1
|
Gomes CS, de Jesus Soares Freire D, de Souza Ramos Pontes Moura H, Maldaner AO, Pinheiro FASD, Ferreira GLR, de Oliveira Miranda ML, Ferreira LDS, Murga FG, Sodré FF, Aragão CFS. Wastewater surveillance to assess cocaine and methylenedioxymethamphetamine use trends during a major music festival in Brazil. Drug Test Anal 2025; 17:88-100. [PMID: 38544438 DOI: 10.1002/dta.3682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 01/15/2025]
Abstract
Wastewater-based epidemiology was applied in northeastern Brazil during a dance festival, revealing that cocaine consumption doubled during the event days. The daily drug loads were 0.95 ± 0.03 to 11.4 ± 0.4 g/day for BE, 1.8 ± 0.4 to 7.6 ± 0.3 g/day for COC, 0.04 ± 0.02 to 0.19 ± 0.02 g/day for COE, and 0.08 ± 0.02 to 0.80 ± 0.02 g/day for MDMA.
Collapse
Affiliation(s)
- Cezar Silvino Gomes
- Setor Técnico-Científico da Paraíba, Polícia Federal, João Pessoa, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | | | | | - George Leandro Ramos Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Leandro De Santis Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Cícero Flávio Soares Aragão
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
2
|
Che X, Zheng X, Tao W, Zhang Y, Liu P, Di B, Qiao H. Improved entropy-CRITIC population model based on temporal and spatial variability: Construction and application in wastewater epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177807. [PMID: 39644636 DOI: 10.1016/j.scitotenv.2024.177807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Numerous factors contribute to the uncertainty inherent in conducting wastewater-based epidemiology (WBE), with shifting populations exerting a significant influence. However, traditional single- and multi-parameter population models suffer from certain limitations. This study employs an evaluation model framework to construct a model (EC model) based on data characteristics. Weight coefficients derived from 16 cities across seven regions of China are aggregated into a national model. In contrast to alternative models, the EC model exhibits a robust correlation (r2 = 0.98) with census population data, suggesting a potentially more precise depiction of population dynamics. The low variability (RSD = 9.73 %) indicates effective constraint of anomalous parameter fluctuations, yielding minimal Bias (-1.12 %) and SRMSE (14.75 %), thus ensuring reliable population estimation. The model is applied to estimate the consumption of lifestyle-related compounds and the prevalence of hypertension in China. Northern regions demonstrate higher consumption levels, alongside a significant disparity in hypertension prevalence (26.96 %) compared to the south (16.01 %). Hypertension exhibits positive correlations with lifestyle-related compounds such as alcohol and nicotine (r = 0.52, r = 0.55). Sensitivity analysis reveals that the EC model introduces an uncertainty of 24.48 % in population estimates. Through the incorporation of representative datasets and novel algorithms, this model has the potential to enhance the reliability of outcomes in WBE strategy implementation.
Collapse
Affiliation(s)
- Xinfeng Che
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Longquanyi district branch of Chengdu Public Security Bureau, Chengdu 610100, PR China
| | - Xiaoyu Zheng
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P. R. of China, Beijing 100193, PR China
| | - Wenjia Tao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China
| | - Yu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China
| | - Peipei Liu
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P. R. of China, Beijing 100193, PR China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China.
| | - Hongwei Qiao
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P. R. of China, Beijing 100193, PR China.
| |
Collapse
|
3
|
Price M, Simpson BS, Tscharke BJ, Ahmed F, Keller EL, Sussex H, Kah M, Sila-Nowicka K, Chappell A, Gerber C, Trowsdale S. Reporting population size in wastewater-based epidemiology: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176076. [PMID: 39244059 DOI: 10.1016/j.scitotenv.2024.176076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Knowledge of the number of people present in a catchment is fundamental for the assessment of spatio-temporal trends in wastewater-based epidemiology (WBE). Accurately estimating the number of people connected to wastewater catchments is challenging however, because populations are dynamic. Methods used to estimate population size can significantly influence the calculation and interpretation of population-normalised wastewater data (PNWD). This paper systematically reviews the reporting of population data in 339 WBE studies. Studies were evaluated based on their reporting of population size, the source of population data, the population calculation methods, and the uncertainties in population estimates. Most papers reported population size (96 %) and the source of population data (60 %). Fewer studies reported the uncertainties in their population data (50 %) and the methods used to calculate these estimates (28 %). This is relevant because different methods have unique strengths and limitations which can affect the accuracy of PNWD. Only 64 studies (19 %) reported all four components of population data. The reporting of population data has remained consistent in the past decade. Based on the findings, we recommend generalised reporting criteria for population data in WBE. As WBE is further mainstreamed and applied, the clear and comprehensive reporting of population data will only become increasingly important.
Collapse
Affiliation(s)
- Mackay Price
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Bradley S Simpson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences, University of Queensland, 20 Cornwall Street, Queensland 4102, Australia
| | - Fahad Ahmed
- Independent researcher, Brisbane, Queensland, Australia
| | - Emma L Keller
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - Melanie Kah
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Katarzyna Sila-Nowicka
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-357, Poland
| | - Andrew Chappell
- Institute of Environmental Science and Research (ESR) Ltd., 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Cobus Gerber
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sam Trowsdale
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Li Y, Wu M, Yin X, Wang Y, Tan D, Zhang P, Zhou Z, Wang D, Jones KC, Zhang H. Development and validation of an imprinted polymer based DGT for monitoring β-blocker drugs in wastewater surveillance. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135753. [PMID: 39259989 DOI: 10.1016/j.jhazmat.2024.135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Wastewater surveillance is an effective and objective approach to monitor contaminant releases and drug usage in the catchment, the estimation requires accurate measurement. In this study, a novel diffusive gradients in thin-film (DGT) technique based on molecularly imprinted polymers (MIPs) for selective measurement of a class of widely prescribed cardiovascular drugs (β-blockers) in wastewater was developed. The synthesized MIPs showed strong affinity and selectivity for the target compounds. The MIP-DGT had large effective capacities, its performance was independent of a wide range of environmental conditions, including pH (4.58 - 8.89), ionic strength (0.01 - 0.5 M) and dissolved organic matter (< 20 mg L-1). Biofouling had little effect on the uptake of target compounds within 7 days. MIP-DGT devices were applied in a Chinese urban WWTP alongside an auto-sampler. Metoprolol concentrations detected were much higher than other β-blockers. Concentrations obtained using MIP-DGT were comparable to the 24 h composite samples using an autosampler. The estimated daily consumption calculated based on the data obtained with MIP-DGT implied that metoprolol and propranolol were the most popular β-blockers in the studied area. Overall, the results in this study demonstrate that the MIP-DGT is a cost-effective, reliable and efficient tool for in situ wastewater monitoring.
