1
|
Polukarova M, Gaggini EL, Rødland E, Sokolova E, Bondelind M, Gustafsson M, Strömvall AM, Andersson-Sköld Y. Tyre wear particles and metals in highway roadside ditches: Occurrence and potential transport pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125971. [PMID: 40043875 DOI: 10.1016/j.envpol.2025.125971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Tyre wear particles (TWP) pose significant environmental concerns, necessitating a comprehensive understanding of their environmental distribution for accurate risk assessment. Roadside soil has not been extensively studied for TWP occurrence and distribution. This study aims to characterise the occurrence and distribution of TWP and associated metals in roadside soils and to investigate the correlations between these contaminants. Soil samples were collected from two road ditches along a Swedish national motorway at varying depths and distances from the contamination source. TWP in fractions <500 μm were analysed using PYR-GC/MS. Results indicated that TWP concentrations in soil samples ranged from 0.74 ± 0.20 to 12.40 ± 1.88 mg/kg d.w., consistent with other studies, and decreased with distance from the road, similar to Zn. In one ditch, TWP concentrations remained constant with depth, unlike concentrations of Co and Cr, which increased, while in the other ditch, TWP and most metals did not decrease with depth or distance from the outlet. Strong correlations were found between concentrations of TWP and Zn in one, but not the other, where Zn might have followed different transport due to leaching. Metal correlations in both ditches suggest traffic-related but not necessarily tyre wear origins. These findings are crucial for risk assessments of traffic-related pollutants, particularly TWP, and their spread into soils.
Collapse
Affiliation(s)
- Maria Polukarova
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden.
| | - Elly Lucia Gaggini
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Elisabeth Rødland
- Norwegian Institute for Water Research, Økernveien 94, NO-0579, Oslo, Norway
| | - Ekaterina Sokolova
- Uppsala University, Department of Earth Sciences, SE-752 36, Uppsala, Sweden
| | - Mia Bondelind
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Mats Gustafsson
- Swedish National Road and Transport Research Institute Linköping (VTI), SE-581 95, Linköping, Sweden
| | - Ann-Margret Strömvall
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Division of Geology and Geotechnics, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
2
|
Ren J, Zhang S, Wang Y, Yang H. Adsorption Properties and Mechanisms of Methylene Blue by Modified Sphagnum Moss Bio-Based Adsorbents. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4329. [PMID: 39274718 PMCID: PMC11396775 DOI: 10.3390/ma17174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024]
Abstract
The abundant pore structure and carbon composition of sphagnum peat moss render it a bio-based adsorbent for efficient methylene blue removal from wastewater. By utilizing sphagnum moss sourced from Guizhou, China, as raw material, a cost-effective and highly efficient bio-based adsorbent material was prepared through chemical modification. The structure and performance of the modified sphagnum moss were characterized using SEM, EDS, FTIR, and TGA techniques. Batch adsorption experiments explored the effects of contact time, adsorbent dosage, pH, initial dye concentration, and temperature on adsorption performance. Kinetics, isotherm models, and thermodynamics elucidated the adsorption behavior and mechanism. The modified sphagnum moss exhibited increased surface roughness and uniform surface modification, enhancing active site availability for improved adsorption. Experimental data aligned well with the Freundlich isotherm model and pseudo-second-order kinetic model, indicating efficient adsorption. The study elucidated the adsorption mechanism, laying a foundation for effective methylene blue removal. The utilization of modified sphagnum moss demonstrates significant potential in effectively removing MB from contaminated solutions due to its robust adsorption capability and efficient reusability.
Collapse
Affiliation(s)
- Junpeng Ren
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Shijiang Zhang
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Yu Wang
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Hengxiu Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
3
|
Qi J, Wang X, Zhang H, Liu X, Wang W, He Q, Guo F. Biopolymer Meets Nanoclay: Rational Fabrication of Superb Adsorption Beads from Green Precursors for Efficient Capture of Pb(II) and Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:766. [PMID: 38727360 PMCID: PMC11085593 DOI: 10.3390/nano14090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of "structure optimization design", environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (J.Q.); (X.W.); (H.Z.); (X.L.); (W.W.); (Q.H.)
| |
Collapse
|
4
|
Johansson G, Fedje KK, Modin O, Haeger-Eugensson M, Uhl W, Andersson-Sköld Y, Strömvall AM. Removal and release of microplastics and other environmental pollutants during the start-up of bioretention filters treating stormwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133532. [PMID: 38387172 DOI: 10.1016/j.jhazmat.2024.133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Untreated stormwater is a major source of microplastics, organic pollutants, metals, and nutrients in urban water courses. The aim of this study was to improve the knowledge about the start-up periods of bioretention filters. A rain garden pilot facility with 13 bioretention filters was constructed and stormwater from a highway and adjacent impervious surfaces was used for irrigation for ∼12 weeks. Selected plants (Armeria maritima, Hippophae rhamnoides, Juncus effusus, and Festuca rubra) was planted in ten filters. Stormwater percolated through the filters containing waste-to-energy bottom ash, biochar, or Sphagnum peat, mixed with sandy loam. Influent and effluent samples were taken to evaluate removal of the above-mentioned pollutants. All filters efficiently removed microplastics >10 µm, organic pollutants, and most metals. Copper leached from all filters initially but was significantly reduced in the biochar filters at the end of the period, while the other filters showed a declining trend. All filters leached nutrients initially, but concentrations decreased over time, and the biochar filters had efficiently reduced nitrogen after a few weeks. To conclude, all the filters effectively removed pollutants during the start-up period. Before being recommended for full-scale applications, the functionality of the filters after a longer period of operation should be evaluated.
Collapse
Affiliation(s)
- Glenn Johansson
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Karin Karlfeldt Fedje
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Recycling and Waste Management, Renova AB, Box 156, Gothenburg SE-40122, Sweden
| | - Oskar Modin
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | - Wolfgang Uhl
- Aquateam COWI AS, Karvesvingen 2, 0579 Oslo, Norway
| | - Yvonne Andersson-Sköld
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Swedish National Road and Transport Research Institute Linköping (VTI), Box 8072, SE-40278 Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
5
|
Wang Z, Zhang Y, Chen Y, Han F, Shi Y, Pan S, Li Z. Competition of Cd(II) and Pb(II) on the bacterial cells: a new insight from bioaccumulation based on NanoSIMS imaging. Appl Environ Microbiol 2024; 90:e0145323. [PMID: 38224623 PMCID: PMC10880600 DOI: 10.1128/aem.01453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024] Open
Abstract
Polymetallic exposure causes complex toxicity to microorganisms. In this study, we investigated the responses of Escherichia coli under co-existence of cadmium (Cd) and lead (Pb), primarily based on biochemical analysis and RNA sequencing. Cd completely inhibited bacterial growth at a concentration of 2.41 mmol/L, with its removal rate as low as <10%. In contrast, the Pb removal rate was >95% under equimolar sole Pb stress. In addition, the Raman analysis confirmed the loss of proteins for the bacterial cells. Under the co-existence of Cd and Pb, the Cd toxicity to E. coli was alleviated. Meanwhile, the biosorption of Pb cations was more intense during the competitive sorption with Cd. Transmission electron microscopy images showed that a few cells were elongated during incubation, i.e., the average cellular length increased from 1.535 ± 0.407 to 1.845 ± 0.620 µm. Moreover, NanoSIMS imaging showed that the intracellular distribution of Cd and Pb was coupled with sulfur. Genes regulating sulfate transporter were also upregulated to promote sulfate assimilation. Then, the subsequent production of biogenic sulfide and sulfur-containing amino acids was enhanced. Although this strategy based on S enrichment could resist the polymetallic stress, not all related genes were induced to upregulate under sole Cd stress. Therefore, the S metabolism might remodel the microbial resistance to variable occurrence of heavy metals. Furthermore, the competitive sorption (in contrast to sole Cd stress) could prevent microbial cells from strong Cd toxicity.IMPORTANCEMicrobial tolerance and resistance to heavy metals have been widely studied under stress of single metals. However, the polymetallic exposure seems to prevail in the environment. Though microbial resistance can alleviate the effects of exogenous stress, the taxonomic or functional response to polymetallic exposure is still not fully understood. We determined the strong cytotoxicity of cadmium (Cd) on growth, and cell elongation would be driven by Cd stress. The addition of appropriate lead (Pb) showed a stimulating effect on microbial bioactivity. Meanwhile, the biosorption of Pb was more intense during co-existence of Pb and Cd. Our work also revealed the spatial coupling of intracellular S and Cd/Pb. In particular, the S assimilation was promoted by Pb stress. This work elucidated the microbial responses to polymetallic exposure and may provide new insights into the antagonistic function during metal stresses.
