1
|
Chai Z, Wang J, Dai Y, Du E, Guo H. Synergy between UV light and trichloroisocyanuric acid on methylisothiazolinone degradation: Performance, kinetics and degradation pathway. ENVIRONMENTAL RESEARCH 2023; 236:116693. [PMID: 37481058 DOI: 10.1016/j.envres.2023.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Methylisothiazolinone (MIT) is widely used in daily chemicals, fungicides, and other fields and its toxicity has posed a threat to water system and human health. In this study, ultraviolet (UV)/trichloroisocyanuric acid (TCCA), which belongs to advanced oxidation processes (AOP), was adopted to degrade MIT. Total chlorine attenuation detection proved that TCCA has medium UV absorption and a strong quantum yield (0.49 mol E-1). At a pH of 7.0, 93.5% of MIT had been decontaminated after 60 min in UV/TCCA system (kobs = 4.4 × 10-2 min-1, R2 = 0.978), which was much higher than that in the UV alone system and TCCA alone system, at 65% (1.7 × 10-2 min-1, R2 = 0.995) and 10% (1.8 × 10-3 s-1, R2 = 0.915), respectively. This system also behaved well in degrading other five kinds of contaminants. Tert-butanol (TBA) and carbonate (CO32-) were separately used in quenching experiments, and the degradation efficiency of MIT decreased by 39.5% and 46.5% respectively, which confirmed that HO• and reactive chlorine species (RCS) were dominant oxidants in UV/TCCA system. With TCCA dosage increasing in a relatively low concentration range (0.02-0.2 mM) and pH decreasing, the effectiveness of this AOP system would be strengthened. The influences of coexisting substances (Cl-, SO42-, CO32-, NO2- and NO3-) were explored. MIT degradation pathways were proposed and sulfur atom oxidation and carboxylation were considered as the dominant removal mechanisms of MIT. Frontier orbital theory and Fukui indexes of MIT were employed to further explore the degradation mechanism.
Collapse
Affiliation(s)
- Zhizhuo Chai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yixue Dai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Li S, Zheng S, Zheng X, Bi D, Yang X, Luo X. Optimization of electrolytic system type for industrial reverse osmosis concentrate treatment to achieve effluent quality and energy savings. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Huang N, Shao WT, Wang WL, Wang Q, Chen ZQ, Wu QY, Hu HY. Removal of methylisothiazolinone biocide from wastewater by VUV/UV advanced oxidation process: Kinetics, mechanisms and toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115107. [PMID: 35483252 DOI: 10.1016/j.jenvman.2022.115107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Methylisothiazolinone (MIT) is frequently used as antimicrobial in household and industrial products, and poses ecological and health risks to aquatic organisms and humans. In this study, vacuum ultraviolet (VUV)/ultraviolet (UV) irradiation was found highly efficient for removal of MIT. The rate constant of MIT degradation (kobs) under VUV/UV irradiation was 3.75 μEinstein-1 cm2, which was around 12.5 times higher than that under UV irradiation. The •OH concentration during the VUV/UV process was 1.0 × 10-12 M. The contributions of UV photolysis and •OH oxidation to MIT degradation under VUV/UV irradiation were 7.3% and 92.7%, respectively. The optimum solution pH (6.0-7.1) gave kobs 33%-39% higher than those at pH 3.9 and 9.3. CO32-/HCO3- inhibited MIT degradation and the kobs decreased by 74% when the concentration of CO32-/HCO3- was increased to 1 mM. The order of MIT removal efficiency under VUV/UV irradiation was ultrapure water > secondary effluent > reverse osmosis (RO) concentrate, because of the light screening and •OH quenching effect of actual wastewater. In RO concentrate, the rate constant of MIT degradation under VUV/UV irradiation was 22% higher than that obtained under UV irradiation. The reduction of TOC, UV254, and total fluorescence regional integration of the RO concentrate during VUV/UV process were 7.2%, 34.9%, and 52.3%, respectively. Twelve main transformation products of MIT were identified after VUV/UV degradation. The main degradation mechanisms of MIT were sulfur atom oxidation and hydroxyl addition. Quantitative structure-activity relationship analysis showed that VUV/UV degradation was an efficient method to remove the toxicity of MIT.
Collapse
Affiliation(s)
- Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, China
| | - Wan-Ting Shao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Qi Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, China
| | - Zhi-Qiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, China
| |
Collapse
|
4
|
Zahmatkesh S, Amesho KTT, Sillanpää M. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 pandemic: What do we know? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100121. [PMID: 37520795 PMCID: PMC9250822 DOI: 10.1016/j.hazadv.2022.100121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.