Collapse
Affiliation(s)
- Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Mingzhe Wu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Xinyu Yin
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Yansong Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Dongqin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Peng Zhang
- School of Environmental Science and Technology, Shanxi University of Science & Technology, Xi'an 710021, PR China
| | - Zhimin Zhou
- Science and Technology on Underwater Test and Control Laboratory, The 760th Research Institute of China Shipbuilding Industry Corporation, Dalian, Liaoning 116023, PR China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
5
|
Foladori P, Cutrupi F, Cadonna M, Postinghel M. Normalization of viral loads in Wastewater-Based Epidemiology using routine parameters: One year monitoring of SARS-CoV-2 in urban and tourist sewersheds. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135352. [PMID: 39128155 DOI: 10.1016/j.jhazmat.2024.135352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
In wastewater-based epidemiology, normalization of experimental data is a crucial aspect, as emerged in the recent surveillance of COVID-19. Normalization facilitates the comparison between different areas or periods, and it helps in evaluating the differences due to the fluctuation of the population due to seasonal employment or tourism. Analysis of biomarkers in wastewater (i.e. drugs, beverage and food compounds, microorganisms such as PMMoV or crAssphage, etc.) is complex to perform, and it is not routinely monitored. This study compares the results of alternative normalization approaches applied to SARS-CoV-2 loads in wastewater using population size calculated with conventional hydraulic and/or chemical parameters (i.e. total suspended solids, chemical oxygen demand, nitrogen forms, etc.) commonly used in the routine monitoring of water quality. A total of 12 wastewater treatment plants were monitored, and 1068 samples of influent wastewater were collected in urban areas and in highly touristic areas (summer and/or winter). The results indicated that both census and population estimated with ammonium are effective and reliable parameters with which to normalize SARS-CoV-2 loads in wastewater from urban sewersheds with negligible fluctuating populations. However, this study reveals that, in the case of tourist locations, the population calculated using NH4-N loads can provide a better normalization of the specific viral load per inhabitant.
Collapse
Affiliation(s)
- Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, Trento 38123, Italy.
| | - Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, Trento 38123, Italy
| | - Maria Cadonna
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, Trento 38121, Italy
| | - Mattia Postinghel
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, Trento 38121, Italy
| |
Collapse
|
6
|
Bernier-Turpin G, Thiebault T, Alliot F, Mebold E, Guérin-Rechdaoui S, Oliveira M, Le Roux J, Moilleron R. Target and non-target screening of biomarkers in wastewater: towards a unique analytical methodology for sample preparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6241-6256. [PMID: 39211955 DOI: 10.1039/d4ay00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study aims to optimize a single preparation methodology based on solid-phase extraction (SPE) that could fit both target and non-target screening of organic biomarkers in raw wastewater, allowing the cross-comparison of results obtained from a same dataset. The efficiency of SPE sorbents used alone (HLB) or in combination in a multilayer cartridge was evaluated based on (i) the extraction recovery and matrix effect in environmental samples (surface water and wastewater) for a list of biomarkers (pharmaceuticals, licit and illicit drugs, artificial sweeteners, isoprostanes, polyphenols) and (ii) a number of detected features and their intensity in HRMS. The selected method uses a combination of three SPE sorbents mixed together (HLB, X-AW and X-CW) and seems to take full advantage of each, providing satisfactory validation parameters (recovery, instrumental limit of detection, linearity range and limit of quantification) over a large range of physico-chemical properties while ensuring promising results for non-target screening applications. Of the 65 targeted compounds, nearly all of them (47) were detected in wastewater influent samples with concentration above the limit of quantification, while at the same time over 10 000 features were recorded according to the high resolution mass spectrometry (HRMS) fingerprint, holding out the promise that a common protocol for these two analyses, with their very contrasting constraints and objectives, is possible.
Collapse
Affiliation(s)
- Gauthier Bernier-Turpin
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | - Thomas Thiebault
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | - Fabrice Alliot
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | | | | | | | - Julien Le Roux
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
| | - Régis Moilleron
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
| |
Collapse
|
7
|
Boogaerts T, Van Wichelen N, Quireyns M, Burgard D, Bijlsma L, Delputte P, Gys C, Covaci A, van Nuijs ALN. Current state and future perspectives on de facto population markers for normalization in wastewater-based epidemiology: A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173223. [PMID: 38761943 PMCID: PMC11270913 DOI: 10.1016/j.scitotenv.2024.173223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Wastewater-based epidemiology (WBE) and wastewater surveillance have become a valuable complementary data source to collect information on community-wide exposure through the measurement of human biomarkers in influent wastewater (IWW). In WBE, normalization of data with the de facto population that corresponds to a wastewater sample is crucial for a correct interpretation of spatio-temporal trends in exposure and consumption patterns. However, knowledge gaps remain in identifying and validating suitable de facto population biomarkers (PBs) for refinement of WBE back-estimations. WBE studies that apply de facto PBs (including hydrochemical parameters, utility consumption data sources, endo- and exogenous chemicals, biological biomarkers and signalling records) for relative trend analysis and absolute population size estimation were systematically reviewed from three databases (PubMed, Web of Science, SCOPUS) according to the PRISMA guidelines. We included in this review 81 publications that accounted for daily variations in population sizes by applying de facto population normalization. To date, a wide range of PBs have been proposed for de facto population normalization, complicating the comparability of normalized measurements across WBE studies. Additionally, the validation of potential PBs is complicated by the absence of an ideal external validator, magnifying the overall uncertainty for population normalization in WBE. Therefore, this review proposes a conceptual tier-based cross-validation approach for identifying and validating de facto PBs to guide their integration for i) relative trend analysis, and ii) absolute population size estimation. Furthermore, this review also provides a detailed evaluation of the uncertainty observed when comparing different de jure and de facto population estimation approaches. This study shows that their percentual differences can range up to ±200 %, with some exceptions showing even larger variations. This review underscores the need for collaboration among WBE researchers to further streamline the application of de facto population normalization and to evaluate the robustness of different PBs in different socio-demographic communities.