Collapse
Affiliation(s)
- Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China.
| | - Ying Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feiyu Han
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shang Pan
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China.
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, Beijing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Li D, Li Y, He S, Hu T, Li H, Wang J, Zhang Z, Zhang Y. Resourcization of Argillaceous Limestone with Mn 3O 4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. TOXICS 2024; 12:72. [PMID: 38251027 PMCID: PMC10820775 DOI: 10.3390/toxics12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth's crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4) was used to modify AL by an in-situ deposition strategy through manganese chloride and alkali stepwise treatment to improve the surface area of AL and enable its utilization as an efficient adsorbent for heavy metals removal. The surface area and cation exchange capacity (CEC) were enhanced from 3.49 to 24.5 m2/g and 5.87 to 31.5 cmoL(+)/kg with modification, respectively. The maximum adsorption capacities of lead (Pb2+), copper (Cu2+), and nickel (Ni2+) ions on Mn3O4-modified argillaceous limestone (Mn3O4-AL) in mono-metal systems were 148.73, 41.30, and 60.87 mg/g, respectively. In addition, the adsorption selectivity in multi-metal systems was Pb2+ > Cu2+ > Ni2+ in order. The adsorption process conforms to the pseudo-second-order model. In the multi-metal system, the adsorption reaches equilibrium at about 360 min. The adsorption mechanisms may involve ion exchange, precipitation, electrostatic interaction, and complexation by hydroxyl groups. These results demonstrate that Mn3O4 modification realized argillaceous limestone resourcization as an ideal adsorbent. Mn3O4-modified argillaceous limestone was promising for heavy metal-polluted water and soil treatment.
Collapse
Affiliation(s)
- Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Shuran He
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Tian Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Hanhao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| |
Collapse
|
7
|
Norén A, Strömvall AM, Rauch S, Andersson-Sköld Y, Modin O, Karlfeldt Fedje K. The effects of electrochemical pretreatment and curing environment on strength and leaching of stabilized/solidified contaminated sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5866-5880. [PMID: 38133763 PMCID: PMC10799133 DOI: 10.1007/s11356-023-31477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Stabilization and solidification (S/S) is known to improve the structural properties of sediment and reduce contaminant mobility, enabling the utilization of dredged contaminated sediment. Further reduction of contaminants (e.g., tributyltin (TBT) and metals) can be done using electrochemical treatment prior to S/S and could potentially minimize contaminant leaching. This is the first study on how electrochemical pretreatment affects the strength and leaching properties of stabilized sediments. It also investigates how salinity and organic carbon in the curing liquid affect the stabilized sediment.The results showed that the electrolysis reduced the content of TBT by 22% and zinc by 44% in the sediment. The electrolyzed stabilized samples met the requirements for compression strength and had a reduced surface leaching of zinc. Curing in saline water was beneficial for strength development and reduced the leaching of TBT compared to curing in fresh water. The results indicate that pretreatment prior to stabilization could be beneficial in reducing contaminant leaching and recovering metals from the sediment. The conclusion is that a better understanding of the changes in the sediment caused by electrochemical treatment and how these changes interact with stabilization reactions is needed. In addition, it is recommended to investigate the strength and leaching behavior in environments similar to the intended in situ conditions.
Collapse
Affiliation(s)
- Anna Norén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Sebastien Rauch
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute (VTI), Box 8072, 402 78, Gothenburg, Sweden
- Division of Geology and Geotechnics, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Karin Karlfeldt Fedje
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Recycling and Waste Management, Renova AB, Box 156, 401 22, Gothenburg, Sweden.
| |
Collapse
|
8
|
Yao YZ, Shi YJ, Hu KH. Preparation of Molybdenum Disulfide with Different Nanostructures and Its Adsorption Performance for Copper (Ⅱ) Ion in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1194. [PMID: 37049287 PMCID: PMC10096653 DOI: 10.3390/nano13071194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The environmental problems in the world are attracting increasing amounts of attention, and heavy metal pollution in the water has become one of the focuses of the ecological environment. Molybdenum disulfide (MoS2) has excellent adsorption performance because of its extremely high specific surface area and unique active site structure, which has attracted an increasing amount of attention in the field of heavy metal disposal in various types of water. In this paper, two sorts of MoS2 nanoparticles, spherical and lamellar, were synthesized by different chemical methods. Their morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Raman spectrometer. The adsorption properties of two sorts of MoS2 nanoparticles for copper (Ⅱ) ions in water were investigated by changing the pH value, adsorption time, initial concentration of solution, adsorption temperature, etc. Finally, the adsorption mechanism was analyzed by kinetic, isothermal, and thermodynamic models. The results show that two microstructures of MoS2 nanoparticles can be used as efficient adsorption materials for removing heavy metal ions from water, although there are differences in adsorption capacity between them, which expands the theoretical basis of heavy metal adsorption in a water environment.
Collapse
Affiliation(s)
- You-Zhi Yao
- School of Materials Engineering, Wuhu Institute of Technology, 201 Wenjin Rd., Wuhu 241003, China;
| | - Yong-Jie Shi
- School of Energy Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei Economic and Technological Development Zone, Hefei 230601, China;
| | - Kun-Hong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei Economic and Technological Development Zone, Hefei 230601, China;
| |
Collapse
|
9
|
Newman JE, Levasseur PA, Beckett P, Watmough SA. The impact of severe pollution from smelter emissions on carbon and metal accumulation in peatlands in Ontario, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121102. [PMID: 36669721 DOI: 10.1016/j.envpol.2023.121102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Peatlands are unique habitats that function as a carbon (C) sink and an archive of atmospheric metal deposition. Sphagnum mosses are key components of peatlands but can be adversely impacted by air pollution potentially affecting rates of C and metal accumulation in peat. In this study we evaluate how the loss of Sphagnum in peatlands close to a copper (Cu) and nickel (Ni) smelter in Sudbury, Ontario affected C accumulation and metal profiles. The depth of accumulated peat formed during the 100+ year period of smelter activities also increased with distance from the smelter. Concurrently, peat bulk density decreased with distance from the smelter, which resulted in relatively similar average rates of apparent C accumulation (32-46 g/m2/yr). These rates are within the range of published values despite the historically high pollution loadings. Surface peat close to the smelters was greatly enriched in Cu and Ni, and Cu profiles in dated peat cores generally coincide with known pollution histories much better than Ni that increased well before the beginning of smelter activities likely a result of post-deposition mobility in peat cores.
