1
|
Wan S, Yu L, Yang Y, Liu W, Shi D, Cui X, Song J, Zhang Y, Liang R, Chen W, Wang B. Exposure to acrylamide and increased risk of depression mediated by inflammation, oxidative stress, and alkaline phosphatase: Evidence from a nationally representative population-based study. J Affect Disord 2024; 367:434-441. [PMID: 39236889 DOI: 10.1016/j.jad.2024.08.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The health risk associated with acrylamide exposure has emerged as a significant issue of public health, attracting global attention. However, epidemiologic evidence on whether and how daily acrylamide exposure increases depression risk of the general population is unclear. METHODS The study included 3991 adults from the National Health and Nutrition Examination Survey. The urinary metabolites of acrylamide (N-Acetyl-S-(2-carbamoylethyl)-L-cysteine [AAMA] and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine [GAMA]) identified as reliable indicators of acrylamide exposure were examined to determine their relationships with depressive symptoms that were evaluated using the 9-item Patient Health Questionnaire. Besides, the measurements of alkaline phosphatase (ALP) and biomarkers of inflammation (white blood cell [WBC] count) and anti-oxidative stress (albumin [ALB]) were conducted to investigate their mediation roles in above relationships. RESULT AAMA, GAMA, and ΣUAAM (AAMA+GAMA) were linearly associated with increased risk of depressive symptoms. Each 2.7-fold increase in AAMA, GAMA, or ΣUAAM was associated with a 30 % (odds ratio: 1.30; 95 % confidence interval: 1.09, 1.55), 47 % (1.47; 1.16, 1.87), or 36 % (1.36; 1.13, 1.63) increment in risk of depressive symptoms, respectively. Increased WBC count (mediated proportion: 4.48-8.00 %), decreased ALB (4.88-7.78 %), and increased ALP (4.93-5.23 %) significantly mediated the associations between acrylamide metabolites and depressive symptoms. CONCLUSIONS Acrylamide exposure of the general adult population was related to increased risk of depressive symptoms, which was mediated in part by inflammation, oxidative stress, and increased ALP. Our findings provided pivotal epidemiologic evidence for depression risk increment from exposure to acrylamide.
Collapse
Affiliation(s)
- Shuhui Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueru Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xiuqing Cui
- Institute of Health Surveillance Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Mérida DM, Rey-García J, Moreno-Franco B, Guallar-Castillón P. Acrylamide Exposure and Cardiovascular Risk: A Systematic Review. Nutrients 2024; 16:4279. [PMID: 39770901 PMCID: PMC11677207 DOI: 10.3390/nu16244279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Acrylamide is a food contaminant formed during high-temperature cooking processes, leading to unintentional human exposure. Diet is the primary source for non-smokers, with potatoes, cereals, and coffee being the main contributors. While animal studies have demonstrated that acrylamide is neurotoxic, genotoxic, mutagenic, and cardiotoxic, its effects on human cardiovascular health remain poorly understood. This study aimed to evaluate the association between acrylamide exposure and cardiovascular risk. Methods: A comprehensive literature search was conducted across four databases without restrictions on publication year or language (last search: 1 July 2024). The risk of bias was assessed using the Joanna Briggs Institute critical appraisal tools. Results: In total, 28 studies were included, predominantly from the US NHANES sample and with cross-sectional designs. Higher acrylamide exposure was associated with an increased risk of cardiovascular mortality but was inversely associated with glucose and lipid levels, as well as key cardiovascular risk factors such as diabetes, obesity, and metabolic syndrome. Conversely, glycidamide-acrylamide's most reactive metabolite-was positively associated with elevated glucose and lipid levels, higher systolic blood pressure, and increased obesity prevalence. Conclusions: These findings suggest that the adverse cardiovascular effects of acrylamide may be mediated by its conversion to glycidamide. Further research is necessary to fully elucidate the impact of acrylamide on cardiovascular health. Meanwhile, public health efforts should continue to focus on mitigation strategies within the food industry and raising public awareness about exposure.
Collapse
Affiliation(s)
- Diana María Mérida
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Department of Pharmacoepidemiology and Biostatistics, Fundación Teófilo Hernando, 28290 Las Rozas de Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
| | - Jimena Rey-García
- Department of Internal Medicine, Hospital Universitario Rey Juan Carlos, IIS-FJD, 28933 Móstoles, Spain
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain
- CIBERCV (CIBER of Cardiovascular Diseases), 28029 Madrid, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain
| |
Collapse
|
3
|
Lin CY, Lee HL, Wang C, Sung FC, Su TC. Positive Association Between Serum Concentration of 4-Tertiary-octylphenol and Oxidation of DNA and Lipid in Adolescents and Young Adults. EXPOSURE AND HEALTH 2024; 16:1311-1320. [DOI: 10.1007/s12403-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/04/2025]
|
4
|
Monien BH, Bergau N, Gauch F, Weikert C, Abraham K. Internal exposure to heat-induced food contaminants in omnivores, vegans and strict raw food eaters: biomarkers of exposure to acrylamide (hemoglobin adducts, urinary mercapturic acids) and new insights on its endogenous formation. Arch Toxicol 2024; 98:2889-2905. [PMID: 38819476 PMCID: PMC11324683 DOI: 10.1007/s00204-024-03798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
The urinary mercapturic acids N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA) are short-term biomarkers of exposure from acrylamide and its metabolite glycidamide, respectively. The medium-term exposure to acrylamide and glycidamide is monitored by the adducts N-(2-carbamoylethyl)-Val (AA-Val) and N-(2-carbamoyl-2-hydroxyethyl)-Val (GA-Val) in hemoglobin (Hb), respectively. Three questions were addressed by application of these biomarkers in two diet studies including 36 omnivores, 36 vegans and 16 strict raw food eaters (abstaining from any warmed or heated food for at least four months): first, what is the internal acrylamide exposure following a vegan or a raw food diet in comparison to that in omnivores? Second, did the exposure change between 2017 and 2021? And third, what is the stability over time of AAMA/GAMA excretion compared to that of AA-Val/GA-Val levels in Hb between both time points? Median urinary AAMA excretion per day in non-smoking omnivores, vegans and raw food eaters were 62.4, 85.4 and 15.4 µg/day, respectively; the corresponding median AA-Val levels were 27.7, 39.7 and 13.3 pmol/g Hb, respectively. Median levels in strict raw food eaters were about 25% (AAMA excretion) and 48% (AA-Val) of those in omnivores. In comparison to 2017, AAMA and GAMA excretion levels were hardly altered in 2021, however, levels of AA-Val and GA-Val in 2021 slightly increased. There was a weak correlation between AAMA excretion levels determined four years apart (rS = 0.30), and a moderate correlation between levels of AA-Val (rS = 0.55) in this timeframe. Our data in strict raw food eaters confirm a significant endogenous formation to acrylamide in a size range, which is-based on the levels of AA-Val-distinctly higher than reported previously based on levels of urinary AAMA excretion. The relatively lower AAMA excretion in raw food eaters likely represents a lower extent of glutathione conjugation due to missing hepatic first-pass metabolism in case of endogenous formation of acrylamide, which leads to a higher systemic exposure.