Collapse
Key Words
- AOP, advanced oxidation process
- Activated carbon
- Advanced oxidation process
- Algae
- BOD, biological oxygen demand
- COD, chemical oxygen demand
- Chlorination
- DBP, disinfection by-product
- EPS, extracellular polymeric substances
- GAC, granular activated carbon
- Membrane
- Micropollutants
- Ozonation
- PAC, powdered activated carbon
- SARS-CoV-2
- TOC, total organic carbon
- TSS, total suspended solids
- UV irradiation
- UV, ultraviolet
- WWTPs, wastewater treatment plants
- Wastewater
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
5
|
Wang C, Zhao X, Wu J, Yang X, Cui X, Geng W, Geng Z, Wang X. Solar-driven Ag@NH2-MIL-125/PAES-CF3-COOH tight reactive hybrid ultrafiltration membranes for high self-cleaning efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Bai W, Takao Y, Kubo T. First evaluation of genotoxicity of strong bases and zwitterions in treated household effluents. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126053. [PMID: 34492893 DOI: 10.1016/j.jhazmat.2021.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Various genotoxic substances in household effluents have not been sufficiently studied. The purpose of this study is to evaluate them using the umu test after dividing them based on the acid-base properties of their functional groups by solid-phase extraction cartridges. The results of the samples concentrated with reverse-phase cartridges showed that the substances with acid functional groups had stronger genotoxicity as 4.1-12.1 ng-4-NQO/mL without S9 enzyme and 17.4-51.8 ng-2-AA/mL with S9 enzyme, while the basic substances also showed a certain degree of toxicity. The results of dividing the effluents by acid-base properties using ion-exchange cartridges showed that chemical substances with strong acid functional groups did not demonstrate genotoxicity. It was found that the genotoxicity of chemicals with functional groups of weak acids was half of that of the total amount. The genotoxicity of the neutral substance was not strong, and the genotoxicity of the weak basic substances was negligible. The zwitterions and substances with strong basic functional groups showed about half the total genotoxicity. This is the first report that has investigated the genotoxicity of zwitterions in effluents.
Collapse
Affiliation(s)
- Wenzhi Bai
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Yuji Takao
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takashi Kubo
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
7
|
Lee MY, Wang WL, Du Y, Jeon TW, Shin SK, Wu QY, Dao GH, Hu HY. Applications of UV/H 2O 2, UV/persulfate, and UV/persulfate/Cu 2+ for the elimination of reverse osmosis concentrate generated from municipal wastewater reclamation treatment plant: Toxicity, transformation products, and disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144161. [PMID: 33360474 DOI: 10.1016/j.scitotenv.2020.144161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Reverse osmosis concentrate (ROC) resulting from treatment of municipal wastewater reclamation involves high concentrations of recalcitrant pollutants. This study evaluated the toxicity of an ROC containing harmful biocides during representative UV synergistic oxidation processes (SOPs) (e.g., UV/hydrogen peroxide (H2O2), UV/persulfate (PS), and UV/PS/Cu2+). Treated ROC exhibited up to 1.3-2.3 times higher toxicity than the parent compounds such as dodecyl trimethyl ammonium chloride (DTAC) and dodecyl dimethyl benzyl ammonium chloride (DDBAC). Based on the intermediates identification, the major toxic intermediates were screened through silico assessment using the quantitative Ecological Structure-Activity Relationship (ECOSAR) tool. The transformation products (TPs) of hydroxylation and ketonization were the major formed reactions from the UV/PS/Cu2+. Also, some cytotoxic TPs were accumulated during the UV/H2O2 and UV/PS oxidations, where the carbonaceous-disinfection byproducts were more than the nitrogenous-disinfection byproducts. In the presence of chloride and bromide, chlorate and bromate could be formed during the UV-SOP; they were influenced by the different water matrix in comparison with the different ROC. Also, the formation of the total organic halogen species (TOX) was found to follow this order: UV/PS/Cu2+ < UV/H2O2 < UV/PS. In this study, the predicted cytotoxicity using the correlation between the TOX and the cytotoxicity was more acceptable than that of the cytotoxicity index method. Further, the R-square of the correlation between the TOX and the cytotoxicity for the UV/H2O2 and UV/PS was 0.82 and 0.79, respectively. The predicted cytotoxicity using the TOX correlation method in the ROC could also be used to monitor and prevent the application of different oxidations in municipal wastewater reclamation treatment plants.
Collapse
Affiliation(s)
- Min-Yong Lee
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Department of Environmental Resources Research, National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon 22689, Republic of Korea
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Shenzhen 518055, PR China
| | - Ye Du
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Shenzhen 518055, PR China
| | - Tae-Wan Jeon
- Department of Environmental Resources Research, National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon 22689, Republic of Korea
| | - Sun-Kyung Shin
- Department of Environmental Resources Research, National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon 22689, Republic of Korea
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Shenzhen 518055, PR China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
8
|
Proner MC, de Meneses AC, Veiga AA, Schlüter H, Oliveira DD, Luccio MD. Industrial Cooling Systems and Antibiofouling Strategies: A Comprehensive Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariane Carolina Proner
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Alessandra Cristina de Meneses
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Andrea Azevedo Veiga
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Helga Schlüter
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
9
|
Huang N, Wang WL, Xu ZB, Ye B, Liang ZF, Lee MY, Wu QY, Hu HY. Study on synergistic effect of ozone and monochloramine on the degradation of chloromethylisothiazolinone biocide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141598. [PMID: 32916499 DOI: 10.1016/j.scitotenv.2020.141598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, it was found that monochloramine induced the formation of reactive species during ozonation of chloromethylisothiazolinone (CMIT). CMIT was found recalcitrant to chloramine. However, chloramine promoted the degradation of CMIT by ozonation significantly. Hydroxyl radicals contributed most to CMIT degradation (87%) during ozone/chloramine synergistic oxidation process (SOP). The hydroxyl radical exposure during ozone/chloramine SOP was around 7.9 times higher than that of ozonation process. The hydroxyl radical yield of ozone/chloramine SOP was estimated to be 32%. The reaction mechanisms between ozone and chloramine were postulated to include the oxygen transfer reaction to form singlet oxygen, and the formation of hydroxyl radical by the insertion pathway or electron transfer pathway. Chloramine dosage and pH are essential influencing factors. The degradation of CMIT increased from 41% to 74% with increasing chloramine dosage (0-20 μM), and then decreased to 65% when chloramine dosage continually increased to 40 μM. Ozone/chloramine SOP showed better performance at acidic or neutral conditions than basic condition. Based on the intermediates identified, the degradation pathway of CMIT during ozone/chloramine SOP included the oxidation of sulfur atom and the substitution of chlorine group by hydroxyl group. The oxidation of sulfur atom induced lower toxicities of transformation products. The toxicities of hydroxylation products were lower to fish and algae, but higher to daphnia. Based on the GC-ECD results, only trichloromethane (1.94 μg/L) was detected after ozone/chloramine SOP, accounting for 0.17% (μM/μM) of the CMIT removal.
