1
|
Lee EH, Kim-Mcmanus O, Yang JH, Haas R, Zaki MS, Abdel-Salam GMH, Nakamura Y, Abdel-Hamind MS, Ebrahimi-Fakhari D, Alecu JE, Brunetti-Pierri N, Srinivasan VM, Gowda VK, Gross S, Alanay Y, Najarzadeh Totbati P, Yadavilli M, Friedman L, Ojeda NM, Gleeson JG. HPDL Variant Type Correlates With Clinical Disease Onset and Severity. Ann Clin Transl Neurol 2025. [PMID: 40368591 DOI: 10.1002/acn3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 02/19/2025] [Accepted: 03/21/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE Recently, a mitochondrial encephalopathy due to biallelic HPDL variants was described, associated with a broad range of clinical manifestations ranging from severe, infantile-onset neurodegeneration to adolescence-onset hereditary spastic paraplegia. HPDL converts 4-hydroxyphenylpyruvate acid (4-HPPA) into 4-hydroxymandelate (4-HMA), necessary for the synthesis of the mitochondrial electron transporter CoQ10. This suggests a possible bypass of the metabolic block by 4-HMA treatment; however, genotype-phenotype correlations are lacking. METHODS We established an HPDL Patient Registry to prepare for a future clinical trial. Here we report the clinical features of 13 enrolled participants and compare them with 86 previously reported patients. We establish three major clinical classes: severe, intermediate, and mild, presenting onset in early infancy, childhood, and adolescence, respectively. The biallelic genotypes were classified into truncating/truncating, truncating/missense, and missense/missense variants, mapped onto the predicted 3D protein structure, and correlated with severity. RESULTS Patients with biallelic truncating variants presented with severe phenotypes and earlier ages of onset. Missense variants were often associated with milder phenotypes, except those with variants predominantly located in or near the VOC2 domain containing iron-binding sites or the C-terminus, which had more severe phenotypes. In addition, p.Met1? variants were also correlated with more severe phenotypes. INTERPRETATION This study demonstrates the correlation of age of onset and disease severity with genotype for HPDL-related conditions. Patients with truncating variants and specific missense variants correlated with severe, early-onset features, whereas the presence of at least one missense variant located outside of the iron-binding sites correlated with milder presentations. TRIAL REGISTRATION Clinicaltrials.gov HPDL registry: https://clinicaltrials.gov/study/NCT05848271.
Collapse
Affiliation(s)
- Eun Hye Lee
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Department of Pediatrics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Olivia Kim-Mcmanus
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| | - Jennifer H Yang
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| | - Richard Haas
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Yuji Nakamura
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| | - Mohamed S Abdel-Hamind
- Human Genetics and Genome Research Division, Medical Molecular Genetic Department, National Research Centre, Cairo, Egypt
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian E Alecu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Stephanie Gross
- Department of Pediatric Neurology, Social Pediatrics and Epileptology, Center for Pediatrics and Adolescent Medicine at the University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | - Yasemin Alanay
- Pediatric Genetics Unit, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Rare Diseases and Orphan Drugs Application and Research Center, ACURARE, Acıbadem University, Istanbul, Turkey
| | - Paria Najarzadeh Totbati
- Pediatric Genetics Unit, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Manya Yadavilli
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| | - Liana Friedman
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| | - Naomi Meave Ojeda
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Department of Neurosciences and Pediatrics, University of California, San Diego, California, USA
| |
Collapse
|
2
|
Alecu JE, Tam A, Richter S, Quiroz V, Schierbaum L, Saffari A, Ebrahimi-Fakhari D. Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations. Genet Med 2025; 27:101349. [PMID: 39731469 PMCID: PMC11890929 DOI: 10.1016/j.gim.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE Biallelic HPDL variants have been identified as the cause of a progressive childhood-onset movement disorder, with a broad clinical spectrum from severe neurodevelopmental disorder to juvenile-onset pure hereditary spastic paraplegia type 83. This study aims at delineating the geno- and phenotypic spectra of patients with HPDL-related disease, quantitatively modeling the natural history, and uncovering genotype-phenotype associations. METHODS A cross-sectional analysis of 90 published and 1 novel case was performed, using a Human-Phenotype-Ontology-based approach. Unsupervised phenotypic clustering was used alongside in silico analyses to identify distinct patient subgroups. RESULTS The study models the natural history of the HPDL-related disease in a global cohort, clarifying the molecular and phenotypic spectrum and identifying 3 distinct subgroups characterized by differences in onset, clinical trajectories, and survival. It establishes genotype-phenotype associations, showing that the presence of moderately pathogenic missense variants in 1 allele leads to a milder, spastic paraplegic phenotype with later disease onset, whereas biallelic, highly pathogenic missense or truncating variants are associated with a more severe phenotype and reduced life span. CONCLUSION Quantitative and unbiased natural history modeling in HPDL-related disease reveals significant genotype-phenotype associations, providing a foundation for variant interpretation, anticipatory guidance, and choice of outcome measures in future prospective and functional studies.
