1
|
Li T, Yang C, Zhang L. Novel comprehensive perspective on Amadori compounds: preparation, multiple roles and interaction with other compounds. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40269616 DOI: 10.1080/10408398.2025.2494059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Amadori compounds are pivotal intermediates in the Maillard reaction. Amadori compounds serve as flavor enhancers, browning precursors and bioactive components, so they are promising versatile food additives. Comprehensive reviews on multiple roles of Amadori compounds are scarce. Furthermore, there is a lack of reviews on green, efficient and commercially prospective preparation techniques of Amadori compounds and their interactions with other components. This paper reviewed preparation, multiple roles and interactions with other components in foods. Spray drying, microwave heating, natural deep eutectic solvents and vacuum dewatering were deemed as green, efficient and commercially prospective preparation techniques for Amadori compounds. Amadori compounds broadened the application field of Maillard reaction-obtained additives compared to final-products, enabling their uses not only in dark-colored foodstuffs but also in light-colored. Peptide-derived Amadori compounds showed greater potency for flavor generation compared to amino acid-derived. Amadori compounds presented eleven physiological activities. Amadori compounds exerted synergistic effect with essential nutrients (lipids, exogenous amino acids and carbohydrates), functional ingredients (polyphenols, carotenoids, glycosides) as well as several drugs. More preparation approaches of Amadori compounds and their synergistic effects with other ingredients await investigation. This review provided comprehensive theoretical guidance for industrial preparation and application of Amadori compounds as versatile additives.
Collapse
Affiliation(s)
- Tingting Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Li T, Yang C, Zhang L. Novel insight into Amadori compounds: Fate of Amadori compounds in food supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70149. [PMID: 40091644 DOI: 10.1111/1541-4337.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Amadori compounds, pivotal intermediates in the Maillard reaction, act as flavor enhancer, browning precursor, and functional component. Amadori compounds consisting of diverse amino and carbonyl groups might show distinct flavor attributes and functional activities. Food production involves many supply chain stages where thermal treatment might produce Amadori compounds, and processing techniques and circumstances might affect the generation and stability of Amadori compounds. Moreover, gastrointestinal digestion might also influence the stability of Amadori compounds. To date, there is a lack of comprehensive review on the impact of various supply chain stages and digestion on Amadori compounds. This paper reviewed all reported Amadori compounds derived from diverse reducing sugars (glucose, xylose, ribose, maltose) and amino-containing compounds (common and specific amino acids, peptides), and compared differences in synthetic efficiency, flavor property, and functional activity among them; aggregated qualitative techniques; encapsulated quantitative techniques including indirect quantification and direct quantification, and intuitively compared strengths and weaknesses of these techniques; and outlined influence of processing, cooking, storage, and digestion on formation and stability of Amadori compounds. Appropriate processing techniques and conditions favored the generation and stability of Amadori compounds. Baking, frying, and roasting greatly facilitated Amadori compounds accumulation compared to steaming and boiling. Prolonged cooking at relatively low temperature favored Amadori compounds accumulation, whereas high-temperature cooking for a short duration resulted in fewer accumulation. Amadori compounds showed greater digestion resistance and could be absorbed by the intestine. This review offers scientific instruction for producing high-quality products with abundant Amadori compounds, or extracting plentiful Amadori compounds from processed foods as versatile food additives.