Collapse
Affiliation(s)
- Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zi-Bin Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Bei Ye
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Zi-Fan Liang
- Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Min-Yong Lee
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
10
|
Chen M, Zhao X, Wang C, Pan S, Zhang C, Wang Y. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO 2-Sb flow-through anode: Degradation performance, energy efficiency and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123295. [PMID: 32659574 DOI: 10.1016/j.jhazmat.2020.123295] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Due to poor mass transfer performance and high energy consumption of the traditional electrochemical flow-by mode, this study developed a high-efficiency electrochemical oxidation system in flow-through mode based on three-dimensional macroporous enhanced TiO2 nanotube array/SnO2-Sb (MP-Ti-ENTA/SnO2-Sb) anode. The effects of initial pH, current density and flow rate on the COD degradation of reverse osmosis concentrates (ROCs) from reclaimed wastewater plant were investigated. Besides, the energy efficiency, biodegradability and acute biotoxicity were studied during electrochemical flow-through process. Compared with the flow-by mode, the flow-through mode based on the MP-Ti-ENTA/SnO2-Sb anode had a COD removal rate of 0.38 mg min-1 (current density: 5 mA cm-2) and an electrical efficiency per order (EE/O) of 5.3 kW h m-3. The three-dimensional fluorescence spectrum showed that the fulvic acids, humic acids and soluble microbial metabolites of ROCs could be effectively removed by the flow-through anode. In addition, the luminescence inhibition rate of the effluent was 22.4 %, indicating that the acute biotoxicity was reduced by more than 40 %. The electrochemical flow-through process of ROCs treatment required relatively low energy consumption without extra chemical agent addition, showing a broader application prospect.
Collapse
Affiliation(s)
- Min Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Shuang Pan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Yingcai Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
11
|
Du Y, Wang WL, Zhang DY, Zhou TH, Lee MY, Wu QY, Hu HY, He ZM, Huang TY. Degradation of non-oxidizing biocide benzalkonium chloride and bulk dissolved organic matter in reverse osmosis concentrate by UV/chlorine oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122669. [PMID: 32361623 DOI: 10.1016/j.jhazmat.2020.122669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/13/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Non-oxidizing biocide that is used to inhibit the microorganism growth on RO membrane, are observed to be high concentration and toxic in RO concentrate. The synergistic oxidation process (SOP) of UV/chlorine was investigated to simultaneously reduced the content (60.2 %) and toxicity (57.0 %) of a representative biocide dodecylbenzyldimethylammonium chloride (DDBAC) in real RO concentrate, with a UV fluence 1080 mJ/cm2 and chlorine dose 20 mg/L. Besides eliminating the DDBAC, UV/chlorine reduced the UVA254 and fluorescence of the dissolved organic matters (DOM). The oxidation mechanism was verified to be the radical electrophilic addition rather than the chlorine-electrophilic substitution through the decay of electron-donation moiety and UVA254. As results, high molecular weight fractions of DOM (>2k Da, 79.2 %) was cleaved into low molecular weight fractions (<0.4k Da, 18.4 %) and organic halide was formed. Parallel-factor analysis of the fluorescence components suggested that decomposition of the protein-like fluorophore is most likely to surrogate the biocide removal and organic halide formation compared to other fluorophore components and UVA254. Accordingly, a portable fluorescence probe with 400 nm excitation and 410-600 nm emission wavelengths was developed as an online surrogate for the DDBAC removal and organic halide formation.
Collapse
Affiliation(s)
- Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Wen-Long Wang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, China
| | - Da-Yin Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tian-Hui Zhou
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Min-Yong Lee
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhi-Ming He
- Foshan Comwin Light & Electricity Co., Ltd., Gaomin District, Foshan, Guangdong, China
| | - Tian-Yin Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
12
|
Deng H. A review on the application of ozonation to NF/RO concentrate for municipal wastewater reclamation. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122071. [PMID: 32193076 DOI: 10.1016/j.jhazmat.2020.122071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Nanofiltration (NF) and reverse osmosis (RO) technology have gained worldwide acceptance for reclamation of municipal wastewater due to their excellent efficiencies in rejecting a wide spectrum of organic pollutants, bacteria, dissolved organic matters and inorganic salts. However, the application of NF/RO process produces inevitably a large volume of concentrated waste stream (NF/RO concentrate), which is generally characterised by high levels of inorganic and organic substances, a low biodegradation and potential ecotoxicity. At present, one of the most significant concerns for this process is regarding the sustainable management of municipal NF/RO concentrate, due to a potentially serious threat to water receiving body. It should therefore be further disposed or treated by effective technologies such as ozonation in a cost-effective way, aiming to minimize the potential environmental risk associated with the presence of emerging micropollutants (ng L-1 - μg L-1). This paper provides an overview on the disposal of NF/RO concentrate from municipal wastewater by ozonation process. This is a first review to present entirely ozonation efficiency of NF/RO concentrate in terms of elimination of emerging micropollutants, degradation of organic matters, as well as toxicity assessment. In addition, ozone combining biological activated carbon (BAC) or other advanced oxidation processes (AOPs) is also discussed, aiming to further improve mineralization of ozone-recalcitrant substances in NF/RO concentrate. Finally, further research directions regarding the management of NF/RO concentrate are proposed.
