173 DOI: 10.1002/jcla.22444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/07/2018] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To investigate whether a novel compound heterozygous mutations c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) in GJB2 result in hearing loss. METHODS Allele-specific PCR-based universal array (ASPUA) screening and sequence analysis were applied to identify these mutations. 3D model was built to perform molecular dynamics (MD) simulation to verify the susceptibility of the mutations. Furthermore, WT- and Mut-GJB2 DNA fragments, containing the mutation of c.257C>G and c.176del16 were respectively cloned and transfected into HEK293 and spiral ganglion neuron cell (SGNs) by lenti-virus delivery system to indicate the subcellular localization of the WT- and Mut-CX26 protein. RESULTS A novel compound heterozygous mutation c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) in GJB2 was identified in a Chinese family, in which 4 siblings with profound hearing loss, but the fifth child is normal. By ASPUA screening and sequencing, a compound heterozygote mutations in GJB2 c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) were identified in these four deaf children, each of the mutated GJB2 gene were inherited from their parents. There is no mutation of GJB2 gene identified in the normal child. Besides, the compound heterozygous mutation GJB2 c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) could lead to the alterations of the subcellular localization of each corresponding mutated CX26 protein and could cause the hearing loss, which has been predicted by MD simulation and verified in both 293T and SGNs cell line. CONCLUSION The c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) compound mutations in GJB2 detected in this study are novel, and which may be associated with hearing loss in this Chinese family.
Collapse
Affiliation(s)
- Xi Shi
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Otolaryngology-Head and neck surgery, The first Hospital of JiLin University, Changchun, China
| | - Shiwei Qiu
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
| | - Wei Zhuang
- Clinical Hearing Center of Affliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Na Yuan
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
| | - Tiantian Sun
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuehua Qiao
- Clinical Hearing Center of Affliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Rudman JR, Mei C, Bressler SE, Blanton SH, Liu XZ. Precision medicine in hearing loss. J Genet Genomics 2018; 45:99-109. [PMID: 29500086 DOI: 10.1016/j.jgg.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 11/26/2022]
Abstract
Precision medicine (PM) proposes customized medical care based on a patient's unique genome, biomarkers, environment and behaviors. Hearing loss (HL) is the most common sensorineural disorder worldwide and is frequently caused by a single genetic mutation. With recent advances in PM tools such as genetic sequencing and data analysis, the field of HL is ideally positioned to adopt the strategies of PM. Here, we review current and future applications of PM in HL as they relate to the four core qualities of PM (P4): predictive, personalized, patient-centered, and participatory. We then introduce a strategy for effective incorporation of HL PM into the design of future research studies, electronic medical records, and clinical practice to improve diagnostics, prognostics, and, ultimately, individualized patient treatment. Finally, specific anticipated ethical and economic concerns in this growing era of genomics-based HL treatment are discussed. By integrating PM principles into translational HL research and clinical practice, hearing specialists are uniquely positioned to effectively treat the heterogeneous causes and manifestations of HL on an individualized basis.
Collapse
Affiliation(s)
- Jason R Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine Mei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sara E Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|