Collapse
Affiliation(s)
- Bernhard H Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Nick Bergau
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Fabian Gauch
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
5
|
Li X, Zeng H, Zhang L, Zhang J, Guo Y, Leng J. An integrated LC-MS/MS platform for noninvasive urinary nucleus acid adductomics: A pilot study for tobacco exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134780. [PMID: 38861899 DOI: 10.1016/j.jhazmat.2024.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Tobacco smoke exposure significantly increases the level of global nucleoside damage. To evaluate all aspects of nucleic acid (NA) modifications, NA adductomics analyzes DNA, RNA and nucleobase adducts and provides comprehensive data. Liquid chromatography-tandem triple quadrupole mass spectrometry (LC-QQQ-MS/MS) and LC-Zeno-TOF-MS/MS were employed to screen for DNA, RNA and nucleobase adducts, as part of the analytical platform that was designed to combine high sensitivity and high resolution detection. We identified and distinguished urine nucleoside adducts via precursor ion and neutral loss scanning. A total of 245 potential adducts were detected, of which 28 were known adducts. The smoking group had significantly higher concentrations of nucleoside adducts in rat urine than the control group, based on MRM scanning, which was then used to perform relative quantitative analysis of these adducts. Urine nucleoside adducts were further confirmed using LC-Zeno-TOF-MS/MS. This highlights the potential of untargeted detection methods to provide comprehensive data on both known and unknown adducts. These approaches can be used to investigate the interactions among oxidative and alkylation stresses, and epigenetic modifications caused by exposure to tobacco smoke.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zeng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Li Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China.
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
6
|
F Fernández S, Poteser M, Govarts E, Pardo O, Coscollà C, Schettgen T, Vogel N, Weber T, Murawski A, Kolossa-Gehring M, Rüther M, Schmidt P, Namorado S, Van Nieuwenhuyse A, Appenzeller B, Ólafsdóttir K, Halldorsson TI, Haug LS, Thomsen C, Barbone F, Mariuz M, Rosolen V, Rambaud L, Riou M, Göen T, Nübler S, Schäfer M, Zarrabi KHA, Sepai O, Martin LR, Schoeters G, Gilles L, Leander K, Moshammer H, Akesson A, Laguzzi F. Determinants of exposure to acrylamide in European children and adults based on urinary biomarkers: results from the "European Human Biomonitoring Initiative" HBM4EU participating studies. Sci Rep 2023; 13:21291. [PMID: 38042944 PMCID: PMC10693547 DOI: 10.1038/s41598-023-48738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Little is known about exposure determinants of acrylamide (AA), a genotoxic food-processing contaminant, in Europe. We assessed determinants of AA exposure, measured by urinary mercapturic acids of AA (AAMA) and glycidamide (GAMA), its main metabolite, in 3157 children/adolescents and 1297 adults in the European Human Biomonitoring Initiative. Harmonized individual-level questionnaires data and quality assured measurements of AAMA and GAMA (urine collection: 2014-2021), the short-term validated biomarkers of AA exposure, were obtained from four studies (Italy, France, Germany, and Norway) in children/adolescents (age range: 3-18 years) and six studies (Portugal, Spain, France, Germany, Luxembourg, and Iceland) in adults (age range: 20-45 years). Multivariable-adjusted pooled quantile regressions were employed to assess median differences (β coefficients) with 95% confidence intervals (95% CI) in AAMA and GAMA (µg/g creatinine) in relation to exposure determinants. Southern European studies had higher AAMA than Northern studies. In children/adolescents, we observed significant lower AA associated with high socioeconomic status (AAMA:β = - 9.1 µg/g creatinine, 95% CI - 15.8, - 2.4; GAMA: β = - 3.4 µg/g creatinine, 95% CI - 4.7, - 2.2), living in rural areas (AAMA:β = - 4.7 µg/g creatinine, 95% CI - 8.6, - 0.8; GAMA:β = - 1.1 µg/g creatinine, 95% CI - 1.9, - 0.4) and increasing age (AAMA:β = - 1.9 µg/g creatinine, 95% CI - 2.4, - 1.4; GAMA:β = - 0.7 µg/g creatinine, 95% CI - 0.8, - 0.6). In adults, higher AAMA was also associated with high consumption of fried potatoes whereas lower AAMA was associated with higher body-mass-index. Based on this large-scale study, several potential determinants of AA exposure were identified in children/adolescents and adults in European countries.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Michael Poteser
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Olga Pardo
- Public Health Directorate of Valencia, Av. Catalunya, 21, 46020, Valencia, Spain
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Nina Vogel
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | - Aline Murawski
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | | | - Maria Rüther
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | | | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Brice Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Kristín Ólafsdóttir
- Department of Pharmacology and Toxicology, University of Iceland, Reykjavík, Iceland
| | - Thorhallur I Halldorsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Line S Haug
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Ospedale di Cattinara, Strada di Fiume 447, 34149, Trieste, Italy
| | - Marika Mariuz
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Riva Nazario Sauro, 8, 34124, Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Riva Nazario Sauro, 8, 34124, Trieste, Italy