Collapse
Affiliation(s)
- Hui Deng
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France; Key Laboratory of Environmental Toxicology (Hainan University), Ministry of Education, Haikou, 570228, China.
| |
Collapse
|
13
|
Wang X, Sun M, Zhao Y, Wang C, Ma W, Wong MS, Elimelech M. In Situ Electrochemical Generation of Reactive Chlorine Species for Efficient Ultrafiltration Membrane Self-Cleaning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6997-7007. [PMID: 32356975 DOI: 10.1021/acs.est.0c01590] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reactive membranes based on hydroxyl radical generation are hindered by the need for chemical dosing and complicated module and material design. Herein, we utilize an electrochemical approach featuring in situ generation of reactive (radical) chlorine species (RCS) through anodization of chloride ions for membrane self-cleaning. A hybridized carbon nanotube (CNT)-functionalized ceramic membrane (h-CNT/CM), possessing high hydrophilicity, permeability, and conductivity, was fabricated. Using carbamazepine (CBZ) as a probe, we confirmed the presence of RCS in the electrified h-CNT/CM. The rapid and complete degradation of CBZ in a single-pass ultrafiltration indicates a high localized RCS concentration within the three-dimensional porous CNT interwoven layer. We further demonstrate that the electrogeneration of RCS is a critical prestep for free chlorine (HClO and ClO-) formation. The self-cleaning efficiency of the membrane after fouling with a model organic foulant (alginate) was assessed using an electrified cross-flow membrane filtration system. The fouled h-CNT/CM exhibits a near complete water flux recovery following a short (1 min) self-cleaning with an applied voltage of 3 or 4 V and feed solutions of 100 or 10 mM sodium chloride, respectively. Considering the superior performance of the RCS-mediated self-cleaning compared to conventional membrane chemical cleaning using sodium hypochlorite, our results exemplify an effective strategy for in situ electrogeneration of RCS to achieve a highly efficient membrane self-cleaning.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Yumeng Zhao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chi Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Wen Ma
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Houston, Texas 77005, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Houston, Texas 77005, United States
| |
Collapse
|
14
|
Deng H. Ozonation mechanism of carbamazepine and ketoprofen in RO concentrate from municipal wastewater treatment: Kinetic regimes, removal efficiency and matrix effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137150. [PMID: 32062266 DOI: 10.1016/j.scitotenv.2020.137150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
A relatively important disadvantage of reverse osmosis (RO) application to municipal wastewater reclamation is related to management of a concentrated waste stream containing high levels of organic contaminants. The present study investigated ozonation performance of RO concentrate from municipal wastewater treatment in a stirred semi-batch reactor. In this work, carbamazepine (CBZ, as a representative of ozone-reactive micropollutants) and ketoprofen (KET, one of ozone-resistant organic chemicals) were selected as target micropollutants. The absence of dissolved ozone within the first 60 min corresponding to initial ozone demand (IOD) complement suggested that chemical reactions took place quite fast, and ozone mass transfer was considered as a limiting step. A complete elimination of CBZ and an excellent removal of KET were observed in this period, indicating that molecular ozone was a dominated oxidant responsible for the decomposition of the target micropollutants in RO concentrate containing initial dissolved organic carbon (DOC0, ~50.8 mg L-1). >90% of ozone-reactive CBZ was eliminated at a low ozone dose of 0.33 g consumed ozone per g DOC0. More ozone dose requirement for an equivalent removal of KET was ascribed to its low ozone kinetic rate constant below 10 L mol-1 s-1. In addition, the presence of high contents of organic matters and alkalinity in RO concentrate exhibited pronounced effects on the degradation of KET because of a competition with oxidants. Overall, ozonation appeared to be a promising alternative for disposal of RO concentrate in terms of micropollutant removal. However, additional technologies should be followed to further enhance the degradation rate of organic matters for a zero liquid discharge treatment scheme.
Collapse
Affiliation(s)
- Hui Deng
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
15
|
Wang WL, Chen Z, Du Y, Zhang YL, Zhou TH, Wu QY, Hu HY. Elimination of isothiazolinone biocides in reverse osmosis concentrate by ozonation: A two-phase kinetics and a non-linear surrogate model. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121898. [PMID: 31879104 DOI: 10.1016/j.jhazmat.2019.121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Elimination of commercial Kathon biocide (methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT) mixture) by ozonation was investigated in real RO influent and concentrate. MIT and CMIT had different reactivities (second-order-rate-constants) with molecular ozone and OH. Ozonation of biocides followed an instantaneous phase (16.6 %-36.9 % contributions) and then a gradual phase (33.6 %-78.8 % contributions). Newly developed kinetics including both phases demonstrated that O3 oxidation contributed 25.6 %-39.8 % and <10 % of MIT and CMIT eliminations, respectively, and OH oxidation contributed 60.2 %-74.4 % and >90 % of MIT and CMIT eliminations, respectively. OH oxidation at the instantaneous phase accounted 15.7 %-37.9 % of total OH oxidation. Mass ratios of O3/DOC of 0.24 and 0.32 were needed for ∼80 % eliminations of MIT and CMIT in RO concentrate, respectively. The kinetics including both phases allowed a para-chlorobenzoic acid indicator model to predict MIT and CMIT elimination better than that including gradual ozonation only, with 58.9 %-96.0 % lower relative error. The attenuations of electron-donating-moiety indicated that O3 may preferentially react with chromophores through aromatic cleavage and electrophilic extraction, while •OH may non-selectively react with chromophores through predominant electrophilic addition. A surrogate model for biocide elimination by UVA254 loss was proposed to be nonlinear rather than linear, which reduced 31.8 %-71.3 % surrogating error.
