1
|
Zhou S, Li Y, Yang S, Lin L, Deng T, Gan C, An W, Xu M. The role of electroactive biofilms in enhanced para-chlorophenol transformation collaborated with biosynthetic palladium nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126312. [PMID: 40288628 DOI: 10.1016/j.envpol.2025.126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Bioremediation is a cost-effective strategy for decomposition of chlorinated organic contaminants, but its application is often hindered by the generation of toxic chlorinated byproducts. Though the design of functional biofilms, incorporating microbially-inspired catalytic materials, has emerged as a promising solution for tackling the byproducts issues, the microbial mechanisms driving these processes remain inadequately understood. This study demonstrates a hybrid electroactive biofilm (EAB)-palladium nanoparticles (Pd NPs) system that effectively separates the dechlorination and mineralization of para-chlorophenol (4-CP), and most importantly, it provides new insights into the microbial and genetic roles of EABs in this process. Under an applied potential of -0.6 V, Pd NPs via palladate reduction were biogenically synthesized and deposited on the cytomembranes within the biofilm, achieving an 82 % decrease in 4-CP concentration within 48 h. The ultra-performance liquid chromatogram and mass spectrum confirmed that 4-CP was initially dechlorinated to phenol by the biogenic Pd NPs before undergoing further degradation by the biofilm, effectively preventing toxic chlorinated byproducts. The Dechloromonas, Pseudomonas, and Geobacter were identified as predominant genera in the system and the metagenomics analysis noted increased relative abundance of ring-cleavage genes like pcaG, dmpB/xylE, and catA. Importantly, the abundance of dmpB/xylE was primarily associated with Dechloromonas and Pseudomonas, further highlighted that the dmpB/xylE-pathway was important for rapid 4-CP decomposition in the system. This study advances the understanding of EAB-Pd NPs synergy, showcasing an innovative and sustainable approach for the efficient removal of halogenated pollutants.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yanjing Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tongchu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Cuifen Gan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wenwen An
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
2
|
Zhang X, Liu Y, Liu R, Qiu Y, Zhang B, Zhao N, He R. Effects of bicarbonate on electro-bioremediation of phenanthrene-contaminated groundwater. ENVIRONMENTAL RESEARCH 2025; 279:121859. [PMID: 40379006 DOI: 10.1016/j.envres.2025.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Electro-bioremediation under anaerobic conditions is an effective approach for refractory organic matter removal in groundwater. Bicarbonate (HCO3-) is an inorganic carbon source and electron acceptor in groundwater, however, the influencing mechanism of HCO3- on pollutant removal of electro-bioremediation remains unclear. Herein, the effects of HCO3- concentration on electro-bioremediation of phenanthrene (PHE)-contaminated groundwater were investigated. HCO3- could facilitate the PHE degradation while an HCO3- concentration of higher than 1000 mg L-1 had a significant inhibition effect. Among the HCO3- concentration of 100-5000 mg L-1, the highest PHE degradation efficiency of 75.04-80.18 % was achieved in the electro-biochemical reactor with 500 mg L-1 HCO3-. The PHE removal efficiency was negatively correlated with the current density during the electro-bioremediation process, due to the effect of HCO3- concentrations on the electrolyte conductivity in the reactors. The electro-bioremediation process could increase the richness of diversity of microbes. Methanomethylovorans and the PHE-degrading bacteria including Pelolinea, Clostridium sensu stricto 5, Diaphorobacter, Methyloversatilis and Flavobacterium were the main microbes involved in PHE degradation. Of them, Methanomethylovorans was significantly positively correlated with the PHE removal efficiency. The potential metabolic function analysis revealed that the bacterial chemotaxis, flagellar assembly, carbohydrate metabolism and ABC transporters were prompted with the addition of HCO3-, while they were inhibited with the increasing HCO3- concentration. These findings suggested that electro-bioremediation technology was suitable for the remediation of polycyclic aromatic hydrocarbons such as PHE-contaminated groundwater in low bicarbonate areas.
Collapse
Affiliation(s)
- Xin Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yue Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Rongrong Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yiting Qiu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Bohan Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
3
|
Yang Z, Tan W, Xiao Y, Feng Q, Xu L, Liu C, Jiang Z. Unlocking the applicability of Ni-based self-supported anodes in microbial fuel cells for the shale gas flowback wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125491. [PMID: 40288124 DOI: 10.1016/j.jenvman.2025.125491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/26/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
The NiCo2O4 (NCOC) and Ni-P (NPC) self-supported anodes were successfully fabricated and utilized in microbial fuel cells (MFCs) for the treatment of actual shale gas flowback wastewater in this study. As a result, the NCOC and NPC displayed outstanding output voltages at 579.1 mV and 537.1 mV, as well as significantly decreased apparent internal resistances to 228.3 Ω and 396.7 Ω compared to the blank carbon cloth (CC, 206.7 mV and 1850.0 Ω). The electrochemical properties, rough surfaces and biocompatibility of NCOC (649.8 mW/m2) and NPC (436.1 mW/m2) endowed MFCs with superior power generation that was 11.7 and 7.8 times that of CC (55.7 mW/m2). Additionally, the removal ratios of the chemical oxygen demand based on NCOC and NPC achieved 61.5 % (1040.4 ± 34.1 mg/L) and 67.2 % (1136.7 ± 34.1 mg/L) with the increased energy conversion ratios from 8.4 % to 11.2 % and 9.7 %. Ultimately, the successful formation of the biofilms and the enrichment of the functional microorganisms such as Marinobacterium, Halomonas and Desulfuromonas on the prepared anodes further verified that NCOC and NPC could be potential research candidates in MFCs for decontaminating high-salty industrial wastewater.