Collapse
Affiliation(s)
- Jodi E Newman
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Patrick A Levasseur
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Peter Beckett
- School of Natural Sciences and the Vale Living with Lakes Centre, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Shaun A Watmough
- School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
10
|
Chou MY, Lee TA, Lin YS, Hsu SY, Wang MF, Li PH, Huang PH, Lu WC, Ho JH. On the removal efficiency of copper ions in wastewater using calcined waste eggshells as natural adsorbents. Sci Rep 2023; 13:437. [PMID: 36624146 PMCID: PMC9829870 DOI: 10.1038/s41598-023-27682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Eggshells offer many advantages as adsorbents, such as affordability without special preparations other than pulverization and calcination. However, the manufacturing industry generally has a severe problem with high concentrations of heavy metals in wastewater. The purpose of this study was to use eggshell byproducts and calcined eggshell treatment for the adsorption of copper in an aqueous solution. The reaction time, metal concentration, adsorbent dose, temperature, and pH were evaluated using primary factors followed by the response surface method (RSM) to investigate the optimum conditions for eggshell byproducts and calcined eggshell adsorption treatment. The results of the one-factor-at-a-time experiment showed that the optimal adsorption rate was obtained from treatment at 24 h, 25 mg/L, 10 mg, and 25 °C. In addition, the effect of pH on the adsorption rates of eggshells and eggshells with membrane were detected at pH values of 5 and 5.9 and found to be 95.2, 90.5, and 73.3%. The reaction surface experiment showed that the best adsorption rate reached 99.3% after calcination at 900 °C for 2 h and a 20 min reaction. The results showed that eggshells, eggshell membranes, eggshells with membrane, and calcined eggshells could be applied to remove copper ions from industrial wastewater. The adsorption capacity of the calcined eggshell is better than that of the non-calcined eggshell and has good neutrality in acidic industrial wastewater. Therefore, it is convenient and practical for practical production and application. Likewise, this study conveys promising findings in the context of improving wastewater treatment based on a circular economy approach to waste reuse in the food industry and represents a valuable direction for future research.
Collapse
Affiliation(s)
- Ming-Yu Chou
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, 43301, Taiwan
| | - Tan-Ang Lee
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan
| | - Ying-Shen Lin
- Ph.D. Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung, 43301, Taiwan
| | - Shan-Yin Hsu
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan
| | - Ming-Fu Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, 43301, Taiwan
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan.
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, Jiangsu Province, China
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, 60077, Taiwan
| | - Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan.
| |
Collapse
|
11
|
Lima JZ, Ferreira da Silva E, Patinha C, Rodrigues VGS. Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115968. [PMID: 35988405 DOI: 10.1016/j.jenvman.2022.115968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The development of waste-derived sorbents to immobilize potentially toxic elements (PTEs) is a promising strategy, contributing to the achievement of sustainable development goals (SDGs). Therefore, this study aimed to assess the sorption performance of cadmium (Cd), lead (Pb) and zinc (Zn), comparing sorbents derived from organic fraction of municipal solid waste (composts and biochars) with peat. The physicochemical characterization, equilibrium of sorption, post-sorption analyzes and bioaccessibility were investigated. Results showed that the sorbents have distinct characteristics; however, each material have their particularities favorable to sorption. For instance, peat and composts have the highest cation exchange capacity (800-1100 mmolc kg-1), while biochar produced at 700 °C has the highest specific surface area (91.21 m2 g-1). The sorption equilibrium data revealed the actual sorption capacity and was well explained by the Freundlich and Langmuir isotherms and, in some cases, by the Dubinin-Radushkevich model. Post-sorption analyzes indicated the occurrence of several sorption mechanisms, driven by the physicochemical properties. Electrostatic interaction stood out for peat and compost. The FTIR spectrum for peat proved the complexation with oxygenated functional groups. The composts showed variations in the released cations (e.g. Ca2+ and K+), indicating cation exchange. Differently, for biochars, the XRD patterns showed that precipitation or coprecipitation seems to be one of the main mechanisms, especially for Cd and Pb. Regarding human bioaccessibility, the results of the gastric phase simulation (pH∼1.20) revealed lower percentages of Pb (33-81%) than Cd (91-99%) or Zn (82-99%), especially for the highest concentrations. Nevertheless, in numerical terms, all bioaccessible concentrations inspire care. In conclusion, among the sorbents, composts and biochars presented the best sorption performances and, therefore, have great potential for environmental applications. Furthermore, the bioaccessibility findings indicate that these assays, still little used in experiments with sorbents, are an important tool that should be better explored in the assessment of the environmental risk associated with contamination.
Collapse
Affiliation(s)
- Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo - 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil; GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Eduardo Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patinha
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valéria Guimarães Silvestre Rodrigues
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo - 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil.
| |
Collapse
|
12
|
Post Synthetic Modification of NH2-(Zr-MOF) via Rapid Microwave-Promoted Synthesis for Effective Adsorption of Pb(II) and Cd(II). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
13
|
Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions. WATER 2022. [DOI: 10.3390/w14132114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed at estimating peat adsorption properties for copper ion removal from aqueous solutions during peat modification. Two peat modifications have been studied using batch tests and quantitatively reproduced with instrumental analysis by using spectrometric, potentiometric, and thermodynamic modeling methods. The first variation—mechanical activation—was carried out in a planetary mill; for the second one—mechanochemical activation—dry sodium percarbonate (Na2CO3∙1.5H2O2) was added. The adsorption of copper ions was studied in the concentration range from 10–150 mg/L with an interaction time from 0.25–12 h. Both modifications led to significant changes in the interaction energy in the adsorption layer; thus, the acceptor properties of macromolecules were enhanced from natural peat to mechanically activated peat and mechanochemically activated peat. FTIR spectra, specific surface area characteristics, and sorption experiments show the predominantly chemical nature of copper sorption. Maximum adsorption capacity was determined to be 24.1, 42.1, and 16.0 mg/g for natural peat, mechanically activated peat, and mechanochemically activated peat, respectively. The example of peat mechanochemically oxidized with Na2CO3∙1.5H2O2 shows that the improvement in the physicochemical properties (CBET and specific surface area) plays a smaller role in the sorption capacity in relation to copper ions than the presence of phenolic and carboxyl groups, the content of which decreases during oxidation.
Collapse
|
14
|
Yu H, Zheng L, Zhang T, Ren J, Meng P. Highly TEMPO-oxidized cellulose for removal of ionic and complexed cadmium from a complicated water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36575-36588. [PMID: 35064503 DOI: 10.1007/s11356-021-18222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
TEMPO-NaDCC-oxidized cellulose (TNOCS) with a large surface area and an abundance of carboxyl groups was used to remove heavy metal ions (Cd, Cu, and Pb) and their organic acid complexes [HM-OAs] (OAs, i.e., citric acid (CA) and propionic acid (PA)), and then reveal their adsorption behaviors. Taking Cd and CA as examples, the results showed that some of Cd ions were first adsorbed onto TNOCS, and then, the existence of [Cd-CA-] complexes formed a coordinated structure with preloaded Cd ions to serve as a bridge for combining TNOCS and [Cd-CA]. The maximum adsorption capacities of TNOCS for Cd and Cd-CA were 16.50 and 22.15 mg/g, respectively. Moreover, adsorption energies and molecular orbital distributions indicated that the adsorption capacity of TNOCS for [Cd-CA] was better than that for Cd alone. TNOCS can maintain greater than 90% adsorption capacity in five times regeneration experiments using EDTA, indicating that it is very efficient and stable. In addition, the electron density, deformation charge, and Mulliken charge distribution were confirmed that the electron transfer direction was from carboxyl groups to cadmium, whether it was cadmium ions or complexed cadmium.