Collapse
Affiliation(s)
- Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, China
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Yi-Lin Zhang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Tian-Hui Zhou
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
16
|
Varga Z, Nicol E, Bouchonnet S. Photodegradation of benzisothiazolinone: Identification and biological activity of degradation products. CHEMOSPHERE 2020; 240:124862. [PMID: 31550591 DOI: 10.1016/j.chemosphere.2019.124862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The photodegradation of benzisothiazolinone was studied in water under UV-Vis irradiation and led to fourteen photoproducts. Chemical structures of these compounds were elucidated using GC-MS, LCMS/MS, and FT-ICR-MS experiments. Based on the chemical structures determined and their appearance order, a photo induced-degradation mechanism of benzisothiazolinone has been proposed, which combines isomerization, oxidation, hydroxylation, hydrolysis, and elimination processes. In silico tests on mutagenicity, Fathead minnow LC50 and oral rat LD50 were carried out to estimate the toxicity of the photoproducts. Compared with experimental data, the calculated oral rat LD50 values were found to be the most relevant and thus used for toxicity estimation. The photoproducts including a phenolic or a sulfino group or both functions were found potentially more toxic than benzisothiazolinone.
Collapse
Affiliation(s)
- Zsuzsanna Varga
- Laboratoire de Chimie Moléculaire - CNRS / Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Edith Nicol
- Laboratoire de Chimie Moléculaire - CNRS / Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire - CNRS / Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
17
|
Bai W, Takao Y, Kubo T. Evaluation of genotoxicity potential of household effluents from onsite wastewater treatment systems using umu test. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:36-44. [PMID: 31989873 DOI: 10.1080/15287394.2020.1719447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Household effluents are predominantly treated by wastewater treatment plants (WWTPs). Other treatment methods, which were examined in this study, are also used in the countryside. These treatment modes include (1) onsite toilet wastewater treatment system (OTWTS), (2) onsite wastewater treatment system (OWTS), (3) community wastewater treatment system (CWTS), and (4) onsite vault toilet (OVT). Household effluents consist of excrements and urine released from toilets as well as wastewater released from kitchens and bathrooms. In the present study, household effluents that were discharged from the residential areas having undergone similar treatment methodologies were compared using the umu test, an in vitro bioassay to assess genotoxicity potential. The different treatment methodologies were categorized based upon whether the two kinds of wastewater were mixed or not mixed and treated or not treated. Treated wastewater containing excrements and urine from the OTWTS exhibited the strongest genotoxicity potential compared to other effluents, whereas most of the kitchen and bathroom wastewater from OVT did not display genotoxicity. Data indicated that the genotoxicants in the effluents originated primarily from excrements and urine, and may increase an adverse environmental risk.
Collapse
Affiliation(s)
- Wenzhi Bai
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuji Takao
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Kubo
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Huang N, Wang WL, Xu ZB, Wu QY, Hu HY. UV/chlorine oxidation of the phosphonate antiscalant 1-Hydroxyethane-1, 1-diphosphonic acid (HEDP) used for reverse osmosis processes: Organic phosphorus removal and scale inhibition properties changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:180-186. [PMID: 30784866 DOI: 10.1016/j.jenvman.2019.02.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Reverse osmosis (RO) technology plays an increasingly important role in municipal wastewater reclamation. However, the antiscalants used in RO systems showed adverse effects to the ecosystem: impending the removal of hardness from RO concentrates; inducing phosphorus pollution in receiving water; enhancing the trace metal migration in the environment. In this study, UV/chlorine advanced oxidation process was used to oxidize a typical phosphoric antiscalant (1-Hydroxyethane-1, 1-diphosphonic Acid, HEDP). UV/chlorine showed significant synergetic effects on HEDP degradation compared to UV irradiation or chlorination alone. Compared to UV/H2O2 oxidation, UV/chlorine process is more efficient for HEDP transformation with chlorine dosages ranging from 0.1 to 0.4 mmoL/L. Chorine dosage showed dual effects on HEDP oxidation by UV/chlorine: the increasing trend of transformation efficiency of HEDP got slower with increasing chlorine dosage. The transformation efficiency of HEDP by UV/chlorine oxidation decreased from 39% to 14% with pH increasing from 4.5 to 9.0, likely due to the higher quantum yields and lower radical quenching rates of HOCl than those of OCl-. The transformation efficiency of HEDP decreased 14% and 42% with 30 mM of chloride and bicarbonate, respectively. The presence of nitrate promoted the oxidation of HEDP by UV/chlorine: the transformation efficiency increased 5% and 83% with the presence of 5 mM and 30 mM nitrate, respectively. Based on the static scale inhibition tests, UV/chlorine oxidation is effective at removing the scale inhibition ability of HEDP. During UV/chlorine process, the maximum scale inhibition ratio decreased from 66% to 34% as the removal of phosphonate ligand from HEDP increased to 80%.
