1
|
Zou L, Zhang Z, Chen J, Guo R, Tong X, Ju Y, Lu H, Yang H, Wang J, Zong Y, Xu X, Jin X, Xiao L, Jia H, Zhang T, Liu X. Unraveling the impact of host genetics and factors on the urinary microbiome in a young population. mBio 2024; 15:e0277324. [PMID: 39513726 PMCID: PMC11633168 DOI: 10.1128/mbio.02773-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
The significance of the urinary microbiome in maintaining health and contributing to disease development is increasingly recognized. However, a comprehensive understanding of this microbiome and its influencing factors remains elusive. Utilizing whole metagenomic and whole-genome sequencing, along with detailed metadata, we characterized the urinary microbiome and its influencing factors in a cohort of 1,579 Chinese individuals. Our findings unveil the distinctiveness of the urinary microbiome from other four body sites, delineating five unique urotypes dominated by Gardnerella vaginalis, Sphingobium fluviale, Lactobacillus iners, Variovorax sp. PDC80, and Acinetobacter junii, respectively. We identified 108 host factors significantly influencing the urinary microbiome, collectively explaining 12.92% of the variance in microbial composition. Notably, gender-related factors, including sex hormones, emerged as key determinants in defining urotype groups, microbial composition and pathways, with the urinary microbiome exhibiting strong predictive ability for gender (area under the curve [AUC] = 0.843). Furthermore, we discovered 43 genome-wide significant associations between host genetic loci and specific urinary bacteria, Acinetobacter in particular, linked to eight host loci (P < 5 × 10-8). These associations were also modulated by gender and sex hormone levels. In summary, our study provides novel insights into the impact of host genetics and other factors on the urinary microbiome, shedding light on its implications for host health and disease. IMPORTANCE The urinary microbiome, essential to human health, reveals its unique qualities in our study of 1,579 Chinese individuals. We identified distinctive microbial profiles, or "urotypes," and uncovered strong gender-related influences, particularly from sex hormones, on these microbial communities. Our research highlights significant genetic associations affecting specific urinary bacteria, indicating a deep interaction between our genetics and our microbiome. These insights not only enhance our understanding of the urinary microbiome's role in health and disease but also open new pathways for personalized medical strategies, making our findings crucial for future diagnostic and therapeutic innovations. This work underscores the intricate relationship between our body's biological processes and the microorganisms within, providing valuable knowledge for both scientific and medical communities.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanmei Ju
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI Research, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI Research, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Xun Xu
- BGI Research, Shenzhen, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Liang Xiao
- BGI Research, Shenzhen, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
| | - Huijue Jia
- Institute of Precision Medicine–Greater Bay Area (Guangzhou), Fudan University, Guangzhou, China
| | - Tao Zhang
- BGI Research, Wuhan, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, China
| | - Xiaomin Liu
- BGI Research, Wuhan, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, China
| |
Collapse
|
2
|
Zhao X, Shi W, Li Z, Zhang W. Linking reproductive tract microbiota to premature ovarian insufficiency: Pathophysiological mechanisms and therapies. J Reprod Immunol 2024; 166:104325. [PMID: 39265315 DOI: 10.1016/j.jri.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Over the past decade, research on the human microbiota has become a hot topic. Among them, the female reproductive tract (FRT) also has a specific microbiota that maintains the body's health and dynamic balance, especially in the reproductive aspect. When the FRT ecosystem is dysregulated, changes in immune and metabolic signals can lead to pathological and physiological changes such as chronic inflammation, epithelial barrier disruption, changes in cell proliferation and apoptosis, and dysregulation of angiogenesis and metabolism, thereby causing disruption of the female endocrine system. Premature ovarian insufficiency (POI), a clinical syndrome of ovarian dysfunction, is primarily influenced by immune, genetic, and environmental factors. New evidence suggests that dysbiosis of the FRT microbiota and/or the presence of specific bacteria may contribute to the occurrence and progression of POI. This influence occurs through both direct and indirect mechanisms, including the regulation of estrogen metabolism. The use of probiotics or microbiota transplantation to regulate the microbiome has also been proven to be beneficial in improving ovarian function and the quality of life in women with premature aging. This article provides an overview of the interrelationships and roles between the FRT microbiome and POI in recent years, to fully understand the risk factors affecting female reproductive health, and to offer insights for the future diagnosis, treatment, and application of the FRT microbiome in POI patients.