Collapse
Affiliation(s)
- Huajian Yu
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Liuchun Zheng
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Tao Zhang
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jingjing Ren
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Peipei Meng
- College of Environment, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
15
|
Zhang G, Yang B, Shao L, Li F, Leng Y, Chen X. Differences in bioaccumulation of Ni and Zn by microalgae in the presence of fulvic acid. CHEMOSPHERE 2022; 291:132838. [PMID: 34762892 DOI: 10.1016/j.chemosphere.2021.132838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
In the presence of dissolved organic matter, the mechanism of algal bioaccumulation of different metals is complex, and its significance goes far beyond the alga-metal binary system. In the presence of 10 and 20 mg L-1 fulvic acid (FA), the maximum tolerance concentrations of Chlorella pyrenoidosa to Ni were 0.25 and 0.26 mmol L-1, and to Zn were 0.62 and 0.68 mmol L-1, respectively. Within the maximum tolerance concentration ranges, the bioaccumulation behaviors of Ni and Zn were systematically compared in the presence of FA. The presence of FA shortened the adsorption equilibrium time and decreased the maximum bioaccumulation capacity of Ni and Zn. The bioaccumulation mechanism of Ni by C. pyrenoidosa was more inclined to monolayer adsorption, while the bioaccumulation mechanism of Zn was more inclined to multilayer adsorption. More details were revealed after the bioaccumulated metals were separated into adsorption and internalization states by 0.01 M EDTA elution. The presence of FA decreased more adsorbed Zn than the adsorbed Ni, due to the different competitive roles of FA in the ternary system of Ni and Zn, but the presence of FA increased the internalized Ni might due to the stronger complexation of Ni-FA. This research indicated that algae had unique bioaccumulation mechanisms for different metals in the presence of FA, which is of great significance to accurately evaluate the ecological risk posed by heavy metals.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Boxuan Yang
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Luze Shao
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China.
| | - Yaling Leng
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Xiaoling Chen
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| |
Collapse
|
16
|
Cherono F, Mburu N, Kakoi B. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon 2021; 7:e08254. [PMID: 34765777 PMCID: PMC8571509 DOI: 10.1016/j.heliyon.2021.e08254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Heavy metal pollution has emerged as one of the most serious environmental challenges facing the world today. The removal of heavy metals from the effluent is of special environmental concern because of their toxicity and persistence in nature. This study presents the suitability of activated carbon from waste rubber tire as a low-cost adsorbent for multiple adsorption of copper, lead and zinc from wastewater. The adsorbent removed heavy metal ions effectively from solution medium in the order of copper > lead > Zinc. The adsorption process was rapid with all metals reaching equilibrium within 120 min. The optimum pH for Lead was achieved at 5 and 6 for copper and Zinc. The removal of heavy metals was discovered to increase with adsorbent dosage and contact time and reduced with initial concentration. The adsorption of multiple heavy metals was modeled using Freundlich and Langmuir adsorption isotherms to assess the experimental findings. The equilibrium data better fitted to the Langmuir isotherm with regression coefficient (R2) of 0.9831, 0.9992 and 0.9953 for lead, copper and zinc respectively. The maximum adsorption capacities (Qmax) at equilibrium were 9.6805 mg/g, 12.4378 mg/g and 4.9950 mg/g for Lead, Copper and Zinc respectively. The adsorption kinetics indicated that pseudo-second-order kinetic model described well the sorption mechanism for multiple adsorption of heavy metals with R2 of more than 0.99 for all metal ions. An empirical model for predicting and designing of a single batch adsorber for 95 % multiple heavy metal ion removal at any given initial heavy metal ion concentration and effluent volume was further developed using activated carbon from waste rubber tires. Waste rubber tire Activated carbon demonstrated an ability for the treatment of wastewater containing these heavy metals in multimetal solutions.
Collapse
Affiliation(s)
- Faith Cherono
- Civil and Environmental Engineering, Pan African University Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Njenga Mburu
- Department of Civil Engineering, Dedan Kimathi University of Technology, Private Bag - 10143, Dedan Kimathi
| | - Beatrice Kakoi
- Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
17
|
Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger. Appl Microbiol Biotechnol 2021; 105:6477-6488. [PMID: 34424384 DOI: 10.1007/s00253-021-11497-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Co-existence of toxic metals causes complex toxicity to microorganisms during bioremediation in water and soil. This study investigated the immobilization of Pb2+ and Cd2+ by fungus Aspergillus niger, which has been widely applied to environmental remediation. Five treatments were set, i.e., CK (no toxic metals), Pb2+ only, Cd2+ only, Pb2+/Cd2+ = 1:1(molar ratio), and Pb2+/Cd2+ = 2:1. Cadmium induced strong toxicity to the fungus, and maintained the high toxicity during incubation. However, as Pb/Cd ratio increased from 0 to 2, the removal rates of Cd2+ by A. niger were raised from 30 to 50%. The elevated activities of pyruvate dehydrogenase (PDH) and citrate synthetase (CS) enzymes confirmed that Pb addition could stimulate the growth of A. niger. For instance, citric acid concentrations and CS activities were 463.22 mg/L and 78.37 nmol/min/g, respectively, during 3-day incubation as Pb/Cd = 1. However, these two values were as low as ~ 50 with addition of only Cd. It was hence assumed that appropriate co-existence of Pb2+ enhanced microbial activity by promoting TCA cycle of the fungus. Moreover, the SEM analysis and geochemical modeling demonstrated that Pb2+ cations were more easily adsorbed and mineralized on A. niger with respect to Cd2+. Therefore, instead of intensifying metal toxicity, the addition of appropriate Pb actually weakened Cd toxicity to the fungus. This study sheds a bright future on application of A. niger to the remediation of polluted water with co-existence of Pb and Cd. KEY POINTS: • Cd2+ significantly inhibited P consumption, suggesting its high toxicity to A. niger. • Pb2+ stimulated the growth of A. niger by promoting TCA cycle in the cells. • Cd2+ removal by A. niger were improved with co-existence of Pb2+.
Collapse
|
18
|
Norén A, Karlfeldt Fedje K, Strömvall AM, Rauch S, Andersson-Sköld Y. Low impact leaching agents as remediation media for organotin and metal contaminated sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111906. [PMID: 33472101 DOI: 10.1016/j.jenvman.2020.111906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
All over the world, elevated levels of metals and the toxic compound tributyltin (TBT) and its degradation products are found in sediments, especially close to areas associated with shipping and anthropogenic activities. Ports require regular removal of sediments. As a result, large volumes of often contaminated sediments must be managed. The aim of this study was to investigate enhanced leaching as a treatment method for organotin (TBT) and metal (Cu and Zn) contaminated marine sediments. Thus, enabling the possibility to reuse these cleaner masses e.g. in construction. In addition to using acid and alkaline leaching agents that extract the OTs and metals but reduce the management options post treatment, innovative alternatives such as EDDS, hydroxypropyl cellulose, humic acid, iron colloids, ultra-pure Milli-Q water, saponified tall oil ("soap"), and NaCl were tested. Organotin removal ranged from 36 to 75%, where the most efficient leaching agent was Milli-Q water, which was also the leaching agent achieving the highest removal rate for TBT (46%), followed by soap (34%). The TBT reduction accomplished by Milli-Q water and soap leaching enabled a change in Swedish sediment classification from the highest class to the second highest class. The highest reduction of Zn was in HPC leached samples (39% removal) and Cu in EDDS leached samples (33% removal). Although high metal and OT leaching were achieved, none of the investigated leaching agents are sufficiently effective for the removal of both metals and OTs. The results of this study indicate that leaching with ultra-clean water, such as Milli-Q water, may be sufficient to treat TBT contaminated sediments and potentially allow mass reuse.