Collapse
Affiliation(s)
- Zhengxin Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Wenwen Tan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Yi Xiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Qi Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Longjun Xu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Chenglun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Zao Jiang
- School of Emergency Management, Xihua University, Chengdu, 610039, China
| |
Collapse
|
4
|
Xu H, Yang XL, Zhang ZH, Xia YG, Song HL. External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. BIORESOURCE TECHNOLOGY 2024; 410:131300. [PMID: 39153696 DOI: 10.1016/j.biortech.2024.131300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (Pmax) (named MFC-HP) and lower Pmax (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased Pmax of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH4+-N removal and maintained high Pmax (424.33 mW/m2) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC.
Collapse
Affiliation(s)
- Han Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Zhi-Hao Zhang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yang-Guang Xia
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| |
Collapse
|
5
|
Li R, Gao SC, Fan X, Ma YM, Ren XP, Gao TP, Liu Y. Enhanced nitrate removal through autotrophic denitrification using microbial fuel cells via bidirectional extracellular electron transfer. Microchem J 2024; 204:111026. [DOI: 10.1016/j.microc.2024.111026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
6
|
Jadhav GS, Mehta AK, Tripathi A, Ghangrekar MM. Multi-metal ferrite as a promising catalyst for oxygen reduction reaction in microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54402-54416. [PMID: 38977554 DOI: 10.1007/s11356-024-34220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Improving catalytic activity of cathode with noble metal-free catalysts can significantly establish microbial fuel cells (MFCs) as a sustainable and economically affordable technology. This investigation aimed to assess the viability of utilizing tri-metal ferrite (Co0.5Cu0.5 Bi0.1Fe1.9O4) as an oxygen reduction reaction (ORR) catalyst to enhance the performance of cathode in MFCs. Trimetallic ferrite was synthesized using a sol-gel auto-combustion process. Electrochemical evaluations were conducted to assess the efficacy of as-synthesized composite as an ORR catalyst, employing electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This evaluation revealed that the impregnation of bismuth in the Co-Cu-ferrite structure improves the reduction current response and reduces the charge transfer resistance. Further experiments were conducted to test the performance of this catalyst in an MFC. The MFC with tri-metal ferrite catalyst generated a power density of 11.44 W/m3 with 21.4% coulombic efficiency (CE), which was found to be comparable with commercially available 10% Pt/C used as cathode catalyst in MFC (power density of 12.14 W/m3 and CE of 23.1%) and substantially greater than MFC having bare carbon felt cathode without any catalyst (power density of 2.49 W/m3 and CE of 7.39%). This exceptionally inexpensive ORR catalyst has adequate merit to replace commercial costlier platinum-based cathode catalysts for upscaling MFCs.
Collapse
Affiliation(s)
- Gorakhanath S Jadhav
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Arun Kumar Mehta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Akash Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand Madhao Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
7
|
Bi X, Wang Y, Qiu A, Wu S, Zhan W, Liu H, Li H, Qiu R, Chen G. Effects of arsenic on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134623. [PMID: 38754231 DOI: 10.1016/j.jhazmat.2024.134623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.
Collapse
Affiliation(s)
- Xiaoyang Bi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Aiting Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shengze Wu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Wenhui Zhan
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Hui Liu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Segundo RF, De La Cruz-Noriega M, Luis CC, Otiniano NM, Soto-Deza N, Rojas-Villacorta W, De La Cruz-Cerquin M. Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst. Molecules 2024; 29:2725. [PMID: 38930791 PMCID: PMC11205780 DOI: 10.3390/molecules29122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and Bacillus marisflavi as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PDMAX shown was 376.20 ± 15.478 mW/cm2, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.
Collapse
Affiliation(s)
- Rojas-Flores Segundo
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Magaly De La Cruz-Noriega
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Cabanillas-Chirinos Luis
- Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru; (C.-C.L.); (W.R.-V.)
| | - Nélida Milly Otiniano
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Nancy Soto-Deza
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Walter Rojas-Villacorta
- Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru; (C.-C.L.); (W.R.-V.)
| | - Mayra De La Cruz-Cerquin
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| |
Collapse
|
9
|
Yemele OM, Zhao Z, Nkoh JN, Ymele E, Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171577. [PMID: 38521268 DOI: 10.1016/j.scitotenv.2024.171577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.