Collapse
Affiliation(s)
- Julian E Alecu
- Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA; Medical Faculty of the Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Amy Tam
- Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Silja Richter
- Department of Neurology, Hospital Fuerth, Fuerth, Germany
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Luca Schierbaum
- Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Afshin Saffari
- Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA; Division of Child Neurology and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
3
|
Ma Y, Li G, Li L, Zong J, Liu W, Zhang R, Liu S. Two novel heterozygous HPDL variants in a Chinese family with a neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities. Gene 2025; 934:149018. [PMID: 39427829 DOI: 10.1016/j.gene.2024.149018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Recent studies have shown that homozygous and compound heterozygous variants in the 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) gene contribute to a novel early onset neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), a severe neurodevelopmental disorder characterized by impaired psychomotor development in infancy. Using whole-exome sequencing and Sanger sequencing, we identified and verified a novel compound heterozygous variant in HPDL, c.502 T > C (p.Cys278Arg)/c.833G > A (p.Gly278Asp), which may lead to lethal NEDSWMA, with individual differences in severity. We systematically summarized the clinical characteristics of the patients and their family members and analyzed the genetic characteristics such as homozygosity, conservatism, and pathogenicity of the variants by various prediction methods. Further in vitro functional experiments showed that the identified variants inhibited the proliferative capacity but not apoptosis of SH-SY5Y cells by altering HPDL expression at the mRNA and protein levels and negatively affecting endogenous CoQ10 secretion. Our study further contributes to the assessment of genotype-phenotype correlations, and firstly provides new insights for elucidating specific pathogenesis mechanisms and identifying precision-targeted therapies.
Collapse
Affiliation(s)
- Yuanxuan Ma
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China; Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Guixia Li
- Department of Laboratory, Heze Municipal Hospital, Heze 274000, Shandong, China
| | - Ling Li
- Department of Laboratory, Heze Municipal Hospital, Heze 274000, Shandong, China
| | - Jinbao Zong
- Department of Laboratory, Qingdao Hiser Hospital Affliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, China
| | - Wenmiao Liu
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China; Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Ru Zhang
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China; Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China.
| | - Shiguo Liu
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China; Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China.