Collapse
Affiliation(s)
- Tingting Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Ahn H, Lee GS. Amino Sugar-Enriched Fraction of Korean Red Ginseng Extract Induces the Priming Step of NLRP3 Inflammasome. Molecules 2024; 29:1455. [PMID: 38611734 PMCID: PMC11013037 DOI: 10.3390/molecules29071455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Intracellular protein complexes, known as inflammasomes, activate caspase-1 and induce the secretion of pro-inflammatory cytokines, namely interleukin (IL)-1β and -18. Korean Red Ginseng extract (RGE) is a known immunomodulator and a potential candidate for the regulation of inflammasomes. The saponins, such as ginsenosides, of RGE inhibit inflammasome signaling, while non-saponin substances containing amino sugars promote the priming step, up-regulating inflammasome components (pro-IL-1β, NLRP3, caspase-1, and Asc). In this study, the amino sugar-enriched fraction (ASEF), which increases only non-saponin components, including amino sugars, without changing the concentration of saponin substances, was used to investigate whether saponin or non-saponin components of RGE would have a greater impact on the priming step. When murine macrophages were treated with ASEF, the gene expression of inflammatory cytokines (IL-1α, TNFα, IL-6, and IL-10) increased. Additionally, ASEF induced the priming step but did not affect the inflammasome activation step, such as the secretion of IL-1β, cleavage of caspase-1, and formation of Asc pyroptosome. Furthermore, the upregulation of gene expression of inflammasome components by ASEF was blocked by inhibitors of Toll-like receptor 4 signaling. Maltol, the main constituent of ASEF, promoted the priming step but inhibited the activation step of the inflammasome, while arginine, sugars, arginine-fructose-glucose, and fructose-arginine, the other main constituents of ASEF, had no effect on either step. Thus, certain amino sugars in RGE, excluding maltol, are believed to be the components that induce the priming step. The priming step that prepares the NLRP3 inflammasome for activation appears to be induced by amino sugars in RGE, thereby contributing to the immune-boosting effects of RGE.
Collapse
Affiliation(s)
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
4
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
6
|
Cao J, Yang C, Zhang J, Zhang L, Tsao R. Amadori compounds: analysis, composition in food and potential health beneficial functions. Crit Rev Food Sci Nutr 2023; 65:406-428. [PMID: 39722481 DOI: 10.1080/10408398.2023.2274949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Amadori compounds (ACs) are key intermediates of the Maillard reaction, and found in various thermally processed foods. Simultaneous analysis of multiple ACs is challenging due to the complex amino acid and carbohydrate compositions, and the different food matrices. Most studies focus on the effects of ACs on food flavor and related sensory properties, but not their biological functions. However, increasing evidence shows that ACs possess various beneficial effects on human health, thus a comprehensive review on the various biological activities is warranted. In this review, we summarized the composition and content of ACs in different foods, their formation and degradation reactions, and discussed the latest advances in analytical methods of ACs and their biological functions related to human health. Limitations and research gaps were identified and future perspectives on ACs research were proposed. This review points to the needs of systematic and comprehensive in vitro and in vivo studies on human health related biological functions of ACs and their mechanisms of action, particularly the synergistic effects with other food components and drugs, and roles in intestinal health and metabolic syndrome.
Collapse
Affiliation(s)
- Jialing Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jian Zhang
- College of Food, Shihezi University, Shihezi, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- College of Food, Shihezi University, Shihezi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| |
Collapse
|
7
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
8
|
Tseng YH, Chen IC, Li WC, Hsu JH. Regulatory Cues in Pulmonary Fibrosis-With Emphasis on the AIM2 Inflammasome. Int J Mol Sci 2023; 24:10876. [PMID: 37446052 DOI: 10.3390/ijms241310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
10
|
Shin SW, Cho IH. Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome. J Ginseng Res 2023; 47:23-32. [PMID: 36213093 PMCID: PMC9529349 DOI: 10.1016/j.jgr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.
Collapse
Affiliation(s)
- Seo Won Shin
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ik Hyun Cho
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Corresponding author. D.V.M. & Ph.D. Department of Convergence Medical Science and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
11
|
JC2-11, a benzylideneacetophenone derivative, attenuates inflammasome activation. Sci Rep 2022; 12:22484. [PMID: 36577816 PMCID: PMC9797494 DOI: 10.1038/s41598-022-27129-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Dysregulation of inflammasome activation induces chronic and excess inflammation resulting in several disorders, such as metabolic disorders and cancers. Thus, screening for its regulator derived from natural materials has been conducted progressively. JC2-11 (JC) was designed to enhance the antioxidant activity based on a chalcone, which is abundant in edible plants and a precursor of flavonoids. This study examined the effects of JC on inflammasome activation in human and murine macrophages. JC inhibited the secretion of interleukin (IL)-1β and lactate dehydrogenases, and the cleavage of caspase-1 and gasdermin D in response to the tested activators (i.e., NLRP3, NLRC4, AIM2, and non-canonical inflammasome triggers). In addition, JC attenuated IL-1β secretion from lipopolysaccharide (LPS)-injected mice, an inflammasome-mediating disease model. Mechanistically, JC blocked the expression of the inflammasome components during the priming step of the inflammasome, and interrupted the production of mitochondrial reactive oxygen species. In addition, JC inhibited the activity of caspase-1. In conclusion, JC may be a candidate pan-inflammasome inhibitor.