Collapse
Affiliation(s)
- Tim Boogaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Natan Van Wichelen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Maarten Quireyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Dan Burgard
- Department of Chemistry and Biochemistry, University of Puget Sound, Tacoma, WA, USA
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Infla-Med Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Celine Gys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
8
|
Zhou X, Liu K, Shi C, Zhang M, Liu S, Hou C, Di B. Estimation of the spatial pattern of gout prevalence across China by wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171565. [PMID: 38461984 DOI: 10.1016/j.scitotenv.2024.171565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Gout is a metabolic arthritis caused by hyperuricemia. In recent years, the prevalence of gout has been increased significantly in China due to the improvement of the living standards, and gout has become another common metabolic disease following diabetes mellitus. Gout severely affects the health status and life quality of human. In order to monitor the near real-time prevalence of gout, a wastewater-based epidemiology (WBE) approach was carried out in 257 Chinese cities using febuxostat as the biomarker. Febuxostat in wastewater was measured by a LC-MS/MS method with satisfactory results of method validation. The average concentration of febuxostat in wastewater was 53.05 ± 31.76 ng/L, with the estimated per capita consumption of 124.40 ± 73.37 mg/day/1000 inhabitant. The calculated prevalence of febuxostat was 0.41 % ± 0.24 %, and the prevalence of gout was finally estimated to be 1.30 % ± 0.77 % (0.60 % to 2.11 %), which was nearly consistent with value of 1.10 % obtained from the Guideline for the diagnosis and management of hyperuricemia and gout in China (2019). The results indicated that the febuxostat-based WBE approach might be reasonable to assess the near real-time gout prevalence in China.
Collapse
Affiliation(s)
- Xinxin Zhou
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Kexin Liu
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Chen Shi
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Manlei Zhang
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Shucheng Liu
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Chenzhi Hou
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China.
| | - Bin Di
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Zhou X, Liu S, Zhang M, Shi C, Chen M, Hou C, Di B. Wastewater-based estimation of diabetes mellitus prevalence in 237 cities: A cross-China study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171659. [PMID: 38490426 DOI: 10.1016/j.scitotenv.2024.171659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Diabetes mellitus, a metabolic disease characterized by hyperglycemia, has been witnessed as a rapidly escalating worldwide health crisis. China currently had 140.9 million diabetic population in 2021, which was the largest globally. DM has witnessed a significant surge in the past few decades, leading to an alarming rise in the overall burden caused by this disease. To monitor the near real-time DM prevalence and the consumption of first-line anti-diabetic drugs, a wastewater-based epidemiology (WBE) approach based on the back-calculation of metformin concentration was implemented in 237 cities in China. The quantitative analysis of metformin in wastewater was conducted by LC-MS/MS with satisfactory results of method validation. The average concentration of metformin in wastewater was 14.07 ± 13.16 μg/L, and the per capita consumption was 5.16 ± 2.08 mg/day/inh, ranging from 0.90 to 10.36 ± 4.63 mg/day/inh. The calculated metformin prevalence was found to be 0.52 % ± 0.28 %, and the final estimated DM prevalence was 11.33 % ± 4.99 %, which was nearly consistent with the result of the International Diabetes Federation survey of 9.98 %. The results suggested that metformin might be one of the suitable WBE biomarkers in DM monitoring and WBE strategy could potentially enable the estimation of DM prevalence in most of Chinese cities after reasonable correction of associated parameters.
Collapse
Affiliation(s)
- Xinxin Zhou
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Shucheng Liu
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Manlei Zhang
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Chen Shi
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Mengyi Chen
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Chenzhi Hou
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China.
| | - Bin Di
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Yang F, Ma K, Cao Y, Li Z. Application of Magnetic Materials Combined with Echo ® Mass Spectrometry System in Analysis of Illegal Drugs in Sewage. Molecules 2024; 29:2060. [PMID: 38731551 PMCID: PMC11085165 DOI: 10.3390/molecules29092060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.
Collapse
Affiliation(s)
- Feiyu Yang
- Shanghai Research Institute of Criminal Science and Technology, Shanghai Key Laboratory of Crime Scene Evidence, Shanghai 200083, China;
| | - Kaijun Ma
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, Shanghai 200083, China;
| | - Yichao Cao
- Shanghai Research Institute of Criminal Science and Technology, Shanghai Key Laboratory of Crime Scene Evidence, Shanghai 200083, China;
| | - Zhiyuan Li
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Beijing 100015, China;
| |
Collapse
|
11
|
Liu S, Zhou X, Zhang M, Shi C, Ren R, Hou C, Di B. Estimating the prevalence of dyslipidemia by measuring fenofibrate in 33 cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169426. [PMID: 38128665 DOI: 10.1016/j.scitotenv.2023.169426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Dyslipidemia, recognized as a predominant risk factor for atherosclerotic cardiovascular disease (CVD), remains a pressing health concern worldwide, particularly in China with nearly 40 % of the population adversely suffering. Fenofibrate, as one of the most commonly used drugs for dyslipidemia therapy, excreted as the format of fenofibrate-acid, which showed considerable stability in sewage samples and could be detected as WBE-biomarkers to monitor the prevalence of dyslipidemia. In this work, we reported the first research on estimating the prevalence of dyslipidemia by WBE approach. 527 sewage samples from 33 cities in China were extracted by solid phase and analyzed by LC-MS/MS. The detected concentration of fenofibrate acid in sewage was on an average of 120.5 ± 59.9 ng/L, and the reverse-calculated consumption of fenofibrate based on fenofibrate acid was 77.8 ± 25.0 mg/day/1000inh. Detailed analysis unveiled an average prevalence of fenofibrate at 0.056 % ± 0.018 %, and the dyslipidemia prevalence among the population aged over 15 was ultimately estimated to be 37.9 % ± 9.3 % and was in accordance with the China Cardiovascular research result of 40.4 %, which proves that WBE is a substitutable approach of traditional epidemiological investigation methods due to its timeliness and cost-effectiveness. This study demonstrated that estimating dyslipidemia prevalence by WBE with metabolite fenofibrate acid as a biomarker is feasible in most Chinese cities.
Collapse
Affiliation(s)
- ShuCheng Liu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - XinXin Zhou
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Manlei Zhang
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Chen Shi
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Ren Ren
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - ChenZhi Hou
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing 211100, China.