Collapse
Affiliation(s)
- Xi Zhao
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wenying Shi
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Zhengyu Li
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| |
Collapse
|
3
|
Honorato L, Paião HGO, da Costa AC, Tozetto-Mendoza TR, Mendes-Correa MC, Witkin SS. Viruses in the female lower reproductive tract: a systematic descriptive review of metagenomic investigations. NPJ Biofilms Microbiomes 2024; 10:137. [PMID: 39587088 PMCID: PMC11589587 DOI: 10.1038/s41522-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The lower female reproductive tract (FRT) hosts a complex microbial environment, including eukaryotic and prokaryotic viruses (the virome), whose roles in health and disease are not fully understood. This review consolidates findings on FRT virome composition, revealing the presence of various viral families and noting significant gaps in knowledge. Understanding interactions between the virome, microbiome, and immune system will provide novel insights for preventing and managing lower genital tract disorders.
Collapse
Affiliation(s)
- Layla Honorato
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Heuder Gustavo Oliveira Paião
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tânia Regina Tozetto-Mendoza
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cássia Mendes-Correa
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Steven S Witkin
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Ju Y, Zhang Z, Liu M, Lin S, Sun Q, Song Z, Liang W, Tong X, Jie Z, Lu H, Cai K, Chen P, Jin X, Zhang W, Xu X, Yang H, Wang J, Hou Y, Xiao L, Jia H, Zhang T, Guo R. Integrated large-scale metagenome assembly and multi-kingdom network analyses identify sex differences in the human nasal microbiome. Genome Biol 2024; 25:257. [PMID: 39380016 PMCID: PMC11463039 DOI: 10.1186/s13059-024-03389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Respiratory diseases impose an immense health burden worldwide. Epidemiological studies have revealed extensive disparities in the incidence and severity of respiratory tract infections between men and women. It has been hypothesized that there might also be a nasal microbiome axis contributing to the observed sex disparities. RESULTS Here, we study the nasal microbiome of healthy young adults in the largest cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We compile the most comprehensive reference catalog for the nasal bacterial community containing 4197 metagenome-assembled genomes and integrate the mycobiome, to provide a valuable resource and a more holistic perspective for the understudied human nasal microbiome. We systematically evaluate sex differences and reveal extensive sex-specific features in both taxonomic and functional levels in the nasal microbiome. Through network analyses, we capture markedly higher ecological stability and antagonistic potentials in the female nasal microbiome compared to the male's. The analysis of the keystone bacteria reveals that the sex-dependent evolutionary characteristics might have contributed to these differences. CONCLUSIONS In summary, we construct the most comprehensive catalog of metagenome-assembled-genomes for the nasal bacterial community to provide a valuable resource for the understudied human nasal microbiome. On top of that, comparative analysis in relative abundance and microbial co-occurrence networks identify extensive sex differences in the respiratory tract community, which may help to further our understanding of the observed sex disparities in the respiratory diseases.
Collapse
Affiliation(s)
- Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Mingliang Liu
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shutian Lin
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Sun
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- Department of Statistical Sciences, University of Toronto, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
| | | | - Weiting Liang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI Research, Shenzhen, 518210, China
| | - Kaiye Cai
- BGI Research, Shenzhen, 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D, Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
| | - Yong Hou
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Huijue Jia
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Greater Bay Area Institute of Precision Medicine, Guangzhou, 511458, China.