Collapse
|
12
|
Ahn H, Lee G, Han BC, Lee SH, Lee GS. Maltol, a Natural Flavor Enhancer, Inhibits NLRP3 and Non-Canonical Inflammasome Activation. Antioxidants (Basel) 2022; 11:1923. [PMID: 36290645 PMCID: PMC9598623 DOI: 10.3390/antiox11101923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 09/22/2023] Open
Abstract
Maltol (3-hydroxy-2-methyl-4-pyrone) is used widely as a food and cosmetic supplement, and it has antioxidant and anti-inflammatory activities. Inflammasome causes the maturation and secretion of interleukin (IL)-1β and -18 through the activation of caspase-1 (Casp1), which contributes to various inflammatory diseases. This study examined the effects of maltol on the inflammasome activation in macrophages and mice. Lipopolysaccharide (LPS)-primed macrophages were treated with a trigger of NLRP3, NLRC4, AIM2, or non-canonical (NC) inflammasomes in the presence of maltol. The secretion of IL-1β and IL-18 and the cleavage of Casp1 were analyzed as indices of inflammasome activation. Mice were injected with LPS and an NLRP3 trigger with or without maltol, and the peritoneal IL-1β secretions were observed. The effects of maltol on reactive oxygen species (ROS) production and Casp1 activity were analyzed to determine the mechanism. Maltol inhibited the activation of NLRP3 and NC inflammasomes, but it did not alter the other inflammasomes. Maltol also attenuated IL-1β secretion resulting from the inflammasome activation in mice. The anti-inflammatory mechanism of maltol was revealed by the inhibition of ROS production and Casp1 activity. Maltol is suggested to be promising as a anti-inflammasome molecule.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Gilyoung Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34337, Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34337, Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
13
|
Jung EM, Lee GS. Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic. J Ginseng Res 2022; 46:331-336. [PMID: 35194373 PMCID: PMC8851744 DOI: 10.1016/j.jgr.2022.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) exhibits various symptoms, ranging from asymptomatic to severe pneumonia or death. The major features of patients in severe COVID-19 are the dysregulation of cytokine secretion, pneumonia, and acute lung injury. Consequently, it leads to acute respiratory distress syndrome, disseminated intravascular coagulation, multiple organ failure, and death. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19, influences nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3), the sensor of inflammasomes, directly or indirectly, culminating in the assembly of NLRP3 inflammasome and activation of inflammatory caspases, which induce the inflammatory disruption in severe COVID-19. Accordingly, the target therapeutics for inflammasome has attracted attention as a treatment for COVID-19. Korean Red Ginseng (KRG) inhibits several inflammatory responses, including the NLRP3 inflammasome signaling. This review discusses the role of KRG in the treatment and prevention of COVID-19 based on its anti-NLRP3 inflammasome efficacy.
Collapse
Affiliation(s)
- Eui-Man Jung
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
14
|
Yi YS. Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J Ginseng Res 2022; 46:722-730. [PMID: 35399195 PMCID: PMC8979607 DOI: 10.1016/j.jgr.2022.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogenic virus that causes coronavirus disease 2019 (COVID-19), with major symptoms including hyper-inflammation and cytokine storm, which consequently impairs the respiratory system and multiple organs, or even cause death. SARS-CoV-2 activates inflammasomes and inflammasome-mediated inflammatory signaling pathways, which are key determinants of hyperinflammation and cytokine storm in COVID-19 patients. Additionally, SARS-CoV-2 inhibits inflammasome activation to evade the host's antiviral immunity. Therefore, regulating inflammasome initiation has received increasing attention as a preventive measure in COVID-19 patients. Ginseng and its major active constituents, ginsenosides and saponins, improve the immune system and exert anti-inflammatory effects by targeting inflammasome stimulation. Therefore, this review discussed the potential preventive and therapeutic roles of ginseng in COVID-19 based on its regulatory role in inflammasome initiation and the host's antiviral immunity.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, 16227, Republic of Korea.