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing 211100, China.
| |
Collapse
|
12
|
Zhong Y, Hou C, Gao X, Wang M, Yao Y, Chen M, Di B, Su M. Application of wastewater-based epidemiology to estimate the usage of beta-agonists in 31 cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164956. [PMID: 37343858 DOI: 10.1016/j.scitotenv.2023.164956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
The illegal use of beta-agonists could cause severe problems to human health. In this study, the usage of beta-agonists in 31 cities across China was estimated using wastewater-based epidemiology (WBE). The proposed method is based on solid-phase extraction (SPE) and LC-MS/MS and was developed and validated to determine the concentration of seven beta-agonists in wastewater. A population model based on cotinine (COT), NH4-N and the flow volume was constructed to estimate the population equivalents for different wastewater treatment plants (WWTPs). Clenbuterol and ractopamine are banned in China for both animal husbandry and medical use, but were nevertheless detected in some wastewater samples at rates of 6.2 % and 4.7 %, respectively (n = 339). The WBE-based consumption of clenbuterol and ractopamine were compared with the acceptable daily intake (ADI) and the health risks were assessed by their hazard quotients (0.26-6.62 for clenbuterol and 9.27 × 10-4-0.05 for ractopamine). Salbutamol, clorprenaline and terbutaline were observed in practically all wastewater samples at concentrations of up to several ng/L, whereas the formoterol and bambuterol concentrations were below the detection limit in all samples. Salbutamol consumption (7.35 ± 4.14 mg/1000 inh/day) was highest among the examined beta-agonists and varied regionally. Beta-agonist consumption based on WBE was higher in some cities than that based on medical survey data, indicating potential illegal use. These results show that WBE can be a straightforward and supplementary method for monitoring beta-agonist usage at the population level and spatially.
Collapse
Affiliation(s)
- Yuling Zhong
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Chenzhi Hou
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Xinyi Gao
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Mingyu Wang
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yan Yao
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Mengyi Chen
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing, 211100, China.
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing, 211100, China.
| |
Collapse
|
13
|
Carrascal M, Sánchez-Jiménez E, Fang J, Pérez-López C, Ginebreda A, Barceló D, Abian J. Sewage Protein Information Mining: Discovery of Large Biomolecules as Biomarkers of Population and Industrial Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10929-10939. [PMID: 37463250 PMCID: PMC10399289 DOI: 10.1021/acs.est.3c00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Wastewater-based epidemiology has been revealed as a powerful approach for surveying the health and lifestyle of a population. In this context, proteins have been proposed as potential biomarkers that complement the information provided by currently available methods. However, little is known about the range of molecular species and dynamics of proteins in wastewater and the information hidden in these protein profiles is still to be uncovered. In this study, we investigated the protein composition of wastewater from 10 municipalities in Catalonia with diverse populations and industrial activities at three different times of the year. The soluble fraction of this material was analyzed using liquid chromatography high-resolution tandem mass spectrometry using a shotgun proteomics approach. The complete proteomic profile, distribution among different organisms, and semiquantitative analysis of the main constituents are described. Excreta (urine and feces) from humans, and blood and other residues from livestock were identified as the two main protein sources. Our findings provide new insights into the characterization of wastewater proteomics that allow for the proposal of specific bioindicators for wastewater-based environmental monitoring. This includes human and animal population monitoring, most notably for rodent pest control (immunoglobulins (Igs) and amylases) and livestock processing industry monitoring (albumins).
Collapse
Affiliation(s)
- Montserrat Carrascal
- Biological
and Environmental Proteomics Group, Institute of Biomedical Research
of Barcelona, Spanish National Research
Council (IIBB-CSIC/IDIBAPS), Rosellón 161, E-08036 Barcelona, Spain
| | - Ester Sánchez-Jiménez
- Biological
and Environmental Proteomics Group, Institute of Biomedical Research
of Barcelona, Spanish National Research
Council (IIBB-CSIC/IDIBAPS), Rosellón 161, E-08036 Barcelona, Spain
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Studies (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jie Fang
- Biological
and Environmental Proteomics Group, Institute of Biomedical Research
of Barcelona, Spanish National Research
Council (IIBB-CSIC/IDIBAPS), Rosellón 161, E-08036 Barcelona, Spain
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Studies (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carlos Pérez-López
- Biological
and Environmental Proteomics Group, Institute of Biomedical Research
of Barcelona, Spanish National Research
Council (IIBB-CSIC/IDIBAPS), Rosellón 161, E-08036 Barcelona, Spain
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Studies (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Antoni Ginebreda
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Studies (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Studies (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Joaquin Abian
- Biological
and Environmental Proteomics Group, Institute of Biomedical Research
of Barcelona, Spanish National Research
Council (IIBB-CSIC/IDIBAPS), Rosellón 161, E-08036 Barcelona, Spain
| |
Collapse
|
14
|
Boogaerts T, Quireyns M, De Loof H, Bertels X, Van Wichelen N, Pussig B, Saevels J, Lahousse L, Bonmariage P, Hamelinck W, Aertgeerts B, Covaci A, van Nuijs ALN. Do the lockdown-imposed changes in a wastewater treatment plant catchment's socio-demographics impact longitudinal temporal trends in psychoactive pharmaceutical use? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162342. [PMID: 36842581 DOI: 10.1016/j.scitotenv.2023.162342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) includes the analysis of human metabolic biomarkers of xenobiotics in influent wastewater. WBE complements existing drug utilization approaches and provides objective, spatio-temporal information on the consumption of pharmaceuticals in the general population. This approach was applied to 24-h composite influent wastewater samples from Leuven, Belgium. Daily samples were analysed from September 2019 to December 2019 (n = 76), and on three days of the week (Monday, Wednesday, Saturday) from January 2020 to April 2022 (n = 367). Sample analysis consisted of 96-well solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. Measured concentrations of 21 biomarkers for antidepressant and opioid use were converted to population-normalized mass loads (PNML) by considering the flow rate and catchment population. To capture population movements, mobile phone data was used. Amitriptyline, hydroxy-bupropion, norcitalopram, citalopram, normirtazapine, trazodone, O-desmethylvenlafaxine, codeine, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), methadone, morphine, O-desmethyltramadol, and tramadol were included in the temporal assessment since concentrations were above the lower limit of quantification. The PNML of most biomarkers increased (with 3-119 %) throughout the sampling period. The population disruption during the COVID-19 pandemic led to a major change in the socio-demographics of the catchment area, resulting in temporal differences in the PNML of the different biomarkers. As such, higher PNML were observed during the different lockdown phases, which were characterized by the outflow of university students and a decreasing commuting in and out the catchment area. The effects of the fluctuating socio-demographics of the catchment population were further evidenced by the different week-weekend pattern of PNMLs over the course of the sampling campaign. Mean parent/metabolite ratios (i.e., citalopram/norcitalopram, tramadol/O-desmethyltramadol, venlafaxine/O-desmethylvenlafaxine, and methadone/EDDP) remained relatively stable throughout the entire sampling campaign (RSD% below 25 % for all ratios, except for methadone/EDDP) and therefore were not affected by this population change.