Collapse
Affiliation(s)
- Olive Mekontchou Yemele
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, PO Box 63, Buea, Cameroon
| | - Ervice Ymele
- Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Muhammad Usman
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
You T, Wang S, Xi Y, Yao S, Yan Z, Ding Y, Li Y, Zeng X, Jia Y. Photo-enhanced oxidation of arsenite by biochar: The effect of pH, kinetics and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132652. [PMID: 37793254 DOI: 10.1016/j.jhazmat.2023.132652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
The persistent and photo-induced free radicals of biochar play significant roles in the transformation or degradation of inorganic and organic pollutants. However, the redox capacity of biochar for arsenite (As(III)) photochemistry under different pH conditions remains unclear. In this study, we discovered that solar radiation primarily expedited the oxidation of As(III) by biochar by augmenting the production of reactive oxygen species (ROS). Biochar demonstrated a strong pH reliance on the photooxidation of As(III). Under acidic and neutral conditions, solar radiation amplified the generation of •OH (hydroxyl radicals) by BC-P (phenolic -OH of biochar) and semiquinone-type BC-PFRs (persistent free radicals of biochar) by 4.9 and 2.0 times, respectively, resulting in enhanced As(III) oxidation. Under alkaline conditions, BC-P and BC-Q (quinoid CO of biochar) facilitated the production of H2O2 (hydrogen peroxide) by 2.1 times through the spontaneous formation of semiquinone-type BC-PFRs via an anti-disproportionation reaction, promoting approximately 88.2% of As(III) photooxidation. Furthermore, solar radiation elevated around 11.8% As(III) oxidation driven by BC-Q and semiquinone-type BC-PFRs. This study provides a crucial theoretical foundation for using biochar to treat arsenic pollution in aquatic systems and understanding the migration and transformation of arsenic in different environments.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yimei Xi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zelong Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
11
|
Kunwar S, Pandey N, Bhatnagar P, Chadha G, Rawat N, Joshi NC, Tomar MS, Eyvaz M, Gururani P. A concise review on wastewater treatment through microbial fuel cell: sustainable and holistic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6723-6737. [PMID: 38158529 DOI: 10.1007/s11356-023-31696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Research for alternative sources for producing renewable energy is rising exponentially, and consequently, microbial fuel cells (MFCs) can be seen as a promising approach for sustainable energy production and wastewater purification. In recent years, MFC is widely utilized for wastewater treatment in which the removal efficiency of heavy metal ranges from 75-95%. They are considered as green and sustainable technology that contributes to environmental safety by reducing the demand for fossil fuels, diminishes carbon emissions, and reverses the trend of global warming. Moreover, significant reduction potential can be seen for other parameters such as total carbon oxygen demand (TCOD), soluble carbon oxygen demand (SCOD), total suspended solids (TSS), and total nitrogen (TN). Furthermore, certain problems like economic aspects, model and design of MFCs, type of electrode material, electrode cost, and concept of electro-microbiology limit the commercialization of MFC technology. As a result, MFC has never been accepted as an appreciable competitor in the area of treating wastewater or renewable energy. Therefore, more efforts are still required to develop a useful model for generating safe, clean, and CO2 emission-free renewable energy along with wastewater treatment. The purpose of this review is to provide a deep understanding of the working mechanism and design of MFC technology responsible for the removal of different pollutants from wastewater and generate power density. Existing studies related to the implementation of MFC technology in the wastewater treatment process along with the factors affecting its functioning and power outcomes have also been highlighted.
Collapse
Affiliation(s)
- Saloni Kunwar
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science & Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Gurasees Chadha
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Rawat
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Murat Eyvaz
- Department of Environmental Engineering, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
12
|
Kumari S, Rajput VD, Sushkova S, Minkina T. Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9451-9467. [PMID: 35962926 DOI: 10.1007/s10653-022-01356-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Worldwide industrialization and other human activities have led to a frightening stage of release of hazardous, highly persistent, toxic, insoluble, strongly adsorbed to the soil and high molecular weight ubiquitous polycyclic aromatic hydrocarbons (PAHs) in soils and sediments. The various conventional remediation methods are being used to remediate PAHs with certain drawbacks. Time taking process, high expenditure, excessive quantities of sludge generation, and various chemical requirements do not only make these methods outdated but produce yet much resistant and toxic intermediate metabolites. These disadvantages may be overcome by using a microbial electrochemical system (MES), a booming technology in the field of bioremediation. MES is a green remediation approach that is regulated by electrochemically active microorganisms at the electrode in the system. The key advantage of the system over the conventional methods is it does not involve any additional chemicals, takes less time, and generates minimal sludge or waste during the remediation of PAHs in soils. However, a comprehensive review of the MES towards bioremediation of PAHs adsorbed in soil and sediment is still lacking. Therefore, the present review intended to summarize the recent information on PAHs bioremediation, application, risks, benefits, and challenges based on sediment microbial fuel cell and microbial fuel cell to remediate mount-up industrial sludge, soil, and sediment rich in PAHs. Additionally, bio-electrochemically active microbes, mechanisms, and future perspectives of MES have been discussed.