| | - Tao Zhang
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| | - Ruijin Guo
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| |
Collapse
|
5
|
Tas GG, Sati L. Probiotic Lactobacillus rhamnosus species: considerations for female reproduction and offspring health. J Assist Reprod Genet 2024; 41:2585-2605. [PMID: 39172320 PMCID: PMC11535107 DOI: 10.1007/s10815-024-03230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Lactobacillus rhamnosus is a type of bacteria known as a probiotic and is often used to support the health of the digestive system and vaginal flora. This type of bacteria has an important role, showing positive effects on female reproductive biology, particularly by maintaining the balance of microorganisms in the vagina, reducing the risk of infection, and strengthening the immune system to support maternal health during pregnancy. There are also studies showing that these probiotics prevent maternal obesity and gestational diabetes. Consuming probiotics containing Lactobacillus rhamnosus strains may support the intestinal health of breastfeeding mothers, but they may also contribute to the health of offspring. Therefore, this review focuses on the current available data for examining the effects of Lactobacillus rhamnosus strains on female reproductive biology and offspring health. A systematic search was conducted in the PubMed and Web of Science databases from inception to May 2024. The search strategy was performed using keywords and MeSH (Medical Subject Headings) terms. Inconsistent ratings were resolved through discussion. This review is strengthened by multiple aspects of the methodological approach. The systematic search strategy, conducted by two independent reviewers, enabled the identification and evaluation of all relevant literature. Although there is a limited number of studies with high heterogeneity, current literature highlights the important contribution of Lactobacillus rhamnosus probiotics in enhancing female reproductive health and fertility. Furthermore, the probiotic bacteria in breast milk may also support the intestinal health of newborn, strengthen the immune system, and protect them against diseases at later ages.
Collapse
Affiliation(s)
- Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
6
|
Chen N, Hao L, Zhang Z, Qin C, Jie Z, Pan H, Duan J, Huang X, Zhang Y, Gao H, Lu R, Sun T, Yang H, Shi J, Liang M, Guo J, Gao Q, Zhao X, Dou Z, Xiao L, Zhang S, Jin X, Xu X, Yang H, Wang J, Jia H, Zhang T, Kristiansen K, Chen C, Zhu L. Insights into the assembly of the neovaginal microbiota in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome patients. Nat Commun 2024; 15:7808. [PMID: 39242555 PMCID: PMC11379825 DOI: 10.1038/s41467-024-52102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Neovaginas are surgically constructed to correct uterovaginal agenesis in women with Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome or as part of gender-affirming surgery for transfeminine individuals. Understanding the assembly of the neovaginal microbiota is crucial for guiding its management. To address this, we conducted a longitudinal study on MRKH patients following laparoscopic peritoneal vaginoplasty. Our findings reveal that the early microbial assemblage exhibited stochastic characteristics, accompanied with a notable bloom of Enterococcus faecalis and genital Mycoplasmas. While both the pre-surgery dimple microbiota and the fecal microbiota constituted the primary species pool, the neovaginal microbiota developed into a microbiota that resembled that of a normal vagina at 6-12 months post-surgery, albeit with a bacterial vaginosis (BV)-like structure. By 2-4 years post-surgery, the neovaginal microbiota had further evolved into a structure closely resembling with the homeostatic pre-surgery dimple microbiota. This concords with the development of the squamous epithelium in the neovagina and highlights the pivotal roles of progressive selective forces imposed by the evolving neovaginal environment and the colonization tropism of vaginal species. Notably, we observed that strains of Lactobacillus crispatus colonizing the neovagina primarily originated from the dimple. Since L. crispatus is generally associated with vaginal health, this finding suggests potential avenues for future research to promote its colonization.
Collapse
Affiliation(s)
- Na Chen
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Lilan Hao
- BGI-Research, Shenzhen, 518083, China
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China
| | - Zhe Zhang
- BGI-Research, Shenzhen, 518083, China
| | - Chenglu Qin
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Zhuye Jie
- BGI-Research, Shenzhen, 518083, China
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hongxin Pan
- Department of Gynecology, Southern University of Science and Technology Hospital, 6019 liuxian street, Shenzhen, 518000, China
| | - Jiali Duan
- Chinese Academy of Medical Sciences & Peking Union Medical College, 4+4 Medical Doctor Program, No.9 Dongdansantiao, 100730, Beijing, China
| | - Xincheng Huang
- BGI-Research, Shenzhen, 518083, China
- China National GeneBank, BGI-Research, Shenzhen, 518210, China
| | - Yunhong Zhang
- Social Affairs Bureau of Suzhou National New and Hi-tech Industrial Development Zone, Suzhou, 215163, China
| | - Hongqin Gao
- Suzhou National New and Hi-tech Industrial Development Zone Center for Maternal and Child Health and Family Planning Service, Suzhou, 215163, China
| | - Ruike Lu
- Suzhou National New and Hi-tech Industrial Development Zone Center for Maternal and Child Health and Family Planning Service, Suzhou, 215163, China
| | - Tianshu Sun
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Hua Yang
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Jinqiu Shi
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Maolian Liang
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Jianbin Guo
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Qianqian Gao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Xiaoyue Zhao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Zhiyuan Dou
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Liang Xiao
- BGI-Research, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Research, Shenzhen, 518083, China
| | | | - Xin Jin
- BGI-Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Research, Shenzhen, 518083, China
| | - Huanming Yang
- BGI-Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Jian Wang
- BGI-Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Huijue Jia
- BGI-Research, Shenzhen, 518083, China
- School of Life Sciences, Fudan University, Shanghai, 200433, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Tao Zhang
- BGI Research, Wuhan, 430074, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, Shenzhen, Guangdong, 518083, China.