Collapse
Affiliation(s)
- Tim Boogaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Maarten Quireyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hans De Loof
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Xander Bertels
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Natan Van Wichelen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Bram Pussig
- Academic Center for General Practice, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Jan Saevels
- Association of Pharmacists in Belgium (APB), Rue Stevin 137, 1000 Brussels, Belgium
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Pauline Bonmariage
- Association of Pharmacists in Belgium (APB), Rue Stevin 137, 1000 Brussels, Belgium
| | - Wouter Hamelinck
- Association of Pharmacists in Belgium (APB), Rue Stevin 137, 1000 Brussels, Belgium
| | - Bert Aertgeerts
- Academic Center for General Practice, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | |
Collapse
|
15
|
Campo J, Vitale D, Sadutto D, Vera-Herrera L, Picó Y. Estimation of legal and illegal drugs consumption in Valencia City (Spain): 10 years of monitoring. WATER RESEARCH 2023; 240:120082. [PMID: 37224671 DOI: 10.1016/j.watres.2023.120082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) approach provides objective, quantitative, near real-time profiles of illicit drug consumption by monitoring the concentration of unchanged parent drugs or their metabolites entering the municipal sewage system. Valencia is the third most populous city in Spain (an important country for the use and transit of several of these drugs). Estimations of consumption over long periods of time will help get better understanding of spatial and temporal trends in the use of licit and illicit drugs. Accordingly, applying the "best practice" protocol, 16 drugs of abuse and metabolites were monitored in this study, and 8 were daily measured during one-two weeks between 2011 and 2020 at the inlet of three wastewater treatment plants of Valencia City. Analysis of the selected compounds was performed by liquid chromatography-triple quadrupole mass spectrometry, and the concentrations obtained were used to back-calculate the consumption data. Cannabis, tobacco, and cocaine were the most consumed drugs whereas opioids were less used. Cannabis and cocaine consumption are on average 2.7-23.4 and 1.1-2.3 g/day/1000inh, respectively, and their use tended to increase since 2018. Weekly profiles were characterized by higher consumption of cocaine, ecstasy, and heroin during weekends compared to weekdays. Similarly, during "Las Fallas" (main local festivity), increased use of cocaine and amphetamine-type stimulants, mainly MDMA, was measured. WBE proved to be an objective and useful methodology to get more insight on temporal drugs of abuse consumption, and the changes derived from local festivities.
Collapse
Affiliation(s)
- Julian Campo
- Environmental and Food Safety Research Group (SAMA-UV). Desertification Research Centre - CIDE (Spanish National Research Council, University of Valencia, Generalitat Valenciana). Carretera CV-315 km 10.7 (Campus IVIA). 46113 Moncada, Valencia, Spain.
| | - Dyana Vitale
- Environmental and Food Safety Research Group (SAMA-UV). Desertification Research Centre - CIDE (Spanish National Research Council, University of Valencia, Generalitat Valenciana). Carretera CV-315 km 10.7 (Campus IVIA). 46113 Moncada, Valencia, Spain
| | - Daniele Sadutto
- Environmental and Food Safety Research Group (SAMA-UV). Desertification Research Centre - CIDE (Spanish National Research Council, University of Valencia, Generalitat Valenciana). Carretera CV-315 km 10.7 (Campus IVIA). 46113 Moncada, Valencia, Spain
| | - Lucia Vera-Herrera
- Environmental and Food Safety Research Group (SAMA-UV). Desertification Research Centre - CIDE (Spanish National Research Council, University of Valencia, Generalitat Valenciana). Carretera CV-315 km 10.7 (Campus IVIA). 46113 Moncada, Valencia, Spain
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV). Desertification Research Centre - CIDE (Spanish National Research Council, University of Valencia, Generalitat Valenciana). Carretera CV-315 km 10.7 (Campus IVIA). 46113 Moncada, Valencia, Spain
| |
Collapse
|
16
|
Sweetapple C, Wade MJ, Melville-Shreeve P, Chen AS, Lilley C, Irving J, Grimsley JMS, Bunce JT. Dynamic population normalisation in wastewater-based epidemiology for improved understanding of the SARS-CoV-2 prevalence: a multi-site study. JOURNAL OF WATER AND HEALTH 2023; 21:625-642. [PMID: 37254910 PMCID: wh_2023_318 DOI: 10.2166/wh.2023.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) is a valuable tool for monitoring the circulation of COVID-19. However, while variations in population size are recognised as major sources of uncertainty, wastewater SARS-CoV-2 measurements are not routinely population-normalised. This paper aims to determine whether dynamic population normalisation significantly alters SARS-CoV-2 dynamics observed through wastewater monitoring, and whether it is beneficial or necessary to provide an understanding of COVID-19 epidemiology. Data from 394 sites in England are used, and normalisation is implemented based on ammoniacal nitrogen and orthophosphate concentrations. Raw and normalised wastewater SARS-CoV-2 metrics are evaluated at the site and spatially aggregated levels are compared against indicators of prevalence based on the Coronavirus Infection Survey and Test and Trace polymerase chain reaction test results. Normalisation is shown, on average, to have a limited impact on overall temporal trends. However, significant variability in the degree to which it affects local-level trends is observed. This is not evident from previous WBE studies focused on single sites and, critically, demonstrates that while the impact of normalisation on SARS-CoV-2 trends is small on average, this may not always be the case. When averaged across many sites, normalisation strengthens the correlation between wastewater SARS-CoV-2 data and prevalence indicators; however, confidence in the improvement is low.