Collapse
Affiliation(s)
- Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zi-Bin Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
19
|
Li M, Chen Z, Wang Z, Wen Q. Investigation on degradation behavior of dissolved effluent organic matter, organic micro-pollutants and bio-toxicity reduction from secondary effluent treated by ozonation. CHEMOSPHERE 2019; 217:223-231. [PMID: 30415120 DOI: 10.1016/j.chemosphere.2018.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The environmental risk of secondary effluent has caused increasing attention in recent years, the negative effect of dissolved effluent organic matters (dEfOM) and organic micro-pollutants (OMPs) was a hot research point. In this research, the degradation behavior of dEfOM and fourteen OMPs in the ozonation was revealed using spectroscopic and chromatographic tools. Ozonation was effective for reducing UV254, but had limited effect in dissolved organic carbon reduction. The dEfOM with shorter absorption wavelength was preferentially removed in the ozonation (230 nm > 240 nm > 254 nm) and high molecular weight humics was largely reduced by the ozonation. Soluble microbial by-products were more reactive with ozone than humic acid as reflected by the fluorescence. Degradation behavior of the OMPs was identified based on their elimination kinetics and molecular structures and a simplified classification method was proposed. The group I OMPs (logkO3>5) showed high removal efficiency with 1 mg/L of ozone, while the removal of group II OMPs (1< logkO3<5) was largely dependent on the ozone dose. The CC bond, deprotonated amidogen, phenolic, aniline and anisole groups in these OMPs structures were the main reaction sites with ozone. The group III OMPs without active groups in the molecules showed slight removal in the ozonation. Moreover, genotoxicity and estrogenic activity were simultaneously analyzed for further evaluation on the risk of the effluent. The genotoxicity and estrogenic activity of the secondary effluent were 73.46 μg 4-NQO/L and 519.86 ng E2/L, respectively and an ozone dose of 10 mg/L could reduce the bio-toxicity to the detection limit.
Collapse
Affiliation(s)
- Mo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730070, PR China
| | - Zhenzhe Wang
- Jiangsu Huaxin Urban Planning & Design Institute Co Ltd, Lianyungang 200000, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
20
|
Xu ZB, Wang WL, Huang N, Wu QY, Lee MY, Hu HY. 2-Phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) degradation by ozonation: Kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal. WATER RESEARCH 2019; 148:334-343. [PMID: 30391862 DOI: 10.1016/j.watres.2018.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
2-Phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) is an antiscalant that is widely used in reverse osmosis (RO) systems. Because of its high concentration in RO concentrate, eutrophication risk and anti-precipitation properties may affect subsequent treatments, therefore treatment strategies are needed to eliminate such substances. In this study, PBTCA was degraded by ozonation. The results show that PBTCA reacted with ozone molecules and hydroxyl radicals, with second-order rate constants of (0.12 ± 0.002) and (7.83 ± 1.51) × 108 L mol-1 s-1, respectively. The phosphorus in PBTCA (PP) was transformed into organic phosphorus except for PBTCA (PO), and inorganic phosphorus (PI); PO was further transformed into PI. The changes in the concentrations of these phosphorus forms were investigated by model simulation. Simulation showed that the rate of PP transformation into PO was 5.5 times higher than that into PI. PBTCA was ozonated much faster at alkaline pH than at acidic pH. This is ascribed to different amounts of ozone molecules and hydroxyl radicals, and their different reaction rates with PBTCA. Furthermore, anti-precipitation property was reduced during ozonation, as shown by the amounts and morphology changes of the precipitates. PBTCA concentration for 50% anti-precipitation (AP50) did not change during ozonation, indicating that the transformation products generated during ozonation did not have anti-precipitation effects. Phosphorus in PBTCA was removed by ozonation-coagulation treatment. Total phosphorus and inorganic phosphorus were removed efficiently by using ferric chloride as a coagulant. The coagulants tended to bind with inorganic phosphorus to form flocs. Meanwhile, flocs were more easily to aggregate and precipitate as anti-precipitation effect was gradually removed, thus more phosphorus was removed. A combination of ozonation and coagulation removed PBTCA effectively and simultaneously reduced its anti-precipitation property and phosphorus.
Collapse
Affiliation(s)
- Zi-Bin Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China; Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| | - Min-Yong Lee
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
21
|
Wang XX, Zhang TY, Dao GH, Hu HY. Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:200-211. [PMID: 29807280 DOI: 10.1016/j.envpol.2018.05.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/26/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
Methylisothiazolinone (MIT) has been widely used to control bacterial growth in reverse osmosis (RO) systems. However, MIT's toxicity on microalgae should be determined because residual MIT is concentrated into RO concentrate (ROC) and might have a severe impact on microalgae-based ROC treatment. This study investigated the tolerance of Scenedesmus sp. LX1 to MIT and revealed the mechanism of algal growth inhibition and toxicity resistance. Scenedesmus sp. LX1 was inhibited by MIT with a half-maximal effective concentration at 72 h (72 h-EC50) of 1.00 mg/L, but the strain recovered from the inhibition when its growth was not completely inhibited. It was observed that this inhibition's effect on subsequent growth was weak, and the removal of MIT was the primary reason for the recovery. Properly increasing the initial algal density significantly shortened the adaptation time for accelerated recovery in a MIT-containing culture. Photosynthesis damage by MIT was one of the primary reasons for growth inhibition, but microalgal cell respiration and adenosine triphosphate (ATP) synthesis were not completely inhibited, and the algae were still alive even when growth was completely inhibited, which was notably different from observations made with bacteria and fungi. The algae synthesized more chlorophyll, antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), and small molecules, such as reduced glutathione (GSH), to resist MIT poisoning. The microalgae-based process could treat the MIT-containing ROC, since MIT was added for only several hours a week in municipal wastewater reclamation RO processes, and the MIT average concentration was considerably lower than the maximum concentration that algae could tolerate.
Collapse
Affiliation(s)
- Xiao-Xiong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Tian-Yuan Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China.
| |
Collapse
|
22
|
Adsorption of Isothiazolone Biocides in Textile Reverse Osmosis Concentrate by Powdered Activated Carbon. WATER 2018. [DOI: 10.3390/w10040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Weng J, Jia H, Wu B, Pan B. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation. CHEMOSPHERE 2018; 191:971-978. [PMID: 29145142 DOI: 10.1016/j.chemosphere.2017.10.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV254) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation.