Collapse
Affiliation(s)
- Anna Norén
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Karin Karlfeldt Fedje
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Recycling and Waste Management, Renova AB, Box 156, SE-401 22, Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sebastien Rauch
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute (VTI), Box 8072, SE-402 78, Gothenburg, Sweden; Department of Architecture and Civil Engineering, Geology and Geotechnics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
19
|
Liu H, Gu Y, Qin Y, Yu Z, Huang X, Xie S, Zheng M, Zhang Z, Cheng S. The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143990. [PMID: 33316522 DOI: 10.1016/j.scitotenv.2020.143990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Here we present multiproxy inorganic geochemical records from a peat core (ZK5) from the Dajiuhu Basin in central China to investigate peatland deposition processes and atmospheric metal pollution and to explore their relationships with East Asian monsoon change and human activities in the Middle Yangtze Valley since 20,000 cal yr BP. The peat physicochemical data including total organic carbon (TOC), trace elements, and grain-size show that the site has changed from a lake during the cold-wet Last Glacial Maximum (LGM; 20,000-18,000 cal yr BP), to a marshy wetland during the mild last deglaciation (18,000-11,500 cal yr BP) and a peatland during the mostly warm and dry Holocene (11,500 cal yr BP-present). This general sequence corresponds with changes in East Asian monsoon indicated by stalagmites δ18O records and boreal summer insolation. Marked decreases in trace element concentrations correspond to two periods of peatland expansion during the abrupt hydroclimatic transitions from the LGM to the last deglaciation and from the last deglaciation to the early Holocene. Warm-dry mid-Holocene might induce high organic matter decomposition in peat sediments. Increasing natural element concentrations since the late Holocene are correlated with the weakening of the summer monsoon and elevated atmospheric dust deposition. Increasing Cu and Pb concentrations in peat record indicate large-scale Cu smelting during the Bronze Age and excessive coal burning during the 10th century or so. The anthropogenic heavy metals were transported by prevailing East Asian summer monsoon and deposited in the Dajiuhu Basin during periods of heightened human activities. Our compilation of heavy metals records across China confirmed the noticeable impacts of the historical human activity on deposition environments during the late Holocene. Consequently, trace elements from the Dajiuhu Basin are reliable proxies for capturing monsoon climate-induced peatland deposition response and present important evidence for a historical atmospheric heavy metal pollution in the Middle Yangtze Valley. Our results offer useful references for peatland evolution and protection under the background of global change.
Collapse
Affiliation(s)
- Hongye Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Eco-Restoration (WEER), China University of Geosciences, Wuhan 430074, China
| | - Yansheng Gu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Eco-Restoration (WEER), China University of Geosciences, Wuhan 430074, China.
| | - Yangmin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Eco-Restoration (WEER), China University of Geosciences, Wuhan 430074, China
| | - Zicheng Yu
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015, USA; Institute for Peat and Mire Research, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianyu Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shucheng Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Min Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zhiqi Zhang
- Hubei Key Laboratory of Wetland Evolution & Eco-Restoration (WEER), China University of Geosciences, Wuhan 430074, China; Shennongjia National Park Administration, Shennongjia 442400, Hubei, China
| | - Shenggao Cheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
20
|
Utete B, Fregene B. Assessing the spatial and temporal variability and related environmental risks of toxic metals in Lake Asejire, south-western Nigeria. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
21
|
Miszczak E, Stefaniak S, Michczyński A, Steinnes E, Twardowska I. A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: priority pollutants (Pb, Cd, Hg). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135776. [PMID: 31972936 DOI: 10.1016/j.scitotenv.2019.135776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/13/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
A novel approach to using peatlands for assessment of cumulative contributions from long-range transport of pollutants (LRTP) - airborne trace elements - to spatial pollution was exemplified in evaluating retrospective atmospheric deposition of priority pollutants (Pb, Cd, Hg) in peat bogs in Norway in areas minor affected by local sources of pollution and in NW Poland located on the way of possible LRTP from Poland to Norway. Peat from the corresponding 14C-dated layers of five ombrotrophic bogs in each country, was analysed for trace element contents. Pollutant concentrations/load distribution along the peat profiles related to bulk density has given a clear evidence of uneven density-dependent temporal vertical migration of all studied elements that distorts the chronology of their deposition. Much higher loads of Pb, Cd and Hg in southern Norwegian bogs than in bogs located in NW Poland proved transboundary transport from neighbouring highly industrialized European countries to be much more significant contributor to high deposition of the priority pollutants in this area and rather excludes LRTP from Poland as a major source of total land pollution in southernmost Norway. The study showed excellent applicability of peat bogs for the exact assessment of retrospective cumulative pollutant loads from LRTP, but not for the identification of deposition chronology. Combining the use of ombrotrophic peat bogs as tools for retrospective monitoring of cumulative land pollution with airborne elements with current LRTP data within the Cooperative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe (EMEP) may provide a complete reliable picture of the effect of anthropogenic emissions on soil quality and create a foundation of optimum environmental policy and activities in this field.
Collapse
Affiliation(s)
- Ewa Miszczak
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie st. 34, 41-819 Zabrze, Poland
| | - Sebastian Stefaniak
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie st. 34, 41-819 Zabrze, Poland
| | - Adam Michczyński
- Silesian University of Technology, Institute of Physics, Department of Radioisotopes, GADAM Centre of Excellence, Konarskiego st. 22b, 44-100 Gliwice, Poland
| | - Eiliv Steinnes
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Irena Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie st. 34, 41-819 Zabrze, Poland.
| |
Collapse
|
22
|
Zhang H, Lu T, Shang Z, Li Y, He J, Liu S, Li D, Zhou Y, Qi Z. Transport of Cd 2+ through saturated porous media: Insight into the effects of low-molecular-weight organic acids. WATER RESEARCH 2020; 168:115182. [PMID: 31634706 DOI: 10.1016/j.watres.2019.115182] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Low-molecular-weight organic acids (LMWOAs) are ubiquitous in the aquatic environment and consequently may affect the heavy metal transport in aquifer systems. In this study, the influences of LMWOAs on the transport of Cd2+ under different pH conditions in saturated porous media were evaluated. For this, three LMWOAs such as acetic acid, tartaric acid, and citric acid were employed. A two-site nonequilibrium transport model was applied to simulate the transport data. Under acidic conditions (pH 5.0), the results indicated that LMWOAs inhibited the transport of Cd2+ even at the low concentrations of organic acids (i.e., 0.05 and 0.1 mM). The inhibition effects might be attributed to the complexation role of the sand surface-bound organic acids and also electrostatic interaction. Meanwhile, the inhibition effects of LMWOAs on Cd2+ transport in the following order of citric acid > tartaric acid > acetic acid, which was also in agreement with the decreasing complex stability constants between Cd2+ and LMWOAs. This order may be dependent on their molecular structures (i.e., amount and type of functional groups) and complexing strength. Interestingly, when the LMWOA concentrations 0.5 mM, tartaric acid and citric acid still inhibited Cd2+ transport, while acetic acid slightly enhanced the Cd2+ mobility due to its weaker complexing strength. However, under neutral conditions (pH 7.0), LMWOAs generally enhanced the transport of Cd2+. The transport-enhancement of LMWOAs was ascribed to the formation of stable aqueous non-adsorbing Cd-organic acid complexes. In addition, citric acid could obviously inhibit the transport of Cd2+ under competitive transport conditions (i.e., with competing cations), which is mainly due to different complex affinities of citric acid to Pb2+ and Cd2+. These findings demonstrate that LMWOAs may inhibit or facilitate Cd2+ transport under different environmental conditions. Thus, environmental assessment concerning the transport of heavy metals should consider the roles of organic acids.