| |
Collapse
|
4
|
Baggiani M, Damiani D, Privitera F, Della Vecchia S, Tessa A, Santorelli FM. Generation and Characterization of hiPS Lines from Three Patients Affected by Different Forms of HPDL-Related Neurological Disorders. Int J Mol Sci 2024; 25:10614. [PMID: 39408944 PMCID: PMC11477155 DOI: 10.3390/ijms251910614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Hereditary spastic paraplegias are rare genetic disorders characterized by corticospinal tract impairment. Spastic paraplegia 83 (SPG83) is associated with biallelic mutations in the HPDL gene, leading to varied severities from neonatal to juvenile onset. The function of HPDL is unclear, though it is speculated to play a role in alternative coenzyme Q10 biosynthesis. Here, we report the generation of hiPS lines from primary skin fibroblasts derived from three SPG83 patients with different HPDL mutations, using episomal reprogramming. The patients' clinical characteristics are carefully listed. The hiPS lines were meticulously characterized, demonstrating typical pluripotent characteristics through immunofluorescence assays for stemness markers (OCT4, TRA1-60, NANOG, and SSEA4) and RT-PCR for endogenous gene expression. Genetic integrity and identity were confirmed via Sanger sequencing and short tandem repeat analysis. These hiPS cells displayed typical pluripotent characteristics and were able to differentiate into neocortical neurons via a dual SMAD inhibition protocol. In addition, HPDL mutant neurons assessed via long-term culturing were able to achieve effective maturation, similarly to their wild-type counterparts. The HPDL hiPS lines we generated will provide a valuable model for studying SPG83, offering insights into its molecular mechanisms and potential for developing targeted therapies.
Collapse
Affiliation(s)
- Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (M.B.); (F.P.); (S.D.V.); (A.T.)
| | - Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (M.B.); (F.P.); (S.D.V.); (A.T.)
| | - Flavia Privitera
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (M.B.); (F.P.); (S.D.V.); (A.T.)
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (M.B.); (F.P.); (S.D.V.); (A.T.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (M.B.); (F.P.); (S.D.V.); (A.T.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (M.B.); (F.P.); (S.D.V.); (A.T.)
| |
Collapse
|
5
|
Sartorelli J, Longo D, Travaglini L, Orlando V, D'Amico A, Bertini E, Nicita F. Acute Ophthalmoplegia with Wernicke-Like MRI Pattern in a Patient with HPDL-Related Disorder. Mov Disord Clin Pract 2024; 11:1160-1162. [PMID: 38940375 PMCID: PMC11452784 DOI: 10.1002/mdc3.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Jacopo Sartorelli
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Daniela Longo
- Neuroradiology Unit, Imaging DepartmentBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Lorena Travaglini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Valeria Orlando
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
6
|
Corral-Sarasa J, Martínez-Gálvez JM, González-García P, Wendling O, Jiménez-Sánchez L, López-Herrador S, Quinzii CM, Díaz-Casado ME, López LC. 4-Hydroxybenzoic acid rescues multisystemic disease and perinatal lethality in a mouse model of mitochondrial disease. Cell Rep 2024; 43:114148. [PMID: 38697100 DOI: 10.1016/j.celrep.2024.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.
Collapse
Affiliation(s)
- Julia Corral-Sarasa
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Juan Manuel Martínez-Gálvez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Biofisika Institute (CSIC, UBV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, 48940 Leioa, Spain
| | - Pilar González-García
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch, France
| | | | - Sergio López-Herrador
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - María Elena Díaz-Casado
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain
| | - Luis C López
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| |
Collapse
|
7
|
Kojima F, Okamoto Y, Ando M, Higuchi Y, Hobara T, Yuan J, Yoshimura A, Hashiguchi A, Matsuura E, Takashima H. A novel homozygous HPDL variant in Japanese siblings with autosomal recessive hereditary spastic paraplegia: case report and literature review. Neurogenetics 2024; 25:149-156. [PMID: 38286980 DOI: 10.1007/s10048-024-00746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Biallelic variants of 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) gene have been linked to neurodegenerative disorders ranging from severe neonatal encephalopathy to early-onset spastic paraplegia. We identified a novel homozygous variant, c.340G > T (p.Gly114Cys), in the HPDL gene in two siblings with autosomal recessive hereditary spastic paraplegia (HSP). Despite sharing the same likely pathogenic variant, the older sister had pure HSP, whereas her brother had severe and complicated HSP, accompanied by early-onset mental retardation and abnormalities in magnetic resonance imaging. Given the clinical heterogeneity and potential for treatable conditions in HPDL-related diseases, we emphasize the importance of genetic testing for the HPDL gene.