Collapse
Affiliation(s)
- Chris Sweetapple
- UK Health Security Agency, Environmental Monitoring for Health Protection, Nobel House, London SW1P 3JR, United Kingdom E-mail: ; Centre for Water Systems, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Matthew J Wade
- UK Health Security Agency, Environmental Monitoring for Health Protection, Nobel House, London SW1P 3JR, United Kingdom E-mail: ; School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| | - Peter Melville-Shreeve
- Centre for Water Systems, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Albert S Chen
- Centre for Water Systems, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Chris Lilley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Nobel House, London SW1P 3JR, United Kingdom E-mail:
| | - Jessica Irving
- UK Health Security Agency, Environmental Monitoring for Health Protection, Nobel House, London SW1P 3JR, United Kingdom E-mail:
| | - Jasmine M S Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Nobel House, London SW1P 3JR, United Kingdom E-mail: ; The London Data Company, London EC2N 2AT, UK
| | - Joshua T Bunce
- UK Health Security Agency, Environmental Monitoring for Health Protection, Nobel House, London SW1P 3JR, United Kingdom E-mail: ; School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, United Kingdom; Department for Environment, Food and Rural Affairs, Seacole Building, London SW1P 4DF, United Kingdom
| |
Collapse
|
17
|
Xu L, Lu YT, Wu DF, Li X, Song M, Hang TJ, Su MX. Application of the metal ions as potential population biomarkers for wastewater-based epidemiology: estimating tobacco consumption in Southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:1-13. [PMID: 37060434 PMCID: PMC10105154 DOI: 10.1007/s10653-023-01558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Wastewater-based epidemiology (WBE) is an objective approach for the estimation of population-level exposure to a wide range of substances, in which the use of a population biomarker (PB) could significantly reduce back-calculation errors. Although some endogenous or exogenous compounds such as cotinine and other hormones have been developed as PBs, more PBs still need to be identified and evaluated. This study aimed to propose a novel method to estimate population parameters from the mass load of metal ion biomarkers in wastewater, and estimate the consumption of tobacco in 24 cities in Southern China using the developed method. Daily wastewater samples were collected from 234 wastewater treatment plants (WWTPs) in 24 cities in Southern China. Atomic absorption spectroscopy (AAS) was applied to determine the concentrations of common health-related metal ions in wastewater, including sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), and zinc (Zn), and compared them with the daily mass load of cotinine corresponding to catchment populations. The concentrations of cotinine in wastewater samples were measured using liquid chromatography-tandem mass spectrometry. There were clear and strong correlations between the target metal ion equivalent population and census data. The correlation coefficients (R) were RK = 0.78, RNa = 0.66, RCa = 0.81, RMg = 0.77, and RFe = 0.69, at p < 0.01 and R2 > 0.6. Subsequently, the combination of WBE and metal ion PBs was used to estimate tobacco consumption. Daily consumption of nicotine was estimated to be approximately 1.76 ± 1.19 mg/d/capita, equivalent to an average of 13.0 ± 8.75 cigarettes/d being consumed by smokers. The data on tobacco consumption in this study were consistent with those in traditional surveys in Southern China. The metal ion potassium is an appropriate PB for reflecting the real-time population and could be used to evaluate the tobacco consumption in WBE study.
Collapse
Affiliation(s)
- Lei Xu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- Department of Pharmacy, Ordos Central Hospital, No. 23 Yijinhuoluo Road, Ordos, 017000, China
| | - Yu-Ting Lu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Dong-Feng Wu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Xuan Li
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Min Song
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Tai-Jun Hang
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
| | - Meng-Xiang Su
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
| |
Collapse
|
18
|
Gao Z, Gao M, Chen CH, Zhou Y, Zhan ZH, Ren Y. Knowledge graph of wastewater-based epidemiology development: A data-driven analysis based on research topics and trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28373-28382. [PMID: 36662433 PMCID: PMC9867605 DOI: 10.1007/s11356-023-25237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/05/2023] [Indexed: 04/16/2023]
Abstract
Wastewater-based epidemiology (WBE) has contributed significantly to the monitoring of drug use and transmission of viruses that has been published in numerous research papers. In this paper, we used LitStraw, a self-developed text extraction tool, to extract, analyze, and construct knowledge graphs from nearly 900 related papers in PDF format collected in Web of Science from 2000 to 2021 to analyze the research hotspots and development trends of WBE. The results showed a growing number of WBE publications in multidisciplinary cross-collaboration, with more publications and close collaboration between the USA, Australia, China, and European countries. The keywords of illicit drugs and pharmaceuticals still maintain research hotness, but the specific research hotspots change significantly, among which the research hotspots of new psychoactive substances, biomarkers, and stability show an increasing trend. In addition, judging the spread of COVID-19 by the presence of SARS-CoV-2 RNA in sewage has become the focus since 2020. This work can show the development of WBE more clearly by constructing a knowledge graph and also provide new ideas for the paper mining analysis methods in different fields.
Collapse
Affiliation(s)
- Zhihan Gao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 510006, Guangzhou, China
| | - Min Gao
- School of Computer Science and Engineering, South China University of Technology, 510006, Guangzhou, China
| | - Chun-Hua Chen
- School of Software Engineering, South China University of Technology, 510006, Guangzhou, China
| | - Yifan Zhou
- School of Electronic and Information Engineering, South China University of Technology, 510006, Guangzhou, China
| | - Zhi-Hui Zhan
- School of Computer Science and Engineering, South China University of Technology, 510006, Guangzhou, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 510006, Guangzhou, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, Guangzhou, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, 510006, Guangzhou, China.
| |
Collapse
|
19
|
Hou C, Zhong Y, Zhang L, Liu M, Yan F, Chen M, Wang Y, Xu P, Su M, Hu C, Di B. Estimating the prevalence of hypertension in 164 cities in China by wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130147. [PMID: 36283217 DOI: 10.1016/j.jhazmat.2022.130147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Hypertension is the most common chronic non-infectious disease and a severe problem for public health in China. There were 244.5 million people aged over 18 years in China who had hypertension in 2015, and hypertension-related death accounted for more than 25 % of all causes of death in China every year. To monitor the hypertension prevalence in near real-time, a wastewater-based epidemiology (WBE) approach by using metoprolol acid as a biomarker was conducted in 164 cities in China. LC-MS/MS was utilized to quantify metoprolol acid in sewage, and satisfactory method validation results were achieved. The average concentration of metoprolol acid in sewage was 943.1 ± 671.1 ng/L, and the back-calculated consumption of metoprolol based on metoprolol acid was 932.0 ± 390.5 mg/day/1000inh on average, ranging from 76.7 to 3275.7 mg/day/1000inh. The prevalence of metoprolol was estimated to be 0.83 % ± 0.35 %, and the estimated hypertension prevalence in the population aged over 15 years was ultimately assessed to be 28.56 % ± 10.44 % ranging from 14.28 % to 44.28 % and was consistent with the China Hypertension Survey result of 27.9 %. This research demonstrated that estimating hypertension prevalence by WBE with metoprolol acid as a biomarker is feasible in Chinese cities.