Collapse
Affiliation(s)
- Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Zhongbo Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, 250014, China
| | - Jianying He
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Shanhu Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
23
|
Zhang Z, He S, Zhang Y, Zhang K, Wang J, Jing R, Yang X, Hu Z, Lin X, Li Y. Spectroscopic investigation of Cu 2+, Pb 2+ and Cd 2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112938. [PMID: 31404731 DOI: 10.1016/j.envpol.2019.07.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/07/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the competitive adsorption of Cu2+, Pb2+, and Cd2+ by a novel natural adsorbent (i.e., argillaceous limestone) modified with chitosan (C-AL) was investigated. The results demonstrated that both intraparticle diffusion and chemisorption marked significant contributions to the Cu2+ adsorption process by both raw argillaceous limestone (R-AL) and C-AL in mono-metal adsorption systems. Antagonism was found to be the predominant competitive effect for Cu2+, Pb2+ and Cd2+ adsorptions by C-AL in the multi-metal adsorption system. The three-dimensional simulation and FTIR analysis revealed that the presence of Cu2+ suppressed Pb2+ and Cd2+ adsorptions, while the effect of Cd2+ on Cu2+ and Pb2+ adsorptions was insignificant. The spectroscopic analyses evidenced that amide groups in C-AL played a crucial role in metal adsorption. The preferential adsorptions of Pb2+ > Cu2+ > Cd2+ were likely due to the different affinities of the metals to the lone pair of electrons on the N atom from the amide groups and/or the O atoms from the -OH and -COO- groups on C-AL. The interactions between C-AL and metal ions and between various metal species influenced their competitive adsorption behaviors. C-AL exhibited a superior metal adsorption capacity in comparison with that the capacities of other natural adsorbents reported during the last decade, suggesting its potential practical applications.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Ran Jing
- Department of Civil and Environmental Engineering, University of Maryland at College Park, MD 20742, USA
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Lin
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
24
|
Abstract
Peat, a loose and porous material, contains rich organic matter and can be used as an adsorbent. In this study, it is chemically modified by adding sulfuric acid under different conditions, with the aim of producing a modified peat with optimized Cr(VI) adsorption capability. The modified peat exhibited a higher adsorption efficiency than the natural peat throughout the adsorption experiments. The adsorption of Cr(VI) from aqueous solutions correlates with the pseudo-second order kinetic model. In addition, the Langmuir model indicated a maximum loading capacity approximately of 105.4 mg/g, which is a markedly high value compared to some other reported adsorbents. The present study performed single factor experiments and the results indicated that higher temperature conditions result in better adsorption capability, whilst an increase in the pH played a contrary role. According to the orthogonal tests, the pH had the greatest impact on adsorption. The obtained results indicated that sulfonated peat can be effectively applied in removing Cr (VI).
Collapse
|
25
|
Doumer ME, Vidal M, Mangrich AS, Rigol A. Feasibility of using low-cost, byproduct materials as sorbents to remove heavy metals from aqueous solutions. ENVIRONMENTAL TECHNOLOGY 2019; 40:2300-2309. [PMID: 29436939 DOI: 10.1080/09593330.2018.1440011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
This work investigates the sorption of heavy metals by low-cost, byproducts such as charcoal fines (CF), waste green sand, and rice husk ash, in order to examine the feasibility of their use as alternative filter materials for metal-contaminated waters. The sorption of Cd, Cu, Pb, and Zn was investigated in batch experiments and sorption isotherms were constructed. The three byproducts showed high metal removal efficiencies (>95%, regardless of the metal concentration tested). The highest metal sorption distribution coefficients were obtained for CF, with maximum values within the 105-106 L kg-1 range for all the target metals. The sorption isotherms were satisfactorily fitted using the Freundlich equation and a linear model, the latter only being valid for initial metal concentrations lower than 0.4 mmol L-1. Sorption reversibility was very low, with desorption yields lower than 2% and desorption distribution coefficients often higher than 106 L kg-1. The values of the sorption and desorption parameters indicated that the use of these materials, especially CF, could constitute a low-cost alternative for the remediation of contaminated waters.
Collapse
Affiliation(s)
- Marta E Doumer
- a Department of Chemistry, Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Miquel Vidal
- b Department of Chemical Engineering and Analytical Chemistry, University of Barcelona , Barcelona , Spain
| | - Antonio S Mangrich
- a Department of Chemistry, Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Anna Rigol
- b Department of Chemical Engineering and Analytical Chemistry, University of Barcelona , Barcelona , Spain
| |
Collapse
|
26
|
Sargin I, Arslan G, Kaya M. Production of magnetic chitinous microcages from ephippia of zooplankton Daphnia longispina and heavy metal removal studies. Carbohydr Polym 2019; 207:200-210. [DOI: 10.1016/j.carbpol.2018.11.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/28/2022]
|
27
|
Bartczak P, Norman M, Klapiszewski Ł, Karwańska N, Kawalec M, Baczyńska M, Wysokowski M, Zdarta J, Ciesielczyk F, Jesionowski T. Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2015.07.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Lima JZ, Raimondi IM, Schalch V, Rodrigues VGS. Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:386-399. [PMID: 30138838 DOI: 10.1016/j.jenvman.2018.08.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Waste management is a continuous global need. To minimize problems arising from municipal solid waste (MSW) disposal, composting has emerged as a simple alternative for the organic fraction of the waste. The composting process generates organic composts with a high metal retention capacity for potentially toxic elements (PTE). Thus, our objective was to examine how different composting methods (windrow composting, wire mesh composting bin, and passively aerated static pile composting) affect the final product, and how the characteristics of the generated composts influence their adsorption capacity for the lead (Pb), zinc (Zn) and cadmium (Cd) elements from mining waste. Therefore, the physical and chemical properties of Brazilian composts were investigated, as well as their adsorption capacities, through batch equilibrium tests with Pb, Zn and Cd in single-element solutions. All composts revealed promising adsorption characteristics, including a near-neutral pH (6.4-7.7); a negative ΔpH (-0.4 to -1.0); oxidizing conditions (Eh between +267.67 and + 347.00 mV); a considerable presence of organic matter (193.92-418.70 g kg-1); a substantial (albeit very varied) cation exchange capacity (29.00-75.00 cmolc kg-1); and significant porosity (pore volume between 0.01113 and 0.05400 cm3 g-1). These results showed that the composts share similar intrinsic characteristics, indicating that the different composting methods influenced subtly the physical and chemical properties of the final products. Overall, the removal selectivity follows the order Pb > Cd > Zn, with the removal percentage ranging from 94.0 to 99.6% for Pb, 55.4-89.8% for Cd and 22.1-64.0% for Zn. Thus, the joint assessment of the characterization and adsorption results shows evidence that composts, a low-cost organic material produced from waste, may be promising as alternative reactive materials for remediation of soils contaminated by Pb, Zn and Cd.
Collapse
Affiliation(s)
- Jacqueline Z Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador Sãocarlense Ave, São Carlos, Brazil
| | - Isabela M Raimondi
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador Sãocarlense Ave, São Carlos, Brazil
| | - Valdir Schalch
- Department of Hydraulics and Sanitary Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador Sãocarlense Ave, São Carlos, Brazil
| | - Valéria G S Rodrigues
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador Sãocarlense Ave, São Carlos, Brazil.
| |
Collapse
|
29
|
He S, Li Y, Weng L, Wang J, He J, Liu Y, Zhang K, Wu Q, Zhang Y, Zhang Z. Competitive adsorption of Cd 2+, Pb 2+ and Ni 2+ onto Fe 3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:69-78. [PMID: 29742476 DOI: 10.1016/j.scitotenv.2018.04.300] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 05/12/2023]
Abstract
In present study, the feasibility of applying a natural adsorbent with Fe3+ modification (Fe3+-modified argillaceous limestone, FAL) on the competitive adsorption of heavy metals (i.e., Cd2+, Pb2+ and Ni2+) was evaluated. The current results revealed an efficient adsorption on Cd2+, Pb2+ and Ni2+ in mono-metal system. Further experiments demonstrated a high selectivity of Pb2+ during the competitive adsorption of Cd2+, Pb2+ and Ni2+. The adsorption selectivity of the metal ions followed the order of Pb ≫ Cd > Ni. In addition, both pH and ionic strength are important factors affecting the metal adsorptions. It is interestingly that various NOMs (i.e., humic acid (HA) and glycine (Gly)) exerted different effects on the adsorption behaviors, probably due to the different affinities for Pb2+, Cd2+ and Ni2+ and the redistribution of newly-formed metal-DOM complexes. X-ray photoelectron spectroscopy (XPS) analysis together with X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analysis revealed that the metal adsorptions were mainly regulated via the synergistic mechanisms of ion exchange by Na+, Ca2+, and Al3+, precipitation to form CdCO3 and Pb2(OH)2(CO3)2, as well as complexes of FAL-OPb and FAL-ONi by hydroxyl groups on the surface of FAL. The application of FAL would be a promising option in leading to an efficient heavy metal removal.