| | - Loïc Rambaud
- Santé Publique France, SpFrance, 12, Rue du Val d'Osne, 94415, Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, SpFrance, 12, Rue du Val d'Osne, 94415, Saint-Maurice, France
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Moritz Schäfer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Karin H A Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | | | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden
| | - Hanns Moshammer
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Agneta Akesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
7
|
Gu W, Zhang J, Ren C, Gao Y, Zhang T, Long Y, Wei W, Hou S, Sun C, Wang C, Jiang W, Zhao J. The association between biomarkers of acrylamide and cancer mortality in U.S. adult population: Evidence from NHANES 2003-2014. Front Oncol 2022; 12:970021. [PMID: 36249016 PMCID: PMC9554530 DOI: 10.3389/fonc.2022.970021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The association between acrylamide (AA) and the development of cancer has been extensively discussed but the results remained controversial, especially in population studies. Large prospective epidemiological studies on the relationship of AA exposure with cancer mortality were still lacking. Therefore, we aimed to assess the association between AA biomarkers and cancer mortality in adult population from National Health and Nutrition Examination Survey (NHANES) 2003-2014. We followed 3717 participants for an average of 10.3 years. Cox regression models with multivariable adjustments were performed to determine the relationship of acrylamide hemoglobin adduct (HbAA) and glycidamide hemoglobin adduct (HbGA) with cancer mortality. Mediation analysis was conducted to demonstrate the mediated role of low-grade inflammation score (INFLA-score) in this correlation. Compared with the lowest quintile, participants with the highest quintile of HbAA, HbGA and HbAA+HbGA had increased cancer mortality risk, and the hazard ratios(HRs) were 2.07 (95%CI:1.04-4.14) for HbAA, 2.39 (95%CI:1.29-4.43) for HbGA and 2.48 (95%CI:1.28-4.80) for HbAA+HbGA, respectively. And there was a considerable non-linearity association between HbAA and cancer mortality (pfor non-linearity = 0.0139). We further found that increased INFLA-score significantly mediated 71.67% in the effect of HbGA exposure on increased cancer mortality risk. This study demonstrates that hemoglobin biomarkers of AA are positively associated with cancer mortality in adult American population and INFLA-score plays a mediated role in this process. Our findings can raise public awareness of environmental and dietary exposure to acrylamide and remind people to refrain from smoking or having acrylamide-rich foods.
Collapse
Affiliation(s)
- Wenbo Gu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Chunling Ren
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yang Gao
- Comprehensive Test Center of Chinese Academy of Inspection and Quarantine, Gao Bei Dian North Rd A3, Chao Yang District, Beijing, China
| | - Tongfang Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yujia Long
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Shaoying Hou
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhong Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Junfei Zhao
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| |
Collapse
|
8
|
Wu H, Sun X, Jiang H, Hu C, Xu J, Sun C, Wei W, Han T, Jiang W. The Association Between Exposure to Acrylamide and Mortalities of Cardiovascular Disease and All-Cause Among People With Hyperglycemia. Front Cardiovasc Med 2022; 9:930135. [PMID: 35924219 PMCID: PMC9339995 DOI: 10.3389/fcvm.2022.930135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 12/08/2022] Open
Abstract
BackgroundAcrylamide is a common environmental volatile organic compound that humans are frequently exposed to in their daily lives. However, whether exposure to acrylamide is associated with long-term survival in patients with hyperglycemia remains largely unknown.Methods and ResultsA total of 3,601 hyperglycemic people were recruited in this study, including 1,247 people with diabetes and 2,354 people with pre-diabetes, who enrolled in the National Health and Nutrition Examination survey (2003–2004, 2005–2006, and 2013–2014). The acrylamide exposure was measured by the serum hemoglobin adduct of acrylamide (HbAA) and glycidamide (HbGA), and the ratio of HbAA and HbGA (HbAA/HbGA) was calculated, which were all categorized into quintiles. The National Death Index was used to identify the participants' death information until 2015. Cox proportional hazards (CPHs) regression models were performed to examine the survival relationship between these biomarkers and mortality. During the 28,652 person-year follow-up, 268 deaths due to the cardiovascular disease (CVD) were documented. After adjustment for multiple confounders, compared with participants in the lowest quintile of HbAA/HbGA, the participants in the highest quintile were more likely to die due to CVD (hazard ratio [HR] = 1.61, 95% CI: 1.09–2.39) and all-cause (HR = 1.59, 95% CI: 1.25–2.01). Moreover, subgroup analysis showed that the highest quintile of HbAA/HbGA in the people with diabetes or pre-diabetes was related to mortalities risk of CVD (HRdiabetes = 1.92, 95% CI: 1.11–3.31; HRpre−diabetes = 1.78, 95% CI: 1.01–3.14) and all-cause mortality (HRdiabetes = 1.81, 95% CI: 1.27–2.58; HRpre−diabetes = 1.59, 95% CI: 1.14–2.20). Additionally, no significant association between the levels of HbAA or HbGA and CVD mortality was observed among people with diabetes or pre-diabetes.ConclusionHigher levels of HbAA/HbGA are associated with greater mortalities of CVD and all-cause among hyperglycemic people.