Collapse
Affiliation(s)
- Smita Kumari
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
| | | | | | | |
Collapse
|
13
|
He Y, Luo Y, Wei C, Long L, Wang C, Wu Y. Effects of dissolved organic matter derived from cow manure on heavy metal(loid)s and bacterial community dynamics in mercury-thallium mining waste slag. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5857-5877. [PMID: 37178440 DOI: 10.1007/s10653-023-01607-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Organic amendments in aided phytostabilization of waste slag containing high levels of heavy metal (loid)s (HMs) are an important way to control the release of HMs in situ. However, the effects of dissolved organic matter (DOM) derived from organic amendments on HMs and microbial community dynamics in waste slag are still unclear. Here, the effect of DOM derived from organic amendments (cow manure) on the geochemical behaviour of HMs and the bacterial community dynamics in mercury (Hg)-thallium (Tl) mining waste slag were investigated. The results showed that the Hg-Tl mining waste slag without the addition of DOM continuously decreased the pH and increased the EC, Eh, SO42-, Hg, and Tl levels in the leachate with increasing incubation time. The addition of DOM significantly increased the pH, EC, SO42-, and arsenic (As) levels but decreased the Eh, Hg, and Tl levels. The addition of DOM significantly increased the diversity and richness of the bacterial community. The dominant bacterial phyla (Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, and Bacteroidota) and genera (Bacillus, Acinetobacter, Delftia, Sphingomonas, and Enterobacter) were changed in association with increases in DOM content and incubation time. The DOM components in the leachate were humic-like substances (C1 and C2), and the DOC content and maximum fluorescence intensity (FMax) values of C1 and C2 in the leachate decreased and first increased and then decreased with increasing incubation time. The correlations between HMs and DOM and the bacterial community showed that the geochemical behaviours of HMs in Hg-Tl mining waste slag were directly influenced by DOM-mediated properties and indirectly influenced by DOM regulation of bacterial community changes. Overall, these results indicated that DOM properties associated with bacterial community changes increased As mobilization but decreased Hg and Tl mobilization from Hg-Tl mining waste slag.
Collapse
Affiliation(s)
- Yu He
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Chaoxiao Wei
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Licui Long
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Chi Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
14
|
Cai X, Xue C, Owens G, Chen Z. Removal of As(III) using a microorganism sustained secrete laccase-straw oxidation system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130967. [PMID: 36764251 DOI: 10.1016/j.jhazmat.2023.130967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
While laccase oxidation is a novel and promising method for treating arsenite-containing wastewater, the high cost and unsustainability of commercially available enzymes indicate a need to investigate more cost-effective viable alternatives. Here, a microorganism sustained secrete laccase-straw oxidation system (MLOS) was established and subsequently evaluated for the removal of As(III). MLOS showed efficient biological As(III) oxidation, with an As(III) removal efficiency reaching 99.9% at an initial As(III) concentration of 1.0 mg·L-1. IC-AFS and XPS analysis showed that As(III) was partially oxidized to As(V), and partially As(III) adsorbed on the surface of rice straw. FTIR analysis revealed that hydroxyl, amine and amide groups were all involved in the As(III) removal process. SEM-EDS demonstrated that the surface structure of rice straw was destroyed following Comamonas testosteroni FJ17 (C. testosteroni FJ17) treatment, and the metal ions binding sites of rice straw were increased resulting in elemental arsenic being detected on the material surface. Molecular docking revealed the interaction between key residues of laccase and As(III). Laccase activity was negatively correlated with Cu(II) concentration in the As(III) oxidation. EEM showed that humic-like acids were also involved in the interaction with As(III). Overall, a MLOS derived from biomass waste has a significant potential to be developed as a green and sustainable technology for the treatment of wastewater containing As(III).
Collapse
Affiliation(s)
- Xiaonan Cai
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, Fujian Province, PR China
| | - Chao Xue
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, Fujian Province, PR China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, Fujian Province, PR China.
| |
Collapse
|
15
|
Hemdan B, Garlapati VK, Sharma S, Bhadra S, Maddirala S, K M V, Motru V, Goswami P, Sevda S, Aminabhavi TM. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. ENVIRONMENTAL RESEARCH 2022; 204:112346. [PMID: 34742708 DOI: 10.1016/j.envres.2021.112346] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.