Collapse
Affiliation(s)
- Shuran He
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| | - Jinxian He
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China.
| | - Yonglin Liu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Qihong Wu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Hughes DL, Afsar A, Harwood LM, Jiang T, Laventine DM, Shaw LJ, Hodson ME. Adsorption of Pb and Zn from binary metal solutions and in the presence of dissolved organic carbon by DTPA-functionalised, silica-coated magnetic nanoparticles. CHEMOSPHERE 2017; 183:519-527. [PMID: 28570895 DOI: 10.1016/j.chemosphere.2017.05.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 05/28/2023]
Abstract
The ability of diethylenetriaminepentaacetic acid (DTPA)-functionalised, silica-coated magnetic nanoparticles to adsorb Pb and Zn from single and bi-metallic metal solutions and from solutions containing dissolved organic carbon was assessed. In all experiments 10 mL solutions containing 10 mg of nanoparticles were used. For single metal solutions (10 mg L-1 Pb or Zn) at pH 2 to 8, extraction efficiencies were typically >70%. In bi-metallic experiments, examining the effect of a background of either Zn or Pb (0.025 mmol L-1) on the adsorption of variable concentrations (0-0.045 mmol L-1) of the other metal (Pb or Zn, respectively) adsorption was well modelled by linear isotherms (R2 > 0.60; p ≤ 0.001) and Pb was preferentially adsorbed relative to Zn. In dissolved organic carbon experiments, the presence of fulvic acid (0, 2.1 and 21 mg DOC L-1) reduced Pb and Zn adsorption from 0.01, 0.1 and 1.0 mmol L-1 solutions. However, even at 21 mg DOC L-1 fulvic acid, extraction efficiencies from 0.01 to 0.1 mmol L-1 solutions remained >80% (Pb) and >50% (Zn). Decreases in extraction efficiency were significant between initial metal concentrations of 0.1 and 1.0 mmol L-1 indicating that at metal loadings between c. 100 mg kg-1 and 300 mg kg-1 occupancy of adsorption sites began to limit further adsorption. The nanoparticles have the potential to perform effectively as metal adsorbents in systems containing more than one metal and dissolved organic carbon at a range of pH values.
Collapse
Affiliation(s)
- D L Hughes
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, RG6 6DW, UK
| | - A Afsar
- Department of Chemistry, University of Reading, RG6 6AD, UK
| | - L M Harwood
- Department of Chemistry, University of Reading, RG6 6AD, UK
| | - T Jiang
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, RG6 6DW, UK
| | - D M Laventine
- Department of Chemistry, University of Reading, RG6 6AD, UK
| | - L J Shaw
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, RG6 6DW, UK
| | - M E Hodson
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, RG6 6DW, UK; Environment Department, University of York, York, YO10 5NG, UK.
| |
Collapse
|
31
|
Spatial Variations in the Surface Water Chemistry of Subtropical Peatlands (Central China) Linked to Anthropogenic Pressures. WATER 2017. [DOI: 10.3390/w9070505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
El-Wakeel ST, El-Tawil RS, Abuzeid HA, Abdel-Ghany AE, Hashem AM. Synthesis and structural properties of MnO2 as adsorbent for the removal of lead (Pb2+) from aqueous solution. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Souter L, Watmough SA. The impact of drought and air pollution on metal profiles in peat cores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1031-1040. [PMID: 26473705 DOI: 10.1016/j.scitotenv.2015.09.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands.
Collapse
Affiliation(s)
- Laura Souter
- Environmental and Life Sciences Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Shaun A Watmough
- Environmental Resource Studies Program, Trent University, Peterborough, ON K9J 7B8, Canada.
| |
Collapse
|
34
|
Peng L, Zeng Q, Tie B, Lei M, Yang J, Luo S, Song Z. Manganese Dioxide nanosheet suspension: A novel absorbent for Cadmium(II) contamination in waterbody. J Colloid Interface Sci 2015; 456:108-15. [DOI: 10.1016/j.jcis.2015.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/23/2015] [Accepted: 06/11/2015] [Indexed: 11/27/2022]
|
35
|
Hansson SV, Tolu J, Bindler R. Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity: an experimental test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:95-101. [PMID: 25460943 DOI: 10.1016/j.scitotenv.2014.10.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
Accumulation records of pollutant metals in peat have been frequently used to reconstruct past atmospheric deposition rates. While there is good support for peat as a record of relative changes in metal deposition over time, questions remain whether peat archives represent a quantitative or a qualitative record. Several processes can potentially influence the quantitative record of which downwashing is particularly pertinent as it would have a direct influence on how and where atmospherically deposited metals are accumulated in peat. The aim of our study was two-fold: first, to compare and contrast the retention of dissolved Pb, Cu, Zn and Ni in peat cores; and second, to test the influence of different precipitation intensities on the potential downwashing of metals. We applied four 'rainfall' treatments to 13 peat cores over a 3-week period, including both daily (2 or 5.3 mm day(-1)) and event-based additions (37 mm day(-1), added over 1h or over a 10h rain event). Two main trends were apparent: 1) there was a difference in retention of the added dissolved metals in the surface layer (0-2 cm): 21-85% for Pb, 18-63% for Cu, 10-25% for Zn and 10-20% for Ni. 2) For all metals and both peat types (sphagnum lawn and fen), the addition treatments resulted in different downwashing depths, i.e., as the precipitation-addition increased so did the depth at which added metals could be detected. Although the largest fraction of Pb and Cu was retained in the surface layer and the remainder effectively immobilized in the upper peat (≤ 10 cm), there was a smearing effect on the overall retention, where precipitation intensity exerts an influence on the vertical distribution of added trace metals. These results indicate that the relative position of a deposition signal in peat records would be preserved, but it would be quantitatively attenuated.
Collapse
Affiliation(s)
- Sophia V Hansson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden.
| | - Julie Tolu
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Richard Bindler
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
36
|
Yusoff SNM, Kamari A, Putra WP, Ishak CF, Mohamed A, Hashim N, Isa IM. Removal of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Agricultural Wastes: Adsorption and Characterisation Studies. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jep.2014.54032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Sun Y, Wu QT, Lee CC, Li B, Long X. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:496-508. [PMID: 24912231 PMCID: PMC3827662 DOI: 10.1080/15226514.2013.798617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Qi-Tang Wu
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Charles C.C. Lee
- School of Environmental and Life Sciences, University of Newcastle Singapore Pte Ltd, Jalan Bukit Ho Swee, Singapore
| | - Baoqin Li
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xinxian Long
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Shah B, Chakrabarty T, Shahi VK, Chudasama U. Cross-Linked Zirconium Tri-Ethylenetetramine Membrane in Aqueous Media for Selective Separation of Cu2+. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.807826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Fedje KK, Yillin L, Strömvall AM. Remediation of metal polluted hotspot areas through enhanced soil washing--evaluation of leaching methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:489-496. [PMID: 23811538 DOI: 10.1016/j.jenvman.2013.05.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/26/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
Soil washing offers a permanent remediation alternative for metal polluted sites. In addition, the washed out metals can be recovered from the leachate and re-introduced into the social material cycle instead of landfilled. In this paper, soil, bark and bark-ash washing was tested on four different metal polluted soil and bark samples from hotspots at former industrial sites. Six different leaching agents; HCl, NH4Cl, lactic acid, EDDS and two acidic process waters from solid waste incineration, were tested, discussed and evaluated. For the soil washing processes, the final pH in the leachate strongly influences the metal leachability. The results show that a pH < 2 is needed to achieve a high leaching yield, while <50 w% of most metals were leached when the pH was higher than 2 or below 10. The acidic process waste waters were generally the most efficient at leaching metals from all the samples studied, and as much as 90-100 w% of the Cu was released from some samples. Initial experiments show that from one of these un-purified leachates, Cu metal (>99% purity) could be recovered. After a single leaching step, the metal contents of the soil residues still exceed the maximum limits according to the Swedish guidelines. An additional washing step is needed to reduce the contents of easy soluble metal compounds in the soil residues. The overall results from this study show that soil and bark-ash washing followed by metal recovery is a promising on-site permanent alternative to remediate metal polluted soils and to utilize non-used metal resources.