Collapse
Affiliation(s)
- Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.
| | - Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| |
Collapse
|
8
|
Wang Y, Zheng X, Feng C, Fan X, Liu L, Guo P, Lei Z, Mei S. HPDL mutations identified by exome sequencing are associated with infant neurodevelopmental disorders. Mol Genet Genomic Med 2022; 10:e2025. [PMID: 35985664 PMCID: PMC9544218 DOI: 10.1002/mgg3.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recent research found that biallelic HPDL variants can cause neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), with only a few reports. Clinical phenotypic information on individuals with damaging HPDL variants may also be incomplete. The phenotype of NEDSWMA is characterized by severe neurodevelopmental delay, brain atrophy, and spasticity in infancy. METHODS Exome sequencing was used in the proband and his parents to identify the underlying genetic cause. Candidate mutations were validated by classic Sanger sequencing. The clinical presentation of the infant who carried HPDL variants was summarized. RESULTS We identified a novel compound heterozygous variants in HPDL, c.995delC (p.T332Mfs) and c.1051C>T (p.Q351*) in the patient a 6-month-old boy presenting with global developmental delay, seizures, hypertonia, and limb spasticity. Brain magnetic resonance imaging (MRI) showed thin corpus callosum, ventriculomegaly, white matter volume reduction, bilateral frontotemporal subarachnoid widening, and sulcus deeping. CONCLUSION Our results provided important information for the associations of variants in HPDL with the neurodevelopmental disorder in infants, and broaden the genetic spectrum of HPDL-related disease. This is the second report of the HPDL mutation causing infant neurodevelopmental disorders in a Chinese population.
Collapse
Affiliation(s)
- Yanhong Wang
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Department of Rehabilitation MedicineHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Xuan Zheng
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Chao Feng
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Xiaoge Fan
- Department of Medical Imaging, Henan Children's Hospital, Zhengzhou Children's HospitalChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Lei Liu
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Pengbo Guo
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Zhi Lei
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Shiyue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Department of Rehabilitation MedicineHenan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
9
|
Micule I, Lace B, Wright NT, Chrestian N, Strautmanis J, Diriks M, Stavusis J, Kidere D, Kleina E, Zdanovica A, Laflamme N, Rioux N, Setty ST, Pajusalu S, Droit A, Lek M, Rivest S, Inashkina I. Case Report: Two Families With HPDL Related Neurodegeneration. Front Genet 2022; 13:780764. [PMID: 35222531 PMCID: PMC8864118 DOI: 10.3389/fgene.2022.780764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
There are recent reports of associations of variants in the HPDL gene with a hereditary neurological disease that presents with a wide spectrum of clinical severity, ranging from severe neonatal encephalopathy with no psychomotor development to adolescent-onset uncomplicated spastic paraplegia. Here, we report two probands from unrelated families presenting with severe and intermediate variations of the clinical course. A homozygous variant in the HPDL gene was detected in each proband; however, there was no known parental consanguinity. We also highlight reductions in citrate synthase and mitochondrial complex I activity detected in both probands in different tissues, reflecting the previously proposed mitochondrial nature of disease pathogenesis associated with HPDL mutations. Further, we speculate on the functional consequences of the detected variants, although the function and substrate of the HPDL enzyme are currently unknown.