Collapse
Affiliation(s)
- Huanyu Wu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinyi Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Hongyan Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Cong Hu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiaxu Xu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Wei Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- *Correspondence: Wei Wei
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Tianshu Han
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Wenbo Jiang
| |
Collapse
|
9
|
Hashem MM, Abo-EL-Sooud K, Abd El-Hakim YM, Abdel-hamid Badr Y, El-Metwally AE, Bahy-EL-Dien A. The impact of long-term oral exposure to low doses of acrylamide on the hematological indicators, immune functions, and splenic tissue architecture in rats. Int Immunopharmacol 2022; 105:108568. [DOI: 10.1016/j.intimp.2022.108568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023]
|
10
|
Yin T, Xu F, Shi S, Liao S, Tang X, Zhang H, Zhou Y, Li X. Vitamin D mediates the association between acrylamide hemoglobin biomarkers and obesity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17162-17172. [PMID: 34661844 DOI: 10.1007/s11356-021-16798-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Mediation analysis aims to discover the role of intermediate variables from exposure to disease. The current study was performed to evaluate how vitamin D mediates the association between acrylamide hemoglobin biomarkers and obesity. Data were collected on 10,377 adults participating in the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2013-2014 aged ≥ 18 years. Obesity was assessed through body mass index and abdominal circumference measurements. Generalized linear and restricted cubic spline (RCS) regression were used to estimate the association between vitamin D and acrylamide hemoglobin biomarkers, and the mediation effect of vitamin D was also discussed. After adjusting for potentially confounding factors, vitamin D had strong negative associations with serum concentrations of acrylamide hemoglobin adducts (HbAA, HbGA, and HbAA + HbGA). The RCS plots demonstrated that vitamin D was inversely and nonlinearly associated with HbAA and HbAA + HbGA while inversely and linearly associated with HbGA, and also a striking difference when vitamin D was lower than 60 nmol/L. Mediation analysis suggested that a negative correlation between acrylamide and obesity was mediated by vitamin D. The current study is expected to offer a fresh perspective on reducing the toxicity of acrylamide.
Collapse
Affiliation(s)
- Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Fang Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shi Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xiaosu Tang
- Jiangxi Environmental Engineering Vocational College, Zhangong district, Ganzhou city, Jiangxi, 341000, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Gusu School, Nanjing Medical University, Suzhou, 215002, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
11
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
12
|
Waits A, Chang CH, Yu CJ, Du JC, Chiou HC, Hou JW, Yang W, Chen HC, Chen YS, Hwang B, Chen ML. Exposome of attention deficit hyperactivity disorder in Taiwanese children: exploring risks of endocrine-disrupting chemicals. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:169-176. [PMID: 34267309 DOI: 10.1038/s41370-021-00370-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Attention-deficit hyperactivity disorder (ADHD) is diagnosed in ~7% of school-aged children. The role of endocrine-disrupting chemicals (EDC) and oxidative stress in ADHD etiology are not clear. OBJECTIVE Assessment of the associations between simultaneous exposure to multiple compounds and ADHD in children. METHODS The case-control study included 76 clinically diagnosed ADHD cases and 98 controls, aged 4-15 years old. Concentrations quartiles of urinary metabolites of acrylamide, acrolein, nonylphenol, phthalates, and organophosphate pesticides and biomarkers of oxidative stress were used to fit logistic regressions for each compound and weighted quantiles sum (WQS) regression for the mixture. RESULTS Positive dose-response relationships with ADHD were observed for 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) (odds ratio(OR)Q4 = 3.73, 95%CI [1.32, 11.04], ptrend = 0.003), dimethyl phosphate (DMP) (ORQ4 = 4.04, 95%CI [1.34, 12.94], ptrend = 0.014) and diethyl phosphate (ORQ4 = 2.61, 95%CI = [0.93, 7.66], ptrend = 0.030), and for the mixture of compounds (ORWQS = 3.82, 95%CI = [1.78, 8.19]) with the main contributions from HNE-MA (28.9%) and DMP (18.4%). CONCLUSIONS The dose-response relationship suggests enhanced susceptibility to EDC burden in children even at lower levels, whereas the main risk is likely from organophosphate pesticides. HNE-MA is recommended as a sensitive biomarker of lipid peroxidation in the further elucidation of the oxidative stress role in ADHD etiology.
Collapse
Affiliation(s)
- Alexander Waits
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ching-Jung Yu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Taipei, Taiwan
| | - Hsien-Chih Chiou
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Winnie Yang
- Department of Pediatrics, Taipei City Hospital, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Sheue Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Betau Hwang
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Yin G, Liao S, Gong D, Qiu H. Association of acrylamide and glycidamide haemoglobin adduct levels with diabetes mellitus in the general population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116816. [PMID: 33667748 DOI: 10.1016/j.envpol.2021.116816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
The frequency and duration of exposure to acrylamide (AA) from the environment and diet are associated with a range of adverse health effects. However, whether long-term AA exposure is related to diabetes mellitus (DM) remains unknown. Data from 3577 adults in the National Health and Nutrition Examination Survey (NHANES) 2005-2006 and 2013-2016 aged ≥ 20 years was analysed. The main analyses applied multivariate logistic regression and restricted cubic spline models to investigate the associations between DM and AA haemoglobin biomarkers, including haemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA), the sum of HbAA and HbGA (HbAA + HbGA), and the ratio of HbGA to HbAA (HbGA/HbAA) levels. After multivariable adjustment, the odds ratios (95% confidence intervals) for DM comparing the highest with the lowest AA haemoglobin biomarker quartiles were 0.71 (0.55, 0.93), 0.92 (0.71, 1.18), 0.80 (0.62, 1.03) and 1.95 (1.51, 2.51) for HbAA, HbGA, HbAA + HbGA and HbGA/HbAA, respectively. The restricted cubic spline model demonstrated that HbAA was linearly and inversely associated with risk of DM (P for trend = 0.013), while HbGA/HbAA was nonlinearly and positively associated with the prevalence of DM (P for trend <0.001). These results support for epidemiological evidence that the HbAA and HbGA/HbAA are significantly associated with DM. Further studies are warranted to infer the causal role of AA exposure in the prevalence of DM.