Collapse
Affiliation(s)
- Bahaa Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Vijay Kumar Garlapati
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Swati Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Shivani Maddirala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Varsha K M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Vineela Motru
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
16
|
Wang L, Lin Z, Chang L, Chen J, Huang S, Yi X, Luo M, Wang Y. Effects of anode/cathode electroactive microorganisms on arsenic removal with organic/inorganic carbon supplied. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149356. [PMID: 34375251 DOI: 10.1016/j.scitotenv.2021.149356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This study reports the effects of an external voltage (0 V, 0.4 V and 0.9 V) on soil arsenic (As) release and sequestration when amended with organic carbon (NaAc) and inorganic carbon (NaHCO3), respectively, in a soil bioelectrochemistry system (BES). The results demonstrated that although an external voltage had no effect on the As removal capacity in an oligotrophic environment fueled with NaHCO3, 93.6% of As(III) in the supernatant was removed at 0.9 V with an NaAc amendment. Interestingly, the content of As detected on the electrodes was higher than that removed from the supernatant, implying a continuous release of soil As under external voltages and rapid adsorption onto the electrodes, especially the cathode. In addition, the species of As on the cathode were similar to those in the supernatant (the As(III)/As(V) ratio was approximately 3:1), indicating that the removal capacity was independent of preoxidation. From the viewpoint of electroactive microorganisms (EABs), the relative abundances of the arrA gene and Geobacter genus were specifically enriched at the anode, thus signifying stimulation of the reduction and release of soil As in the anode region. By comparison, Bacillus was particularly abundant at the cathode, which could contribute to the oxidation and sequestration of As in the cathode region. Additionally, specific extracellular polymeric substances (EPSs) secreted by EABs could combine with As, which was followed by electrostatic attraction to the cathode under the effect of an electric field. Furthermore, the formation of secondary minerals and coprecipitation in the presence of iron (Fe) may have also contributed to As removal from solution. The insights from this study will enable us to further understand the biogeochemical cycle of soil As and to explore the feasibility of in situ As bioremediation techniques, combining the aspects of microbial and physicochemical processes in soil bioelectrochemical systems.
Collapse
Affiliation(s)
- Liuying Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Zhenyue Lin
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu Chang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Junjie Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Shenhua Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Xiaofeng Yi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Mingyu Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China.
| |
Collapse
|
17
|
Xue KH, Wang J, Yan Y, Peng Y, Wang WL, Xiao HB, Wang CC. Enhanced As(III) transformation and removal with biochar/SnS 2/phosphotungstic acid composites: Synergic effect of overcoming the electronic inertness of biochar and W 2O 3(AsO 4) 2 (As(V)-POMs) coprecipitation. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124961. [PMID: 33418518 DOI: 10.1016/j.jhazmat.2020.124961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/13/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The activation of carbon atoms in biochar is an important approach for realizing the reuse of discarded woody biomass resources. In this work, a strategy for the construction of carbon-based catalysts was proposed with Magnoliaceae root biomass as a carbon source, doped by SnS2 and further decorated with heteropoly acid. The introduction of SnS2 can activate the carbon atom and destroy the electronic inertness of the disordered biochar with 002 planes. In addition, the synergy between the Keggin unit of phosphotungstic acid and biochar/SnS2 can suppress recombination of e--h+ carriers. The adsorption and photocatalysis experiments results showed that the efficiency of removing As(III) by biochar/SnS2/phosphotungstic acid (biochar/SnS2/PTA) systems was 1.5 times that of biochar/SnS2 systems, and the concentration of total arsenic in the biochar/SnS2/PTA composite system gradually decreased during the photocatalysis process. The formation of As-POMs can simultaneously realize As(III) photooxidation and As(V) coprecipitation. The phase transfer of arsenic by As-POMs could significantly increase the As adsorption capacity. Specifically, the composites achieved the conversion of S atoms at the interface of biochar into SO4•- radicals to enhance the As(III) photooxidation performance.
Collapse
Affiliation(s)
- Ke-Hui Xue
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Yan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wen-Lei Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Hong-Bo Xiao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
18
|
Sravan JS, Nancharaiah YV, Lens PNL, Mohan SV. Cathodic selenium recovery in bioelectrochemical system: Regulatory influence on anodic electrogenic activity. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122843. [PMID: 32937693 DOI: 10.1016/j.jhazmat.2020.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Metal(loid)s are used in various industrial activities and widely spread across the environmental settings in various forms and concentrations. Extended releases of metal(loid)s above the regulatory levels cause environmental and health hazards disturbing the ecological balance. Innovative processes for treating the metal(loid)-contaminated sites and recovery of metal(loid)s from disposed waste streams employing biotechnological routes provide a sustainable way forward. Conventional metal recovery technologies demand high energy and/or resource inputs, which are either uneconomic or unsustainable. Microbial electrochemical systems are promising for removal and recovery of metal(loid)s from metal(loid)-laden wastewaters. In this communication, a bioelectrochemical system (BES) was designed and operated with selenium (Se) oxyanion at varied concentrations as terminal electron acceptor (TEA) for reduction of selenite (Se4+) to elemental selenium (Se0) in the abiotic cathode chamber. The influence of varied concentrations of Se4+ towards Se0 recovery at the cathode was also evaluated for its regulatory role on the electrometabolism of anode-respiring bacteria. This study observed 26.4% Se0 recovery (cathode; selenite removal efficiency: 73.6%) along with organic substrate degradation of 74% (anode). With increase in the initial selenite concentration, there was a proportional increase in the dehydrogenase activity. Bioelectrochemical characterization depicted increased anodic electrogenic performance with the influence of varied Se4+ concentrations as TEA and resulted in a maximum power density of 0.034 W/m2. The selenite reduction (cathode) was evaluated through spectroscopic, compositional and structural analysis. X-ray diffraction and Raman spectroscopy showed the amorphous nature, while Energy Dispersive X-ray spectroscopy confirmed precipitates of the deposited Se0 recovered from the cathode chamber. Scanning electron microscopic images clearly depicted the Se0 depositions (spherical shaped; sized approximately 200 nm in diameter) on the electrode and cathode chamber. This study showed the potential of BES in converting soluble Se4+ to insoluble Se0 at the abiotic cathode for metal recovery.