| |
Collapse
|
15
|
Lee YY, Ullah HMA, Ha LS, Kim SD, Yun BS, Rhee MH. Isopanepoxydone inhibits oxidative damage in murine alveolar macrophages via NRF2 and NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2022; 44:347-354. [PMID: 35297281 DOI: 10.1080/08923973.2022.2047197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Respiratory diseases due to particulate matter are a serious health issue. We sought to investigate the efficacy of isopanepoxydone (ISO) isolated from the Panus rudis as a therapeutic against particulate matter-induced respiratory complications. MATERIALS AND METHODS ISO was isolated from a culture broth of Panus rudis using solvent partition, silica gel, and column chromatography, and high-performance liquid chromatography. Its chemical structure was determined spectroscopically. Murine alveolar macrophages (MH-S) were treated with ISO to investigate the inhibition of nitric oxide (NO) while cytotoxicity was investigated via a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The expression of pro-inflammatory mediators, cytokines, and protein expression levels in the oxidative protective and inflammasome pathway were also investigated. Reactive oxygen species in MH-S cells were investigated using 2',7'-dichlorofluorescein diacetate while immunofluorescence was performed to investigate the expression of activated apoptosis-associated speck-like proteins (ASC) containing a caspase recruitment domain in MH-S cells. RESULTS ISO effectively inhibited CFA-induced NO production with no cytotoxicity on MH-S cells and pro-inflammatory mediators and cytokines were also inhibited (except tumor necrosis factor α and interleukin-6). ISO enhanced the protein expression of nuclear factor erythroid 2-related factor 2, while suppressing proteins in the inflammasome pathway, but did not suppress the expression of nuclear factor-kappa B. ISO also reduced detectable ROS other than preventing the activation of ASC. CONCLUSION Pathways of action of ISO in MH-S cells that prevent oxidative damage and suppress the expression of proteins in the inflammasome pathway were investigated. ISO may be developed as a treatment for respiratory inflammation.
Collapse
Affiliation(s)
- Yuan Yee Lee
- Department of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - H M Arif Ullah
- Department of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Lee Su Ha
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Sung Dae Kim
- Department of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Min JH, Cho HJ, Yi YS. A novel mechanism of Korean red ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages. J Ginseng Res 2021; 46:675-682. [PMID: 36090677 PMCID: PMC9459075 DOI: 10.1016/j.jgr.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/05/2023] Open
Abstract
Background Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.
Collapse
|
17
|
Ahn H, Lee G, Kim J, Park J, Kang SG, Yoon SI, Lee E, Lee GS. NLRP3 Triggers Attenuate Lipocalin-2 Expression Independent with Inflammasome Activation. Cells 2021; 10:cells10071660. [PMID: 34359830 PMCID: PMC8305203 DOI: 10.3390/cells10071660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Lipocalin-2 (LCN2), a small secretory glycoprotein, is upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 inhibits bacterial growth by iron sequestration and regulates the innate immune system. Inflammasome activates the inflammatory caspases leading to pyroptosis and cytokine maturation. This study examined the effects of inflammasome activation on LCN2 secretion in response to TLR signaling. The triggers of NLRP3 inflammasome activation attenuated LCN2 secretion while it induced interleukin-1β in mouse macrophages. In mice, NLRP3 inflammasome activation inhibited TLR-mediated LCN2 secretion. The inhibition of NLRP3 triggers on LCN2 secretion was caused by the inhibited transcription and translation of LCN2. At the same time, no changes in the other cytokines and IκBζ, a well-known transcriptional factor of Lcn2 transcription, were observed. Overall, NLRP3 triggers are a regulator of LCN2 expression suggesting a new linkage of inflammasome activation and LCN2 secretion in the innate immunity.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (H.A.); (G.L.); (J.K.); (J.P.); (E.L.)
| | - Gilyoung Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (H.A.); (G.L.); (J.K.); (J.P.); (E.L.)
| | - Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (H.A.); (G.L.); (J.K.); (J.P.); (E.L.)
| | - Jeongho Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (H.A.); (G.L.); (J.K.); (J.P.); (E.L.)
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (S.G.K.); (S.-I.Y.)
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (S.G.K.); (S.-I.Y.)
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (H.A.); (G.L.); (J.K.); (J.P.); (E.L.)
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (H.A.); (G.L.); (J.K.); (J.P.); (E.L.)
- Correspondence: ; Tel.: +82-3-3250-8683; Fax: +82-3-3244-2367
| |
Collapse
|