Collapse
Affiliation(s)
- Guangli Yin
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Dexing Gong
- Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, 510000, China
| | - Hongxia Qiu
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
14
|
Zhu F, Wang J, Jiao J, Zhang Y. Exposure to acrylamide induces skeletal developmental toxicity in zebrafish and rat embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116395. [PMID: 33418285 DOI: 10.1016/j.envpol.2020.116395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Acrylamide is a well-known carcinogen and neurotoxic substance that has been discovered in frying or baking carbohydrate-rich foods and is widely found in soils and groundwater. The purpose of this study was to investigate the adverse effects of exposure to acrylamide on skeletal development. After treatment with acrylamide in zebrafish embryos, the survival and hatching rates decreased, and the body length shortened, with cartilage malformation and a decrease in skeletal area. Exposure to acrylamide in maternal rats during the lactation period disturbed bone mineral density, serum levels of parathyroid hormone, and the expression of skeletal development-related genes in neonates. Exposure to acrylamide in pregnant rats during the pregnancy period decreased the trabecular density and inhibited cartilage formation by delaying the differentiation of osteoblasts and promoting the maturation of osteoclasts in rat embryos. Furthermore, acrylamide intervention downregulated the expression of chondrocyte and osteoblast differentiation-related genes (sox9a, bmp2, col2a1, and runx2), and upregulated the expression of osteoclast marker genes (rankl and mcsf) in zebrafish and rat embryos at different gestational stages. Our results indicated that exposure to acrylamide dysregulated signature gene and protein expression profiles of skeletal development by suppressing the differentiation and maturation of osteoblasts and cartilage matrix and promoting the formation of osteoclasts, and ultimately induced skeletal abnormality in morphology, which brings increasing attention to the intergenerational toxicity of acrylamide via mother-to-child transmission.
Collapse
Affiliation(s)
- Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Chung CJ, Hsu HT, Chang CH, Li SW, Liu CS, Chung MC, Wu GW, Jung WT, Kuo YJ, Lee HL. Relationships among cigarette smoking, urinary biomarkers, and urothelial carcinoma risk: a case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43177-43185. [PMID: 32729033 DOI: 10.1007/s11356-020-10196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cigarette smoke is a known risk factor for urothelial carcinoma (UC). However, there is limited information about the distributions and effects of volatile organic compounds (VOCs) on smoking-related UC risk. With this hospital-based case-control study, we explored the associations between urinary levels of cotinine and VOC metabolites (acrylamide, 1,3-butadiene, and benzene) and the risk of UC. Urological examinations and pathological verifications were used to confirm the diagnoses of UC. All study participants provided smoking-related information via questionnaires and face-to-face interviews; they also provided urine samples for the measurement of VOC metabolites, cotinine, and 8-hydroxydeoxyguanosine (8-OHdG), which was used as an indicator of oxidative stress. We applied multiple logistic regression analysis to estimate the risk of UC, and we found that levels of urinary cotinine and 8-OHdG were higher in the UC group than in the control group. Furthermore, urinary levels of VOC metabolites, including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine, N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine-3, trans,trans-muconic acid (t,t-MA), and S-phenylmercapturic acid (SPMA), increased with increasing levels of urinary cotinine. After adjusting for potential risk factors, dose-response relationships were observed between UC risk and urinary levels of AAMA, t,t-MA, SPMA, and 8-OHdG. Participants with high urinary levels of cotinine, AAMA, t,t-MA, SPMA, and 8-OHdG had risks of UC that were 3.5- to 6-fold higher than those of participants with lower levels. Future, large-scale investigations of the risks of UC should be explored, and repeated measurement of VOC metabolites should be assessed.
Collapse
Affiliation(s)
- Chi-Jung Chung
- Department of Public Health, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Hui-Tsung Hsu
- Department of Public Health, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Sheng-Wei Li
- Department of Urology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guo-Wei Wu
- Department of Public Health, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Yen-Jung Kuo
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan.
| |
Collapse
|
16
|
Wu CF, Hsiung CA, Tsai HJ, Cheng CM, Chen BH, Hu CW, Huang YL, Wu MT. Decreased levels of urinary di-2-ethylhexyl phthalate (DEHP) metabolites and biomarkers of oxidative stress in children exposed to DEHP-tainted foods in Taiwan in 2011: A 44-month follow-up. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115204. [PMID: 32745991 DOI: 10.1016/j.envpol.2020.115204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 05/20/2023]
Abstract
A major health scandal involving DEHP-tainted (di-2-ethylhexyl phthalate) foodstuffs occurred in Taiwan in 2011. We investigated temporal relationships between urinary DEHP metabolites and biomarkers of oxidative stress in two cohorts of potentially affected children during that food scandal. One cohort was collected from Kaohsiung Medical University Hospital in southern Taiwan between May and June of 2011 (the KMUH cohort). This cohort was followed up at 2, 6, and 44 months. The other cohort was collected from a nationwide health survey conducted by Taiwan's National Health Research Institutes (the NHRI cohort) for potentially affected people between August 2012 and January 2013. Both cohorts only included children 10 years old and younger who had provided enough urine for analysis of urinary DEHP oxidative metabolites and two markers of oxidative stress: 8-oxo-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). The KMUH cohort had a simultaneous and significant decrease in urinary DEHP metabolites, 8-OHdG, and MDA, with the lowest concentrations found at the 6-month follow up and maintained until the 44-month follow up, consistent with those from NHRI cohort at ∼15-18 months post-scandal (p > 0.05). There were decreases in both DEHP metabolites and oxidative stress markers across the populations, but no association was observed between DEHP metabolites and oxidative stress markers in individuals in the two cohorts. Continued follow-up is needed to determine long-term health consequences in these children.