| | - Karsten Kristiansen
- BGI-Research, Shenzhen, 518083, China.
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China.
| | - Chen Chen
- BGI-Research, Shenzhen, 518083, China.
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Lan Zhu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China.
| |
Collapse
|
7
|
Qi F, Fan S, Fang C, Ge L, Lyu J, Huang Z, Zhao S, Zou Y, Huang L, Liu X, Liang Y, Zhang Y, Zhong Y, Zhang H, Xiao L, Zhang X. Orally administrated Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 can restore the vaginal health of patients recovering from bacterial vaginosis. Front Immunol 2023; 14:1125239. [PMID: 37575226 PMCID: PMC10415204 DOI: 10.3389/fimmu.2023.1125239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial vaginosis (BV) is a common infection of the lower genital tract with a vaginal microbiome dysbiosis caused by decreasing of lactobacilli. Previous studies suggested that supplementation with live Lactobacillus may benefit the recovery of BV, however, the outcomes vary in people from different regions. Herein, we aim to evaluate the effectiveness of oral Chinese-origin Lactobacillus with adjuvant metronidazole (MET) on treating Chinese BV patients. In total, 67 Chinese women with BV were enrolled in this parallel controlled trial and randomly assigned to two study groups: a control group treated with MET vaginal suppositories for 7 days and a probiotic group treated with oral Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 as an adjuvant to MET for 30 days. By comparing the participants with Nugent Scores ≥ 7 and < 7 on days 14, 30, and 90, we found that oral administration of probiotics did not improve BV cure rates (72.73% and 84.00% at day 14, 57.14% and 60.00% at day 30, 32.14% and 48.39% at day 90 for probiotic and control group respectively). However, the probiotics were effective in restoring vaginal health after cure by showing higher proportion of participants with Nugent Scores < 4 in the probiotic group compared to the control group (87.50% and 71.43% on day 14, 93.75% and 88.89% on day 30, and 77.78% and 66.67% on day 90). The relative abundance of the probiotic strains was significantly increased in the intestinal microbiome of the probiotic group compared to the control group at day 14, but no significance was detected after 30 and 90 days. Also, the probiotics were not detected in vaginal microbiome, suggesting that L. gasseri TM13 and L. crispatus LG55 mainly acted through the intestine. A higher abundance of Prevotella timonensis at baseline was significantly associated with long-term cure failure of BV and greatly contributed to the enrichment of the lipid IVA synthesis pathway, which could aggravate inflammation response. To sum up, L. gasseri TM13 and L. crispatus LG55 can restore the vaginal health of patients recovering from BV, and individualized intervention mode should be developed to restore the vaginal health of patients recovering from BV. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/, identifier NCT04771728.