Collapse
Affiliation(s)
- J Shanthi Sravan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) campus, Hyderabad 500007, India
| | - Y V Nancharaiah
- Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - P N L Lens
- UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) campus, Hyderabad 500007, India.
| |
Collapse
|
19
|
Uddin MJ, Jeong YK. Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39888-39912. [PMID: 32772289 DOI: 10.1007/s11356-020-10323-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) toxicity is a global phenomenon, and it is continuously threatening human life. Arsenic remains in the Earth's crust in the forms of rocks and minerals, which can be released into water. In addition, anthropogenic activity also contributes to increase of As concentration in water. Arsenic-contaminated water is used as a raw water for drinking water treatment plants in many parts of the world especially Bangladesh and India. Based on extensive literature study, adsorption is the superior method of arsenic removal from water and Fe is the most researched periodic element in different adsorbent. Oxides and hydroxides of Fe-based adsorbents have been reported to have excellent adsorptive capacity to reduce As concentration to below recommended level. In addition, Fe-based adsorbents were found less expensive and not to have any toxicity after treatment. Most of the available commercial adsorbents were also found to be Fe based. Nanoparticles of Fe-, Ti-, Cu-, and Zr-based adsorbents have been found superior As removal capacity. Mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.) removed As efficiently from water. Oxidation of AsO33- to AsO43-and adsorption of oxidized As on the mixed element-based adsorbent occurred by different adsorbents. Metal organic frameworks have also been confirmed as good performance adsorbents for As but had a limited application due to nano-crystallinity. However, using porous materials having extended surface area as carrier for nano-sized adsorbents could alleviate the separation problem of the used adsorbent after treatment and displayed outstanding removal performances.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
| | - Yeon-Koo Jeong
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| |
Collapse
|
20
|
Wang Y, Zhang B, Wang S, Zhong Y. Temporal dynamics of heavy metal distribution and associated microbial community in ambient aerosols from vanadium smelter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139360. [PMID: 32473432 DOI: 10.1016/j.scitotenv.2020.139360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 05/13/2023]
Abstract
Heavy metals (HMs) such as vanadium (V), zinc (Zn), arsenic (As), chromium (Cr), copper (Cu) and nickel (Ni) are released into atmosphere during V smelting activities, resulting in their co-existence with airborne microbes. However, little is known about HMs distributions and associated microbes in aerosols from such industrial districts. This study reveals seasonal dynamics of HMs and microbes in ambient aerosols from V smelter in Panzhihua, China. Multiple HMs were detected, while V concentration was the highest, maximizing at 228.0 ± 10.3 ng/m3 in Spring. Health risks displayed similar trends to HMs distributions, and children were posed much higher risks than adults due to their more sensitivity to HMs. V and As contributed dramatically to total health risks among all examined HMs. High-throughput 16S rRNA gene sequencing analysis revealed microbes tolerant to V, Zn, As, Cr, Cu and Ni. Acinetobacter widely existed with function of detoxifying V(V) and more species as Bacillus, Gobacter and Thauera tolerating V, Zn, As, Cr, Cu and Ni appeared in Summer. These findings shed light on understandings of HMs dynamics and associated microbial community in aerosols from smelting regions.