Collapse
Affiliation(s)
- Jingxia Weng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huichao Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
24
|
Wang T, Wu QY, Wang WL, Chen Z, Li BT, Li A, Liu ZY, Hu HY. Self-sensitized photodegradation of benzisothiazolinone by low-pressure UV-C irradiation: Kinetics, mechanisms, and the effect of media. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Advanced Approaches to Model Xenobiotic Metabolism in Bacterial Genotoxicology In Vitro. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017. [PMID: 27619490 DOI: 10.1007/10_2016_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
During the past 30 years there has been considerable progress in the development of bacterial test systems for use in genotoxicity testing by the stable introduction of expression vectors (cDNAs) coding for xenobiotic-metabolizing enzymes into bacterial cells. The development not only provides insights into the mechanisms of bioactivation of xenobiotic compounds but also evaluates the roles of enzymes involved in metabolic activation or inactivation in chemical carcinogenesis. This review describes recent advances in bacterial genotoxicity assays and their future prospects, with a focus on the development and application of genetically engineering bacterial cells to incorporate some of the enzymatic activities involved in the bio-activation process of xenobiotics. Various genes have been introduced into bacterial umu tester strains encoding enzymes for genotoxic bioactivation, including bacterial nitroreductase and O-acetyltransferase, human cytochrome P450 monooxygenases, rat glutathione S-transferases, and human N-acetyltransferases and sulfotransferases. Their application has provided new tools for genotoxicity assays and for studying the role of biotransformation in chemical carcinogenesis in humans.
Collapse
|
26
|
Removal of Crotamiton from Reverse Osmosis Concentrate by a TiO2/Zeolite Composite Sheet. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Oxidation of benzalkonium chloride by gamma irradiation: kinetics and decrease in toxicity. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5255-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Xie Y, Chen L, Liu R. AOX contamination status and genotoxicity of AOX-bearing pharmaceutical wastewater. J Environ Sci (China) 2017; 52:170-177. [PMID: 28254035 DOI: 10.1016/j.jes.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 06/06/2023]
Abstract
Adsorbable organic halogens (AOX) are a general indicator for the total amount of compounds containing organically bonded halogens. AOX concentrations and components were investigated along the wastewater treatment process in four large-scale pharmaceutical factories of China, and genotoxicity based on the SOS/umu test was also evaluated. The results showed that AOX concentrations in wastewater of four factories ranged from 4.6 to 619.4mg/L, which were high but greatly different owing to differences in the raw materials and products. The wastewater treatment process removed 50.0%-89.9% of AOX, leaving 1.3-302.5mg/L AOX in the effluents. Genotoxicity levels ranged between 2.1 and 68.0μg 4-NQO/L in the raw wastewater and decreased to 1.2-41.2μg 4-NQO/L in the effluents of the wastewater treatment plants (WWTPs). One of the main products of factory I, ciprofloxacin, was identified as the predominant contributor to its genotoxicity. However, for the other three factories, no significant relationship was observed between genotoxicity and detected AOX compounds.
Collapse
Affiliation(s)
- Yawei Xie
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Zhejiang 314006, China.
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Zhejiang 314006, China.
| |
Collapse
|
29
|
Li A, Wu QY, Tian GP, Hu HY. Effective degradation of methylisothiazolone biocide using ozone: Kinetics, mechanisms, and decreases in toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:1064-1071. [PMID: 27692888 DOI: 10.1016/j.jenvman.2016.08.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Methylisothiazolone (MIT) is a common biocide that is widely used in water-desalination reverse-osmosis processes. The transformation of MIT during water treatment processes is poorly understood. The kinetics and mechanisms involved in the degradation of MIT during ozonation were investigated in this study. Ozonation was found to be a useful way of degrading MIT in water, and the degradation rate constant was 0.11 (±0.1) × 103 L/(mol·s). The degradation rate constant did not change when the pH was increased from 3 to 9. The pre-exponential factor A and the activation energy Ea for the ozonation process were 7.564 × 1013 L/(mol·s) and 66.74 kJ/mol, respectively. The decrease in the MIT concentration and the amount of ozone consumed were measured, and the stoichiometric factor α for the ozone consumption to MIT removal ratio was found to be 1.8. Several ozonation products were detected using time-of-flight mass spectrometry. Almost 32% of the organic sulfur in the MIT was oxidized to release sulfate ions, which caused a decrease in pH. Sulfur atoms were oxidized to sulfone species and then hydrolyzed to give sulfate during ozonation. Addition reactions involving carbon-carbon double bonds and the oxidation of α-carbon atoms also occurred. MIT was found to be lethal to Daphnia magna Straus (D. magna) with a median lethal concentration of 18.2 μmol/L. Even though the primary ozonation products of MIT still showed some toxicity to D. magna, ozone could minimize the toxic effect after a long reaction time.