Collapse
Affiliation(s)
- Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao A Hsiung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, Miaoli, Taiwan.
| | - Hui-Ju Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Mei Cheng
- Department of Laboratory Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan.
| | - Bai-Hsiun Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shun Medical University, Taichung, Taiwan.
| | - Yeou-Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Wang B, Qiu W, Yang S, Cao L, Zhu C, Ma J, Li W, Zhang Z, Xu T, Wang X, Cheng M, Mu G, Wang D, Zhou Y, Yuan J, Chen W. Acrylamide Exposure and Oxidative DNA Damage, Lipid Peroxidation, and Fasting Plasma Glucose Alteration: Association and Mediation Analyses in Chinese Urban Adults. Diabetes Care 2020; 43:1479-1486. [PMID: 32345652 DOI: 10.2337/dc19-2603] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/31/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Acrylamide exposure from daily-consumed food has raised global concern. We aimed to assess the exposure-response relationships of internal acrylamide exposure with oxidative DNA damage, lipid peroxidation, and fasting plasma glucose (FPG) alteration and investigate the mediating role of oxidative DNA damage and lipid peroxidation in the association of internal acrylamide exposure with FPG. RESEARCH DESIGN AND METHODS FPG and urinary biomarkers of oxidative DNA damage (8-hydroxy-deoxyguanosine [8-OHdG]), lipid peroxidation (8-iso-prostaglandin-F2α [8-iso-PGF2α]), and acrylamide exposure (N-acetyl-S-[2-carbamoylethyl]-l-cysteine [AAMA], N-acetyl-S-[2-carbamoyl-2-hydroxyethyl]-l-cysteine [GAMA]) were measured for 3,270 general adults from the Wuhan-Zhuhai cohort. The associations of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α, and FPG were assessed by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. RESULTS We found significant linear positive dose-response relationships of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α, and FPG (except GAMA with FPG) and 8-iso-PGF2α with FPG. Each 1-unit increase in log-transformed level of AAMA, AAMA + GAMA (ΣUAAM), or 8-iso-PGF2α was associated with a 0.17, 0.15, or 0.23 mmol/L increase in FPG, respectively (P and/or P trend < 0.05). Each 1% increase in AAMA, GAMA, or ΣUAAM was associated with a 0.19%, 0.27%, or 0.22% increase in 8-OHdG, respectively, and a 0.40%, 0.48%, or 0.44% increase in 8-iso-PGF2α, respectively (P and P trend < 0.05). Increased 8-iso-PGF2α rather than 8-OHdG significantly mediated 64.29% and 76.92% of the AAMA- and ΣUAAM-associated FPG increases, respectively. CONCLUSIONS Exposure of the general adult population to acrylamide was associated with FPG elevation, oxidative DNA damage, and lipid peroxidation, which in turn partly mediated acrylamide-associated FPG elevation.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunmei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Choi SY, Ko A, Kang HS, Hwang MS, Lee HS. Association of urinary acrylamide concentration with lifestyle and demographic factors in a population of South Korean children and adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18247-18255. [PMID: 31041702 DOI: 10.1007/s11356-019-05037-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Acrylamide (AA) has been identified as probably carcinogenic to humans and thus represents a potential public health threat. This study aimed to determine the urinary concentrations of AA and N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) in a nationally representative sample (n = 1025) of children and adolescents (age range 3-18 years) in South Korea. The AA and AAMA detection rates and geometric mean concentrations were 97%, 19.1 ng/mL, and 98.7%, 26.4 ng/mL, respectively. Although urinary AA levels did not vary widely by age (17.2 ng/mL at 3-6 years, 19.9 ng/mL at 7-18 years), the urinary concentration of AAMA increased with age (18.3 ng/mL at 3-6 years, 30.4 ng/mL at 7-18 years). A multiple linear regression analysis revealed that the urinary levels of AA and AAMA varied significantly by sex, with the adjusted proportional changes indicating rates of 1.47- to 1.48-fold higher at 3-6 years and 1.36- to 1.68-fold higher at 7-18 years among males relative to females. Furthermore, the urinary levels of AA and AAMA correlated with the consumption of certain foods (doughnuts, hotdogs, popcorn, and nachos) among male subjects aged 7-18 years. The urinary concentrations of AA and AAMA increased significantly with the smoking status and passive smoking exposure, with adjusted proportional changes of 1.51 to 1.71-fold higher among smokers relative to non-smokers in the age range of 7-18 years. Exposure to smoking for > 30 min led to adjusted proportional increases in AA and AAMA of 1.51 and 1.77 times in the non-smoking group aged 3-6 years and a 1.52-fold increase in AAMA in the non-smoking group aged 7-18 years. In conclusion, the urinary levels of AA and AAMA were found to associate with age, sex, smoking, and food consumption in a population of Korean children and adolescents.
Collapse
Affiliation(s)
- Soo Yeon Choi
- Pesticide and Veterinary Drugs Residue Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea
| | - Ahra Ko
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea
| | - Hui-Seung Kang
- Pesticide and Veterinary Drugs Residue Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea.
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea.
| | - Myung-Sil Hwang
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea
| | - Hee-Seok Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea.
| |
Collapse
|
19
|
Yu D, Xie X, Qiao B, Ge W, Gong L, Luo D, Zhang D, Li Y, Yang B, Kuang H. Gestational exposure to acrylamide inhibits mouse placental development in vivo. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:160-170. [PMID: 30594716 DOI: 10.1016/j.jhazmat.2018.12.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Acrylamide, a carcinogen and neurotoxic substance, recently has been discovered in various heat-treated carbohydrate-rich foods. The aim of this study was to investigate the effects of acrylamide exposure on placental development. Pregnant mice received acrylamide by gavage at dosages of 0, 10, and 50 mg/kg/day from gestational days (GD) 3 until GD 8 or GD 13. The results showed that acrylamide feeding significantly decreased the numbers of viable embryos and increased the numbers of resorbed embryos on GD 13. Acrylamide exposure reduced the absolute and relative weight of placentas and embryos, and inhibited the development of ectoplacental cone (EPC) and placenta, as shown by the atrophy of EPC and reduced placental area. Acrylamide markedly reduced the numbers of labyrinth vessels. Expression levels of most placental key genes such as Esx1, Hand1, and Hand2 mRNA dramatically decreased in acrylamide-treated placentas. Furthermore, acrylamide treatment inhibited proliferation and induced apoptosis of placentas, as shown by decreased Ki67-positive cells and Bcl-2 protein, and increased the expression of Bax, cleaved-caspase-3, and cleaved-caspase-8 proteins. In conclusion, our results indicated that gestational exposure to acrylamide inhibits placental development through dysregulation of placental key gene expression and labyrinth vessels, suppression of proliferation, and apoptosis induction in mice.