Collapse
Affiliation(s)
- Ieva Micule
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia
| | - Baiba Lace
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia.,Centre de recherche CHU de Québec, Laval University, Québec, QC, Canada
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, United States
| | - Nicolas Chrestian
- Department of Pediatric Neurology, Pediatric Neuromuscular Disorders, Centre Mère Enfant Soleil, Laval University, Québec, QC, Canada
| | | | - Mikus Diriks
- Children's Clinical University Hospital, Riga, Latvia
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dita Kidere
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elfa Kleina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Anna Zdanovica
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Nataly Laflamme
- Centre de recherche CHU de Québec, Laval University, Québec, QC, Canada
| | - Nadie Rioux
- Centre de recherche CHU de Québec, Laval University, Québec, QC, Canada
| | | | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia.,Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Arnaud Droit
- Centre de recherche CHU de Québec, Laval University, Québec, QC, Canada
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Serge Rivest
- Centre de recherche CHU de Québec, Laval University, Québec, QC, Canada
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
10
|
Sun Y, Peng J, Liang D, Ye X, Xu N, Chen L, Yan D, Zhang H, Xiao B, Qiu W, Shen Y, Pang N, Liu Y, Liang C, Qin Z, Luo J, Chen F, Wang J, Zhang Z, Wei H, Du J, Yan H, Duan R, Wang J, Zhang Y, Liao S, Sun K, Wu L, Yu Y. Genome sequencing demonstrates high diagnostic yield in children with undiagnosed global developmental delay/intellectual disability: a prospective study. Hum Mutat 2022; 43:568-581. [PMID: 35143101 DOI: 10.1002/humu.24347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Genome sequencing(GS) has been used in the diagnosis of global developmental delay(GDD)/intellectual disability(ID). However, the performance of GS in patients with inconclusive results from chromosomal microarray analysis(CMA) and exome sequencing(ES) is unknown. We recruited 100 pediatric GDD/ID patients from multiple sites in China from February 2018 to August 2020 for GS. Patients have received at least one genomic diagnostic test prior to enrollment. Reanalysis of their CMA/ES data was performed. The yield of GS was calculated and explanations for missed diagnoses by CMA/ES were investigated. Clinical utility was assessed by interviewing the parents by phone. The overall diagnostic yield of GS was 21%. Seven cases could have been solved with reanalysis of ES data. Thirteen families were missed by previous CMA/ES due to improper methodology. Two remained unsolved after ES reanalysis due to complex variants missed by ES, and a CNV in untranslated regions. Follow-up of the diagnosed families revealed that nine families experienced changes in clinical management, including identification of targeted treatments, cessation of unnecessary treatment, and considerations for family planning. GS demonstrated high diagnostic yield and clinical utility in this undiagnosed GDD/ID cohort, detecting a wide range of variant types of different sizes in a single workflow. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 410008, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, 410008, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410078, Changsha, China
| | - Xiantao Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Na Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Linlin Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Dan Yan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, 530003, Nanning, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, 410008, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, 410008, Changsha, China
| | - Yingdi Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410078, Changsha, China
| | - Chen Liang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, 529000, Jiangmen, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, 530003, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, 530003, Nanning, China
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, 530003, Nanning, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, 10034, Beijing, China
| | - Zhixin Zhang
- International Medical Services, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Haiyan Wei
- Department of Endocrinologic and Inherited Metabolic, Childen's Hospital affiliated to Zhengzhou University, 450018, Zhengzhou, China
| | - Juan Du
- Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, China
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, 10034, Beijing, China
| | - Ruoyu Duan
- Department of Pediatrics, Peking University First Hospital, 10034, Beijing, China
| | - Junyu Wang
- Department of Pediatrics, Peking University First Hospital, 10034, Beijing, China
| | - Yu Zhang
- Department of Pediatrics, Peking University First Hospital, 10034, Beijing, China
| | - Shixiu Liao
- Provincial People's Hospital, Medical Genetics Institute of Henan Province, 450003, Zhengzhou, Henan Province, China
| | - Kun Sun
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410078, Changsha, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.,Shanghai Institute for Pediatric Research, 200092, Shanghai, China
| |
Collapse
|
11
|
Yu H, Wei Q, Luo WJ, Wu ZY. Novel bi-allelic HPDL variants cause hereditary spastic paraplegia in a Chinese patient. Clin Genet 2021; 100:777-778. [PMID: 34515336 DOI: 10.1111/cge.14056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Hao Yu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen-Jiao Luo
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|