Collapse
Affiliation(s)
- Ya'nan Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Song Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yuezhi Zhong
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
21
|
Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27563-27581. [PMID: 32418096 DOI: 10.1007/s11356-020-08903-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination is a global issue, where the prevalent contaminants are arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb). More often, they are collectively known as "most problematic heavy metals" and "toxic heavy metals" (THMs). Their treatment through a variety of biological processes is one of the prime interests in remediation studies, where heavy metal-microbe interaction approaches receive high interest for their cost effective and ecofriendly solutions. In this review, we provide an up to date information on different microbial processes (bioremediation) for the removal of THMs. For the same, emphasis is put on oxidation-reduction, biomineralization, bioprecipitation, bioleaching, biosurfactant technology, biovolatilization, biosorption, bioaccumulation, and microbe-assisted phytoremediation with their selective advantages and disadvantages. Further, the literature briefly discusses about the various setups of cleaning processes of THMs in environment under ex situ and in situ applications. Lately, the study sheds light on the manipulation of microorganisms through genetic engineering and nanotechnology for their advanced treatment approaches.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
- Department of Botany, University of Delhi, Delhi, India.
| | - Ved Pal Singh
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
22
|
Chakraborty I, Sathe S, Khuman C, Ghangrekar M. Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2020; 3:104-115. [DOI: 10.1016/j.mset.2019.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Leiva E, Leiva-Aravena E, Rodríguez C, Serrano J, Vargas I. Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:471-481. [PMID: 30029122 DOI: 10.1016/j.scitotenv.2018.06.378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Enzo Leiva-Aravena
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, El Comendador 1916, Providencia, Santiago 7520245, Chile
| | - Carolina Rodríguez
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, 8580745, Santiago, Chile
| | - Ignacio Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, El Comendador 1916, Providencia, Santiago 7520245, Chile
| |
Collapse
|
24
|
Li L, Zhu C, Liu X, Li F, Li H, Ye J. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34091-34102. [PMID: 30284163 DOI: 10.1007/s11356-018-3021-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to determine effects of biochar derived from wheat straw at 500 °C on arsenic immobilization in a soil-Brassica campestris L system. When the soils amended with 4% modified biochar (MBC), 0.5% Fe grit as zero-valent iron (ZVI), 0.5% Fe grit + 4% MBC (ZMBC), 0.5% ZVI + 4% biochar (ZBC), 4% biochar (BC), and control (without amendments), it confirmed that available arsenic concentration in soils occurred in the following order: ZMBC < MBC < ZVI < ZBC < Control < BC. Water-soluble As (WSAs) was reduced by 89.74% and 92.30% in MBC- and ZMBC-amended soils, respectively, compared to the control. When MBC applied into soil, As uptake of shoot and root decreased by 44.55% and 45.40%, respectively, and ZMBC resulted in 74.92% and 71.80% reduction in shoot and root As of Brassica campestris L. Immobilization effect of As in ZBC was also observed though BC elevated plant As uptake significantly. The immobilization effect of MBC was mainly attributed to Fe2O3 impregnation illustrated by x-ray diffraction (XRD) and scanning electron microscopy (SEM) images through sorption, precipitation, and coprecipitation. Such Fe containing complexes might impede As translocation from root to shoot and subsequently reduce As accumulation in the plant with modified biochar amendment.
Collapse
Affiliation(s)
- Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China.
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Xiaoshi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Feng Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Jing Ye
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| |
Collapse
|
25
|
Park JM, Hong JW, Son JS, Hwang YJ, Cho HM, You YH, Ghim SY. A strategy for securing unique microbial resources – focusing on Dokdo islands-derived microbial resources. Isr J Ecol Evol 2018. [DOI: 10.1163/22244662-20181024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review focuses on the state of research on the microbial resources of Dokdo, Korea, as a strategy for securing national microbial resources. In the Korean peninsula, studies aimed at securing microbial resources are carried out across diverse natural environments, especially in the Dokdo islands. Until 2017, a total of 61 novel microbial genera, species, or newly recorded strains have been reported. Among these, 10 new taxa have had their whole genome sequenced and published, in order to find novel useful genes. Additionally, there have been multiple reports of bacteria with novel characteristics, including promoting plant growth or inducing systemic resistance in plants, calcite-forming ability, electrical activation, and production of novel enzymes. Furthermore, fundamental studies on microbial communities help to secure and define microbial resources in the Dokdo islands. This study will propose several tactics, based on ecological principles, for securing more microbial resources to cope with the current increase in international competition for biological resources.
Collapse
Affiliation(s)
- Jong Myong Park
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
- b Department of Infectious Disease Diagnosis, Incheon Institute of Public Health and Environment, Incheon 22320, Republic of Korea
| | - Ji Won Hong
- c Marine Plants Team, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jin-Soo Son
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Ji Hwang
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Min Cho
- d LOTTE Group R&D Center, Seoul 07594, Republic of Korea
| | - Young-Hyun You
- e Microoganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Sa-Youl Ghim
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
26
|
Bioelectrochemical Systems for Removal of Selected Metals and Perchlorate from Groundwater: A Review. ENERGIES 2018. [DOI: 10.3390/en11102643] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Groundwater contamination is a major issue for human health, due to its largely diffused exploitation for water supply. Several pollutants have been detected in groundwater; amongst them arsenic, cadmium, chromium, vanadium, and perchlorate. Various technologies have been applied for groundwater remediation, involving physical, chemical, and biological processes. Bioelectrochemical systems (BES) have emerged over the last 15 years as an alternative to conventional treatments for a wide variety of wastewater, and have been proposed as a feasible option for groundwater remediation due to the nature of the technology: the presence of two different redox environments, the use of electrodes as virtually inexhaustible electron acceptor/donor (anode and cathode, respectively), and the possibility of microbial catalysis enhance their possibility to achieve complete remediation of contaminants, even in combination. Arsenic and organic matter can be oxidized at the bioanode, while vanadium, perchlorate, chromium, and cadmium can be reduced at the cathode, which can be biotic or abiotic. Additionally, BES has been shown to produce bioenergy while performing organic contaminants removal, lowering the overall energy balance. This review examines the application of BES for groundwater remediation of arsenic, cadmium, chromium, vanadium, and perchlorate, focusing also on the perspectives of the technology in the groundwater treatment field.