Collapse
Affiliation(s)
- Fengyuan Qi
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Lan Ge
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Jinli Lyu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhuoqi Huang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaowei Zhao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongke Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiyi Zhong
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
8
|
Ansari A, Son D, Hur YM, Park S, You YA, Kim SM, Lee G, Kang S, Chung Y, Lim S, Kim YJ. Lactobacillus Probiotics Improve Vaginal Dysbiosis in Asymptomatic Women. Nutrients 2023; 15:nu15081862. [PMID: 37111086 PMCID: PMC10143682 DOI: 10.3390/nu15081862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Vaginal dysbiosis can lead to serious infections in asymptomatic women. Lactobacillus probiotics (LBPs) are being investigated as a promising therapy for reversing vaginal microbiota dysbiosis. This study aimed to investigate whether administering LBPs could improve vaginal dysbiosis and facilitate the colonization of Lactobacillus species in asymptomatic women. 36 asymptomatic women were classified based on the Nugent score as Low-NS (n = 26) and High-NS (n = 10) groups. A combination of Lactobacillus acidophilus CBT LA1, Lactobacillus rhamnosus CBT LR5, and Lactobacillus reuteri CBT LU4 was administered orally for 6 weeks. The study found that among women with a High-NS, 60% showed improved vaginal dysbiosis with a Low-NS after LBP intake, while four retained a High-NS. Among women with a Low-NS, 11.5 % switched to a High-NS. Genera associated with vaginal dysbiosis were positively correlated with the alpha diversity or NS, while a negative correlation was observed between Lactobacillus and the alpha diversity and with the NS. Vaginal dysbiosis in asymptomatic women with an HNS improved after 6 weeks of LBP intake, and qRT-PCR revealed the colonization of Lactobacillus spp. in the vagina. These results suggested that oral administration of this LBP could improve vaginal health in asymptomatic women with an HNS.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Dooheon Son
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Seungbeom Kang
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea
| | - Yusook Chung
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| |
Collapse
|
9
|
Lyra A, Ala-Jaakkola R, Yeung N, Datta N, Evans K, Hibberd A, Lehtinen MJ, Forssten SD, Ibarra A, Pesonen T, Junnila J, Ouwehand AC, Baranowski K, Maukonen J, Crawford G, Lehtoranta L. A Healthy Vaginal Microbiota Remains Stable during Oral Probiotic Supplementation: A Randomised Controlled Trial. Microorganisms 2023; 11:499. [PMID: 36838464 PMCID: PMC9961720 DOI: 10.3390/microorganisms11020499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The primary objective of this randomised, placebo-controlled, triple-blind study was to assess whether orally consumed Lactobacillus acidophilus La-14 (La-14) and Lacticaseibacillus rhamnosus HN001 (HN001) colonise a healthy human vagina. Furthermore, potential effects on vaginal microbiota and immune markers were explored. Fifty women devoid of vaginal complaints (Nugent score 0-3 and vaginal pH ≤ 4.5) were randomised into a 2-week intervention with either La-14 and HN001 as the verum product or a comparable placebo. Vaginal swab samples were collected at baseline, after one and two weeks of intervention, and after a one-week follow-up, for assessing colonisation of the supplemented lactobacilli, vaginal microbiota, and six specific immune markers. Colonisation of L. acidophilus and L. rhamnosus was not observed above the assay detection limit (5.29 and 5.11 log 10 genomes/swab for L. acidophilus and L. rhamnosus, respectively). Vaginal microbiotas remained stable and predominated by lactobacilli throughout the intervention, and vaginal pH remained optimal (at least 90% of participants in both groups had pH 4.0 or 4.5 throughout the study). Immune markers elafin and human β-defensin 3 (HBD-3) were significantly decreased in the verum group (p = 0.022 and p = 0.028, respectively) but did not correlate with any microbiota changes. Adverse events raised no safety concerns, and no undesired changes in the vaginal microbiota or immune markers were detected.
Collapse
Affiliation(s)
- Anna Lyra
- IFF Health & Biosciences, 02460 Kantvik, Finland
| | | | | | - Neeta Datta
- IFF Health & Biosciences, 02460 Kantvik, Finland
| | - Kara Evans
- IFF Health & Biosciences, Madison, WI 53716, USA
| | | | | | | | - Alvin Ibarra
- IFF Health & Biosciences, 02460 Kantvik, Finland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dibo M, Ventimiglia MS, Valeff N, Serradell MDLÁ, Jensen F. An overview of the role of probiotics in pregnancy-associated pathologies with a special focus on preterm birth. J Reprod Immunol 2022; 150:103493. [DOI: 10.1016/j.jri.2022.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|