Collapse
Affiliation(s)
- Ang Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| | - Gui-Peng Tian
- Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; China Construction Water and Environmental Protection Co., Ltd, Beijing 100195, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
30
|
Sun YX, Hu HY, Shi CZ, Yang Z, Tang F. Changes in the components and biotoxicity of dissolved organic matter in a municipal wastewater reclamation reverse osmosis system. ENVIRONMENTAL TECHNOLOGY 2016; 37:2149-2156. [PMID: 26803912 DOI: 10.1080/09593330.2016.1144795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The characteristics of dissolved organic matter (DOM) and the biotoxicity of these components were investigated in a municipal wastewater reclamation reverse osmosis (mWRRO) system with a microfiltration (MF) pretreatment unit. The MF pretreatment step had little effect on the levels of dissolved organic carbon (DOC) in the secondary effluent, but the addition of chlorine before MF promoted the formation of organics with anti-estrogenic activity. The distribution of excitation emission matrix (EEM) fluorescence constituents exhibited obvious discrepancies between the secondary effluent and the reverse osmosis (RO) concentrate. Using size exclusion chromatography, DOM with low molecular weights of approximately 1.2 and 0.98 kDa was newly formed during the mWRRO. The normalized genotoxicity and anti-estrogenic activity of the RO concentrate were 32.1 ± 10.2 μg4-NQO/mgDOC and 0.36 ± 0.08 mgTAM/mgDOC, respectively, and these values were clearly higher than those of the secondary effluent and MF permeate. The florescence volume of Regions I and II in the EEM spectrum could be suggested as a surrogate for assessing the genotoxicity and anti-estrogenic activity of the RO concentrate.
Collapse
Affiliation(s)
- Ying-Xue Sun
- a Department of Environmental Science and Engineering , Beijing Technology and Business University , Beijing , People's Republic of China
| | - Hong-Ying Hu
- b Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| | - Chun-Zhen Shi
- a Department of Environmental Science and Engineering , Beijing Technology and Business University , Beijing , People's Republic of China
| | - Zhe Yang
- a Department of Environmental Science and Engineering , Beijing Technology and Business University , Beijing , People's Republic of China
| | - Fang Tang
- b Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| |
Collapse
|
31
|
Sun YX, Yang Z, Ye T, Shi N, Tian Y. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13543-13553. [PMID: 27032632 DOI: 10.1007/s11356-016-6525-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.
Collapse
Affiliation(s)
- Ying-Xue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Zhe Yang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Tao Ye
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Na Shi
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Yuan Tian
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| |
Collapse
|
32
|
Sun YX, Gao Y, Hu HY, Tang F, Yang Z. Characterization and biotoxicity assessment of dissolved organic matter in RO concentrate from a municipal wastewater reclamation reverse osmosis system. CHEMOSPHERE 2014; 117:545-551. [PMID: 25277967 DOI: 10.1016/j.chemosphere.2014.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Reverse osmosis (RO) concentrate from municipal wastewater reclamation reverse osmosis (mWRRO) system containing organic compounds may associate with toxic risk, and its discharge might pose an environmental risk. To identify a basis for the selection of feasible technology in treating RO concentrates, the characteristics and biotoxicity of different fractions of dissolved organic matter (DOM) in RO concentrates from an mWRRO system were investigated. The results indicated that the hydrophilic neutrals (HIN), hydrophobic acids (HOA) and hydrophobic bases (HOB) accounted for 96% of the dissolved organic carbon (DOC) of the total DOM in the RO concentrate. According to the SEC chromatograph detected at 254 nm wavelength of UV, the DOM with molecular weight (MW) 1-3 kDa accounted for the majority of the basic and neutral fractions. The fluorescence spectra of the excitation emission matrix (EEM) indicated that most aromatic proteins, humic/fulvic acid-like and soluble microbial by-product-like substances existed in the fractions HOA and hydrophobic neutrals (HON). The genotoxicity and anti-estrogenic activity of the RO concentrate were 1795.6 ± 57.2 μg 4-NQOL(-1) and 2.19 ± 0.05 mg TAM L(-1), respectively. The HIN, HOA, and HOB contributed to the genotoxicity of the RO concentrate, and the HIN was with the highest genotoxic level of 1007.9 ± 94.8 μg 4-NQOL(-1). The HOA, HON, and HIN lead to the total anti-estrogenic activity of the RO concentrate, and HOA occupied approximately 60% of the total, which was 1.3 ± 0.17 mg TAM L(-1).
Collapse
Affiliation(s)
- Ying-Xue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yue Gao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Fang Tang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhe Yang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
33
|
Umar M, Roddick F, Fan L. Effect of coagulation on treatment of municipal wastewater reverse osmosis concentrate by UVC/H2O2. JOURNAL OF HAZARDOUS MATERIALS 2014; 266:10-18. [PMID: 24374560 DOI: 10.1016/j.jhazmat.2013.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/24/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Disposal of reverse osmosis concentrate (ROC) is a growing concern due to potential health and ecological risks. Alum coagulation was investigated as pre-treatment for the UVC/H2O2 treatment of two high salinity ROC samples (ROC A and B) of comparable organic and inorganic content. Coagulation removed a greater fraction of the organic content for ROC B (29%) than ROC A (16%) which correlated well with the reductions of colour and A254. Although the total reductions after 60 min UVC/H2O2 treatment with and without coagulation were comparable, large differences in the trends of reduction were observed which were attributed to the different nature of the organic content (humic-like) of the samples as indicated by the LC-OCD analyses and different initial (5% and 16%) biodegradability. Coagulation and UVC/H2O2 treatment preferentially removed humic-like compounds which resulted in low reaction rates after UVC/H2O2 treatment of the coagulated samples. The improvement in biodegradability was greater (2-3-fold) during UVC/H2O2 treatment of the pre-treated samples than without pre-treatment. The target DOC residual (≤ 15 mg/L) was obtained after 30 and 20 min irradiation of pre-treated ROC A and ROC B with downstream biological treatment, corresponding to reductions of 55% and 62%, respectively.
Collapse
Affiliation(s)
- Muhammad Umar
- School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, 3001 Victoria, Australia
| | - Felicity Roddick
- School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, 3001 Victoria, Australia.
| | - Linhua Fan
- School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, 3001 Victoria, Australia
| |
Collapse
|