Collapse
Affiliation(s)
- Karin Karlfeldt Fedje
- Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | | | | |
Collapse
|
40
|
Gallego JLR, Ortiz JE, Sierra C, Torres T, Llamas JF. Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000 calyr BP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:16-29. [PMID: 23542478 DOI: 10.1016/j.scitotenv.2013.02.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
Trace element concentrations in the Roñanzas peat bog record reveal a contribution of natural processes but the influence of anthropogenic factors predominates in the last two millenniums, particularly aerosol deposition linked to mining and industrial activities in northern Spain. We observed that the Roñanzas record can be considered a preserved environment, suitable to search for local (<50 km), regional (50-150 km) and/or long-distance human activity fingerprinting, specifically that related to the deposition of heavy metals such as Pb, Zn and Hg. We also carried out a multivariate statistical study in order to clarify the geochemical behavior of trace and major elements. Our study design represents a novel approach to assign natural vs. human contributions in peatlands. Therefore, synergies obtained by the simultaneous study of multivariate statistics and enrichment factors allow robust conclusions about paleoenvironmental evolution and human activities. Anthropogenic influence has also been reported in similar records in other parts of Europe, thereby suggesting large-scale sources for atmospheric pollution. However, here we revealed remarkable particularities, such as the association of Cd, Zn and Pb, mainly linked to regional and local factors (mining and more recently the metallurgical industry), whereas we propose that the occurrence of Hg is associated with a combination of regional factors and global atmospheric pollution.
Collapse
Affiliation(s)
- José Luis R Gallego
- Environmental Biotechnology & Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Spain.
| | | | | | | | | |
Collapse
|
41
|
Wang B, Wang K. Removal of copper from acid wastewater of bioleaching by adsorption onto ramie residue and uptake by Trichoderma viride. BIORESOURCE TECHNOLOGY 2013; 136:244-250. [PMID: 23567687 DOI: 10.1016/j.biortech.2013.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 06/02/2023]
Abstract
A continuous batch bioleaching was built to realize the bioleaching of sewage sludge in large scale. In the treatment, heavy metal in acid wastewater of bioleaching was removed by adsorption onto ramie residue. Then, acid wastewater was reused in next bioleaching batch. In this way, most time and water of bioleaching was saved and leaching efficiency of copper, lead and chromium kept at a high level in continuous batch bioleaching. It was found that residual heavy metal in sewage sludge is highly related to that in acid wastewater after bioleaching. To get a high leaching efficiency, concentration of heavy metal in acid wastewater should be low. Adsorption of copper from acid wastewater onto ramie residue can be described by pseudo first-order kinetics equation and Freundlich isotherm model. Trichoderma viride has the potential to be used for the concentration and recovery of heavy metal adsorbed onto ramie residue.
Collapse
Affiliation(s)
- Buyun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China.
| | | |
Collapse
|
42
|
Modeling the purification effects of the constructed Sphagnum wetland on phosphorus and heavy metals in Dajiuhu Wetland Reserve, China. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2012.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Removal of lead(II) and zinc(II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell. ADSORPTION 2013. [DOI: 10.1007/s10450-013-9491-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Asapo E, Coles C. Peat Characterization and Uptake of Nickel (II) and Cobalt (II) in a Saprist Peat Column. ADSORPT SCI TECHNOL 2012. [DOI: 10.1260/0263-6174.30.5.369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- E.S. Asapo
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland A1B-3X5, Canada
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Lagos State University, Epe Campus, P.M.B 1081, Lagos State, Nigeria
| | - C.A. Coles
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland A1B-3X5, Canada
| |
Collapse
|
45
|
A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane. Anal Chim Acta 2012; 730:87-92. [PMID: 22632049 DOI: 10.1016/j.aca.2012.01.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 11/21/2022]
Abstract
Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II)>Cu(II)>Cd(II)>Ni(II)>Mn(II) and Zn(II)>Cu(II)>Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn>Cd>Cu>Ni>Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5-8.
Collapse
|
46
|
Cha J, Cui M, Jang M, Cho SH, Moon DH, Khim J. Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2011; 33 Suppl 1:81-89. [PMID: 21046431 DOI: 10.1007/s10653-010-9357-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 08/03/2010] [Indexed: 05/30/2023]
Abstract
This study examines the adsorption isotherms, kinetics and mechanisms of Pb²(+) sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb²(+) in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb²(+) with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca²(+) and PO₄³⁻ concentrations during the metal sorption processes. The Pb²(+) sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb(+). The sorption isotherm results indicated that Pb²(+) sorption onto the Langmuir and Freundlich constant q(max) and K( F ) is 9.52 and 8.18 mg g⁻¹, respectively. Sorption kinetics results indicated that Pb²(+) sorption onto WCBP was pseudo-second-order rate constants K₂ was 1.12 g mg⁻¹ h⁻¹. The main mechanism is adsorption or surface complexation (≡POPb(+): 61.6%), co-precipitation or ion exchange [Ca₃(.)₉₃ Pb₁(.)₀₇ (PO₄)₃ (OH): 21.4%] and other precipitation [Pb 50 mg L⁻¹ and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb²(+) removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb²(+) indicates its potential as another promising way to remediate Pb²(+)-contaminated media.
Collapse
|
47
|
Svensson BM, Mathiasson L, Mårtensson L, Kängsepp P. Evaluation of Filter Material for Treatment of Different Types of Wastewater. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jep.2011.27101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Kalmykova Y, Rauch S, Strömvall AM, Morrison G, Stolpe B, Hasselliöv M. Colloid-facilitated metal transport in peat filters. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2010; 82:506-511. [PMID: 20572457 DOI: 10.2175/106143009x12529484815430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.
Collapse
Affiliation(s)
- Yuliya Kalmykova
- Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
49
|
Rijkenberg MJA, Depree CV. Heavy metal stabilization in contaminated road-derived sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:1212-1220. [PMID: 20006898 DOI: 10.1016/j.scitotenv.2009.11.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest.
Collapse
Affiliation(s)
- Micha J A Rijkenberg
- National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, New Zealand.
| | | |
Collapse
|
50
|
Dikici H, Saltali K, Bingölbali S. Equilibrium and kinetics characteristics of copper (II) sorption onto gyttja. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 84:147-151. [PMID: 19907911 DOI: 10.1007/s00128-009-9899-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/28/2009] [Indexed: 05/28/2023]
Abstract
The sorption characteristics of gyttja to remove copper (Cu(2+)) ions from aqueous solutions were satisfactorily described with the Freundlich, Langmuir and Dubinin-Redushckevich (D-R) models. The sorption capacity (q (max)) of gyttja was 11.76 mg g(-1). The D-R model indicated that the sorption of Cu(2+) by gyttja was almost taken place by chemisorption. Thermodynamic parameters such as change in free energy (DeltaG), enthalpy (DeltaH), and entropy (DeltaS) suggested that the adsorption process of Cu(2+) by gyttja was feasible, spontaneous and endothermic in nature. Kinetic examination of the equilibrium data showed that the sorption processes of Cu(2+) ions followed well pseudo-second-order kinetics model.
Collapse
Affiliation(s)
- Hüseyin Dikici
- Department of Soil Science, Kahramanmaras Sütçü Imam University, 46100, Kahramanmaras, Turkey.
| | | | | |
Collapse
|