Collapse
Affiliation(s)
- Dainan Yu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xingxing Xie
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Bo Qiao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Wenjing Ge
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lixin Gong
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Dan Luo
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yuezhen Li
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
20
|
Huang M, Zhuang P, Jiao J, Wang J, Zhang Y. Association of acrylamide hemoglobin biomarkers with obesity, abdominal obesity and overweight in general US population: NHANES 2003-2006. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:589-596. [PMID: 29533795 DOI: 10.1016/j.scitotenv.2018.02.338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 05/26/2023]
Abstract
Exposure to chemical contaminants is considered as one of risk factors to the current epidemic of obesity. Acrylamide (AA) is a ubiquitous chemical contaminant in environmental waste, mainstream cigarette smoke and carbohydrate-rich foods, and widely used in industrial manufacturers and cosmetics. Few studies have highlighted the association of daily exposure to AA with obesity-related outcomes. We analyzed data from 8364 participants who aged 20-85years and were recruited in National Health and Nutrition Examination Surveys (NHANES) 2003-2006. We established the model of PROC Survey Logistic regressions via using AA biomarkers in blood, hemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA), as the measure of internal exposure to AA, and assessing obesity, abdominal obesity and overweight with body mass index (BMI) or waist circumference (WC). After the adjustment of sociodemographic variables, lifestyle behaviors, and health-related factors, the ratio of HbGA to HbAA (HbGA/HbAA) was significantly associated with obesity (p for trend<0.0001). The odd ratios (ORs) with 95% confidence intervals (CIs) of HbGA/HbAA across increasing quartiles were 1.740 (1.413-2.144), 2.604 (2.157-3.144), and 2.863 (2.425-3.380) compared with the lowest quartile. HbGA was positively associated with obesity [OR (95% CI): 1.226 (1.041-1.443), 1.283 (1.121-1.468), and 1.398 (1.165-1.679); p for trend=0.0004], while HbAA was inversely associated with obesity [OR (95% CI): 0.839 (0.718-0.980), 0.713 (0.600-0.848), and 0.671 (0.554-0.811); p for trend<0.0001]. Negative associations were found between the sum of HbAA and HbGA (HbAA+HbGA) and the body weight outcomes. Similar associations were also observed between the hemoglobin biomarkers of AA and abdominal obesity as well as overweight. Thus, the hemoglobin adducts of AA as long-term internal exposure biomarkers are strongly associated with obesity-related outcomes in a population of US adults.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
El Safty AMK, Samir AM, Mekkawy MK, Fouad MM. Genotoxic Effects Due to Exposure to Chromium and Nickel Among Electroplating Workers. Int J Toxicol 2018; 37:234-240. [DOI: 10.1177/1091581818764084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using chromium and nickel for electroplating is important in many industries. This process induces variable adverse health effects among exposed workers. The aim of this study is to detect the genotoxic effects of combined exposure to chromium and nickel among electroplating workers. This study was conducted on 41 male workers occupationally exposed to chromium and nickel in the electroplating section of a factory compared to 41 male nonexposed individuals, where full history and clinical examination were performed. Laboratory investigations included measurement of serum chromium, nickel, 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei were measured in buccal cells. In exposed workers, serum chromium ranged from 0.09 to 7.20 µg/L, serum nickel ranged from 1.20 to 28.00 µg/L, serum 8-OHdG ranged from 1.09 to12.60 ng/mL, and these results were statistically significantly increased compared to nonexposed group ( P < 0.001). Electroplaters showed higher frequencies of micronuclei in buccal cells when compared to nonexposed (ranged from 20.00 to 130.00 N/1,000 versus 2.00 to 28.00 N/1,000; P < 0.001). Linear regression models were done to detect independent predictors of 8-OHdG and micronucleus test by comparing exposed and nonexposed groups. The model found that exposure to chromium and nickel increases serum 8-OHdG by 4.754 (95% confidence interval [CI]: 3.54-5.96). The model found that exposure to chromium and nickel increases micronucleus by 35.927 (95% CI: 28.517-43.337). Serum 8-OHdG and micronucleus test in buccal cells were increased with combined exposure to chromium and nickel. The current research concluded that workers exposed to nickel and chromium in electroplating industry are at risk of significant cytogenetic damage.
Collapse
Affiliation(s)
| | - Aisha Mohamed Samir
- Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Kamal Mekkawy
- Division of Human Genetics and Genome Research, Human Cytogenetics Department, National Research Centre, Cairo, Egypt
| | - Marwa Mohamed Fouad
- Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Şekeroğlu ZA, Aydın B, Şekeroğlu V. Argan oil reduces oxidative stress, genetic damage and emperipolesis in rats treated with acrylamide. Biomed Pharmacother 2017; 94:873-879. [DOI: 10.1016/j.biopha.2017.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
|
23
|
Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults. Sci Rep 2017; 7:44318. [PMID: 28290483 PMCID: PMC5349565 DOI: 10.1038/srep44318] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12–30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g; creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress.
Collapse
|
24
|
Chu PL, Lin LY, Chen PC, Su TC, Lin CY. Negative association between acrylamide exposure and body composition in adults: NHANES, 2003-2004. Nutr Diabetes 2017; 7:e246. [PMID: 28287631 PMCID: PMC5380889 DOI: 10.1038/nutd.2016.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES Acrylamide is present in mainstream cigarette smoke and in some food prepared at high temperature. Animal studies have shown that acrylamide exposure reduces body weight. Prenatal exposure to acrylamide also has been linked to reduced birth weight in human. Whether acrylamide exposure is associated with altered body compositions in adults is not clear. SUBJECTS/METHODS We selected 3623 subjects (aged ⩾20 years) from a National Health and Nutrition Examination Survey (NHANES) in 2003-2004 to determine the relationship among hemoglobin adducts of acrylamide (HbAA), hemoglobin adducts of glycidamide (HbGA) and body composition (body measures, bioelectrical impedance analysis (BIA), dual energy x-ray absorptiometry (DXA)). Data were adjusted for potential confounding variables. RESULTS The geometric means and 95% CI concentrations of HbAA and HbGA were 60.48 (59.32-61.65) pmol/g Hb and 55.64 (54.40-56.92) pmol/g Hb, respectively. After weighting for sampling strategy, we identified that one-unit increase in natural log-HbAA, but not HbGA, was associated with reduction in body measures (body weight, body mass index (BMI), subscapular/triceps skinfold), parameters of BIA (fat-free mass, fat mass, percent body fat, total body water) and parameters of DXA (android fat mass, android percent fat, gynoid fat/lean mass, gynoid percent mass, android to gynoid ratio). Subgroup analysis showed that these associations were more evident in subjects at younger age, male gender, whites, lower education level, active smokers and those with lower BMI. CONCLUSIONS Higher concentrations of HbAA are associated with a decrease in body composition in the US general population. Further studies are warranted to clarify this association.