Collapse
Affiliation(s)
- Chenzhi Hou
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Yuling Zhong
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Lan Zhang
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Muyuan Liu
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Fang Yan
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Mengyi Chen
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Youmei Wang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China; National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security of the People's Republic of China, Beijing 100741, PR China; Key Laboratory of Drug Monitoring and Control, Ministry of Public Security, People's Republic of China, Beijing 100741, PR China
| | - Peng Xu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China; National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security of the People's Republic of China, Beijing 100741, PR China; Key Laboratory of Drug Monitoring and Control, Ministry of Public Security, People's Republic of China, Beijing 100741, PR China
| | - Mengxiang Su
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China
| | - Chi Hu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China; Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Bin Di
- Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China; China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, PR China.
| |
Collapse
|
20
|
Sim W, Park S, Ha J, Kim D, Oh JE. Evaluation of population estimation methods for wastewater-based epidemiology in a metropolitan city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159154. [PMID: 36191710 DOI: 10.1016/j.scitotenv.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effect of population estimation on the calculation of drug biomarker consumption using wastewater-based epidemiology. Population estimates using mobile phone data, census data, and wastewater quality parameters, such as biological oxygen demand (BOD), total nitrogen (TN), and total phosphorus (TP), were evaluated in six different wastewater treatment plant catchment areas of Busan Metropolitan City, South Korea. The population based on mobile phone data was affected by the patterns of non-resident population movements in each area. The population-normalized daily loads (PNDLs) of methamphetamine were compared according to the different population results. The PNDLs using the population based on mobile phone data (PNDLMobile) was 5.87-27.0 mg/d/1000 people. The PNDLMobile values were notably different from the PNDLs using wastewater quality parameters (PNDLWastewater) (PNDLWastewater/PNDLMobile: 51-148 %, mean 93 %, relative standard deviation (RSD) 36 %), indicating the unsuitability of population estimation using BOD, TN, and TP. In areas with a large concentration of workplaces, the PNDLs using census data (PNDLCensus) differed from the PNDLMobile values (PNDLCensus/PNDLMobile: 57-124 %, mean 94 %, RSD 27 %), whereas other areas showed similar values for PNDLCensus and PNDLMobile (PNDLCensus/PNDLMobile: 95-108 %, mean 102 %, RSD 4.2 %). In particular, the total population estimates of the six survey areas using census data were approximately the same as those based on mobile phone data (RSD: 0.8 %), indicating a decrease in the influence of the non-residential active population in the entire metropolitan city.
Collapse
Affiliation(s)
- Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Suyeon Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jihye Ha
- Department of Urban Planning and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Donghyun Kim
- Department of Urban Planning and Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
21
|
Kelkar V, Driver EM, Bienenstock EJ, Palladino A, Halden RU. Stability of human stress hormones and stress hormone metabolites in wastewater under oxic and anoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159377. [PMID: 36240932 DOI: 10.1016/j.scitotenv.2022.159377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Levels in wastewater of human stress biomarkers, such as cortisone (E), cortisol (F), tetrahydrocortisone (THE), and tetrahydrocortisol (THF) may serve as indicators of population wellbeing and overall health. This study examined the stability of these biosignature compounds in wastewater to inform on their applicability for use in wastewater-based epidemiology (WBE). Wastewater from two undisclosed U.S. municipalities were fortified with the above four biomarkers of stress to a concentration of 10 ppb, and their decay was studied at three temperatures (15, 25, and 35 °C) over 24 h in oxic and anoxic conditions. Samples were analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) in conjunction with the isotope dilution method for absolute quantitation. Results demonstrated short-term persistence (24 h) of biomarkers at low temperatures (15 °C), and accelerating kinetics of decay that were positively correlated with temperature increases. Among the four biomarkers evaluated, the tetrahydro derivatives were the most long-lived sewage-borne stress biomarkers and these are recommended as prime analytical targets for use in WBE when tracking population stress. Statistical analyses using a non-parametric Wilcoxon test further revealed no significant differences (p > 0.05) between oxic and anoxic decay rates for all stress biomarkers in wastewater from all study locations, regardless of the prevailing temperature regime. This negative finding is worthy of reporting because it suggests the feasibility of straightforward modeling of stress hormone decay, irrespective of whether the sewerage system monitored contains fully filled, pressurized pipes or partially filled gravity flow pipes, whose filling level, and with it its redox conditions, are known to fluctuate over time with water use and storm events.
Collapse
Affiliation(s)
- Varun Kelkar
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA
| | - Erin M Driver
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA
| | - Elisa J Bienenstock
- Watts College of Public Service and Community Solutions, Arizona State University, 411 N Central Ave #750, Phoenix, AZ 85004, USA
| | - Anthony Palladino
- Boston Fusion Corp., 70 Westview Street, Suite 100, Lexington, MA 02421, USA
| | - Rolf U Halden
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA; OneWaterOneHealth Nonprofit Project, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA.
| |
Collapse
|
22
|
Gao Z, Li P, Lin H, Lin W, Ren Y. Biomarker selection strategies based on compound stability in wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5516-5529. [PMID: 36418835 PMCID: PMC9684832 DOI: 10.1007/s11356-022-24268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The specific compositions of human excreta in sewage can be used as biomarkers to indicate the disease prevalence, health status, and lifestyle of the population living in the investigated catchment. It is important for guiding and evaluating public health policies as well as promoting human health development. Among several parameters of wastewater-based epidemiology (WBE), the decay of biomarkers during transportation in sewer and storage plays a crucial role in the back-calculation of population consumption. In this paper, we summarized the stability data of common biomarkers in storage at different temperatures and in-sewer transportation. Among them, cardiovascular drugs and antidiabetic drugs are very stable which can be used as biomarkers; most of the illicit drugs are stable except for cocaine, heroin, and tetrahydrocannabinol which could be substituted by their metabolites as biomarkers. There are some losses for part of antibiotics and antidepressants even in frozen storage. Rapid detection of contagious viruses is a new challenge for infectious disease control. With the deeper and broader study of biomarkers, it is expected that the reliable application of the WBE will be a useful addition to epidemiological studies.
Collapse
Affiliation(s)
- Zhihan Gao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- Datansha Branch of Guangzhou Sewage Treatment Co., Ltd, Guangzhou, 510163, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Parra-Arroyo L, Martínez-Ruiz M, Lucero S, Oyervides-Muñoz MA, Wilkinson M, Melchor-Martínez EM, Araújo RG, Coronado-Apodaca KG, Velasco Bedran H, Buitrón G, Noyola A, Barceló D, Iqbal HM, Sosa-Hernández JE, Parra-Saldívar R. Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review. Trends Analyt Chem 2023; 158:116890. [DOI: 10.1016/j.trac.2022.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Li Y, Miyani B, Zhao L, Spooner M, Gentry Z, Zou Y, Rhodes G, Li H, Kaye A, Norton J, Xagoraraki I. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158350. [PMID: 36041621 PMCID: PMC9419442 DOI: 10.1016/j.scitotenv.2022.158350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Wastewater-based epidemiology (WBE) has been suggested as a useful tool to predict the emergence and investigate the extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we screened appropriate population biomarkers for wastewater SARS-CoV-2 normalization and compared the normalized SARS-CoV-2 values across locations with different demographic characteristics in southeastern Michigan. Wastewater samples were collected between December 2020 and October 2021 from nine neighborhood sewersheds in the Detroit Tri-County area. Using reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), concentrations of N1 and N2 genes in the studied sites were quantified, with N1 values ranging from 1.92 × 102 genomic copies/L to 6.87 × 103 gc/L and N2 values ranging from 1.91 × 102 gc/L to 6.45 × 103 gc/L. The strongest correlations were observed with between cumulative COVID-19 cases per capita (referred as COVID-19 incidences thereafter), and SARS-CoV-2 concentrations normalized by total Kjeldahl nitrogen (TKN), creatinine, 5-hydroxyindoleacetic acid (5-HIAA) and xanthine when correlating the per capita SARS-CoV-2 and COVID-19 incidences. When SARS-CoV-2 concentrations in wastewater were normalized and compared with COVID-19 incidences, the differences between neighborhoods of varying demographics were reduced as compared to differences observed when comparing non-normalized SARS-CoV-2 with COVID-19 cases. This indicates when studying the disease burden in communities of different demographics, accurate per capita estimation is of great importance. The study suggests that monitoring selected water quality parameters or biomarkers, along with RNA concentrations in wastewater, will allow adequate data normalization for spatial comparisons, especially in areas where detailed sanitary sewage flows and contributing populations in the catchment areas are not available. This opens the possibility of using WBE to assess community infections in rural areas or the developing world where the contributing population of a sample could be unknown.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America.