Collapse
|
27
|
Anguita JM, Vera MA, Vargas IT. The Electrochemically Active Arsenic Oxidising Bacterium Ancylobacter
sp. TS-1. ChemElectroChem 2018. [DOI: 10.1002/celc.201800943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javiera M. Anguita
- Departamento de Ingeniería Hidráulica y Ambiental; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS); Los Navegantes 1963 Santiago Chile
| | - Mario A. Vera
- Departamento de Ingeniería Hidráulica y Ambiental; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
- Instituto de Ingeniería Biológica y Médica Facultades de Ingeniería Medicina y Ciencias Biológicas; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
| | - Ignacio T. Vargas
- Departamento de Ingeniería Hidráulica y Ambiental; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS); Los Navegantes 1963 Santiago Chile
| |
Collapse
|
28
|
Li M, Zhang H, Xiao T, Wang S, Zhang B, Chen D, Su M, Tang J. Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Yang Y, Liu W, Wang J, Zhang Y, Xu W, Tao L. The different effects of natural pyrethrins and beta-cypermethrin on human hepatocyte QSG7701 cells by ROS-mediated oxidative damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24230-24240. [PMID: 29948706 DOI: 10.1007/s11356-018-2503-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
With the widespread use of natural pyrethrins and pyrethroids to defend pest insects, people had the sustained interest in the potential risk to environment and human health. However, the research about natural pyrethrins and beta-cypermethrin induction of cytotoxicity is still seldom. This study is about the cytotoxic effects of these on human non-target cells in vitro. The cytotoxic effect of natural pyrethrins and beta-cypermethrin on QSG7701 cells were researched by using various bioassays in vitro. The results suggested that with the natural pyrethrin concentration increased, the viability of QSG7701 cells were inhibited increasingly, and the IC50 value as calculated was approximately 42.54 and 18.68 μg/mL after the cells were treated 24 and 48 h. The proliferative potential of QSG7701 cells treated with 40 μg/mL natural pyrethrins 6 and 12 h was decreased by 67.44 and 94.74%, dramatic enhancement ROS, collapse of mitochondrial membrane potential, DNA exhibit severity of impairment, and chromatin DNA condensation. However, beta-cypermethrin has lower toxicity than natural pyrethrins. The IC50 values of beta-cypermethrin were all > 80 μg/mL, and the colony formation expression was decreased by 15.26 and 19.09%, which implied that natural pyrethrins are more significantly cytotoxic and potentially genotoxic to human hepatocyte cells.
Collapse
Affiliation(s)
- Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Wang
- Medicine Hospital Imaging Center, Wei fang traditional Chinese hospital, Shandong, 261000, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
30
|
Huang L, Li M, Pan Y, Quan X, Yang J, Puma GL. Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:348-359. [PMID: 29684887 DOI: 10.1016/j.jhazmat.2018.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m3/m3/d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)).
Collapse
Affiliation(s)
- Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ming Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuzhen Pan
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jinhui Yang
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom.
| |
Collapse
|
31
|
Kumari N, Jagadevan S. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review. CHEMOSPHERE 2016; 163:400-412. [PMID: 27565307 DOI: 10.1016/j.chemosphere.2016.08.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) contamination in water is a cause of major concern to human population worldwide, especially in Bangladesh and West Bengal, India. Arsenite (As(III)) and arsenate (As(V)) are the two common forms in which arsenic exists in soil and groundwater, the former being more mobile and toxic. A large number of arsenic metabolising microorganisms play a crucial role in microbial transformation of arsenic between its different states, thus playing a key role in remediation of arsenic contaminated water. This review focuses on advances in biochemical, molecular and genomic developments in the field of arsenic metabolising bacteria - covering recent developments in the understanding of structure of arsenate reductase and arsenite oxidase enzymes, their gene and operon structures and their mechanism of action. The genetic and molecular studies of these microbes and their proteins may lead to evolution of successful strategies for effective implementation of bioremediation programs.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science and Engineering, Indian School of Mines, Dhanbad, Jharkhand, 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian School of Mines, Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|