Collapse
Affiliation(s)
- P-L Chu
- Department of Internal Medicine, Hsinchu Cathay General Hospital, Hsinchu, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - L-Y Lin
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - P-C Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - T-C Su
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - C-Y Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
25
|
Lin CY, Chen PC, Lo SC, Torng PL, Sung FC, Su TC. The association of carotid intima-media thickness with serum Level of perfluorinated chemicals and endothelium-platelet microparticles in adolescents and young adults. ENVIRONMENT INTERNATIONAL 2016; 94:292-299. [PMID: 27288966 DOI: 10.1016/j.envint.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 05/28/2023]
Abstract
Perfluorinated chemicals (PFCs) have been widely used in a variety of products worldwide. Our previous study has documented a close association of higher serum level of perfluorooctane sulfonate (PFOS) with an increased carotid intima-media thickness (CIMT) in a cohort of adolescents and young adults. Herein, we further investigated the association of oxidative stress, circulating endothelial microparticles (EMPs) and platelet microparticles (PMPs) with PFCs and CIMT in humans. We recruited 848 subjects (12-30years old) from a population-based sample to determine the relationship between serum levels of PFCs, EMPs (CD62E and CD31+/CD42a-), PMPs (CD62P and CD31+/CD42a+), and the urine levels of 8-hydroxydeoxyguanosine (8-OHdG) and CIMT. The results showed that CD31+/CD42a- (endothelial apoptosis marker) and CD31+/CD42a+ (platelet apoptosis marker) increased significantly across quartiles of PFOS in multiple linear regression analysis. Furthermore, the elevation of CD31+/CD42a- and CD31+/CD42a+ corresponded to the increase of the odds ratios of thicker CIMT (greater than 50th percentile) with higher serum PFOS concentration (greater than 50%) (OR=2.86, 95% C.I.=1.69-4.84, P<0.001) in logistic regression models. There was no association between PFC concentration and 8-OHdG. In conclusion, we found the positive association between PFOS and CIMT that was more evident when serum levels of EMPs (CD31+/CD42a-) and PMPs (CD31+/CD42a+) were elevated. Further studies are warranted to investigate the causal inference of PFOS exposure on endothelial cell damage and atherosclerosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei 10020, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei 10020, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shyh-Chyi Lo
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Pao-Ling Torng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung 404, Taiwan
| | - Ta-Chen Su
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei 10020, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
26
|
Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct 2016; 6:1752-72. [PMID: 25989363 DOI: 10.1039/c5fo00320b] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
27
|
|
28
|
Li P, Gu Y, Yu S, Li Y, Yang J, Jia G. Assessing the suitability of 8-OHdG and micronuclei as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study. BMJ Open 2014; 4:e005979. [PMID: 25300459 PMCID: PMC4194798 DOI: 10.1136/bmjopen-2014-005979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES We aimed to investigate suitable conditions of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and micronucleus (MN) as genotoxic biomarkers at different levels of occupational chromate exposure. DESIGN A cross-sectional study was used. PARTICIPANTS 84 workers who were exposed to chromate for at least 1 year were chosen as the chromate exposed group, while 30 non-exposed individuals were used as controls. MAIN OUTCOME MEASURES Environmental and biological exposure to chromate was respectively assessed by measuring the concentration of chromate in the air (CrA) and blood (CrB) by inductively coupled plasma mass spectrometer (ICP-MS) in all participants. MN indicators, including micronucleus cell count (MNCC), micro-nucleus count (MNC), nuclear bridge (NPB) and nuclear bud (NBUD) were calculated by the cytokinesis-block micronucleus test (CBMN), while the urinary 8-OHdG was measured by the ELISA method and normalised by the concentration of Cre. RESULTS Compared with the control group, the levels of CrA, CrB, MNCC, MNC and 8-OHdG in the chromate-exposed group were all significantly higher (p<0.05). There were positive correlations between log(8-OHdG) and LnMNCC or LnMNC (r=0.377 and 0.362). The levels of LnMNCC, LnMNC and log (8-OHdG) all have parabola correlations with the concentration of CrB. However, there was a significantly positive correlation between log (8-OHdG) and CrB when the CrB level was below 10.50 µg/L (r=0.355), while a positive correlation was also found between LnMNCC or LnMNC and CrB when the CrB level was lower than 9.10 µg/L (r=0.365 and 0.269, respectively). CONCLUSIONS MN and 8-OHdG can be used as genotoxic biomarkers in the chromate-exposed group, but it is only when CrB levels are lower than 9.10 and 10.50 µg/L, respectively, that they can accurately reflect the degree of genetic damage.
Collapse
Affiliation(s)
- Ping Li
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Yongen Gu
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Shanfa Yu
- Department of Occupational Health Science, Institute of Occupational Medicine, Zhengzhou, Henan, People's Republic of China
| | - Yang Li
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Jinglin Yang
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Guang Jia
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
29
|
Su TC, Liao CC, Chien KL, Hsu SHJ, Sung FC. An Overweight or Obese Status in Childhood Predicts Subclinical Atherosclerosis and Prehypertension/Hypertension in Young Adults. J Atheroscler Thromb 2014; 21:1170-82. [DOI: 10.5551/jat.25536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|