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Maddie Spooner
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Zach Gentry
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Andrew Kaye
- CDM Smith, 535 Griswold St, Detroit, MI 48226, United States of America
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| |
Collapse
|
25
|
Wang H, Xu B, Yang L, Huo T, Bai D, An Q, Li X. Consumption of common illicit drugs in twenty-one cities in southwest China through wastewater analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158105. [PMID: 35987225 DOI: 10.1016/j.scitotenv.2022.158105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Wastewater-based epidemiology (WBE) was applied to estimate illicit drugs consumption at a provincial scale in southwest China. A large-scale wastewater sampling campaign was carried out from October to November in 2021 in 156 different wastewater treatment plants (WWTPs). Two 24-h composite influent wastewater samples were collected in each WWTP. Concentrations of 11 illicit drugs or their metabolites were determined using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Benzoylecgonine, cocaine, 6-monoacetylmorphine, norketamine, 3,4-methylenedioxymethamphetamine (MDMA), and MDA were not detected in any of the wastewater samples. Methamphetamine and morphine were detected in >84% of samples, while ketamine was found in about 6% of the samples. The city-specific population-weighted consumption of methamphetamine and ketamine were in the range of 0.6-49.7 and N.D.-7.0 mg 1000 inh-1 day-1, respectively, with provincial population-weighted values of 22.6 and 2.4 mg 1000 inh-1 day-1 in southwest China. The city-specific load of morphine varied from 3.2 to 10.2 mg 1000 inh-1 day-1, with provincial population-weighted load of 6.7 mg 1000 inh-1 day-1. Taking into account therapeutic use of morphine and codeine, the provincial heroin consumption was estimated to be 10.3 mg 1000 inh-1 day-1, ranging from 1.7 to 18.5 mg 1000 inh-1 day-1 in 21 cities. Overall, the patterns of illicit drugs use were similar across southwest China, with high prevalence of methamphetamine and heroin, but relatively low use of ketamine. These findings could provide accurate drugs consumption information for timely identifying potential hotspots of illicit drugs use in southwest China.
Collapse
Affiliation(s)
- Huanbo Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China; Sichuan Police College, Luzhou, China.
| | - Li Yang
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Dengwen Bai
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China
| | - Qi An
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Xiran Li
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
26
|
Hoar C, Li Y, Silverman AI. Assessment of Commonly Measured Wastewater Parameters to Estimate Sewershed Populations for Use in Wastewater-Based Epidemiology: Insights into Population Dynamics in New York City during the COVID-19 Pandemic. ACS ES&T WATER 2022; 2:2014-2024. [PMID: 37552716 PMCID: PMC9063991 DOI: 10.1021/acsestwater.2c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/18/2023]
Abstract
Understanding per capita rates of disease incidence or prevalence from wastewater surveillance data requires an estimate of the population contributing to wastewater samples, given that populations in large urban areas are dynamic, especially if major events, such as the onset of the COVID-19 pandemic, cause large population shifts. To assess whether commonly measured wastewater parameters can be used to estimate sewershed populations, we used wastewater data collected from New York City's (NYC) 14 wastewater treatment facilities to evaluate the relationship between influent loads of four wastewater parameters-ammonia, total Kjeldahl nitrogen, total suspended solids, and five-day carbonaceous biochemical oxygen demand-and census-based population estimates of the corresponding sewersheds during 2019, when populations were assumed to be relatively stable. Ammonia mass load had the most consistent relationship with sewershed population, regardless of wet weather contributions to NYC's predominantly combined sewer system. Changes in ammonia loads due to COVID-19 restrictions enacted in March 2020 generally reflected population shifts in sewersheds serving areas of Manhattan and Brooklyn, for which previous studies report decreased commuter mobility and residential populations. Our findings highlight the utility of ammonia mass load in influent wastewater as a population indicator to normalize wastewater-based epidemiology data and track sewershed population dynamics.
Collapse
Affiliation(s)
| | | | - Andrea I. Silverman
- Department of Civil and Urban Engineering, Tandon School of Engineering,
New York University, Brooklyn, New York 11201,
United States
| |
Collapse
|
27
|
Hahn RZ, Bastiani MF, Lizot LDLF, Schneider A, da Silva Moreira IC, Meireles YF, Viana MF, do Nascimento CA, Linden R. Long-term monitoring of drug consumption patterns during the COVID-19 pandemic in a small-sized community in Brazil through wastewater-based epidemiology. CHEMOSPHERE 2022; 302:134907. [PMID: 35561781 PMCID: PMC9090174 DOI: 10.1016/j.chemosphere.2022.134907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 05/14/2023]
Abstract
The abuse of legal and illegal drugs is a global public health problem, also affecting the social and economic well-being of the population. Thus, there is a significant interest in monitoring drug consumption. Relevant epidemiological information on lifestyle habits can be obtained from the chemical analysis of urban wastewater. In this work, passive sampling using polar organic chemical integrative samplers (POCIS) was used to quantify licit and illicit drugs biomarkers in wastewater for the application of wastewater-based epidemiology (WBE). In this WBE study, a small urban community of approximately 1179 inhabitants was monitored from 18 March 2020 to 3 March 2021, covering the mobility restriction and flexibilization periods of the COVID-19 pandemic in Brazil. Consumption was estimated for amphetamine, caffeine, cocaine, MDMA, methamphetamine, nicotine, and THC. The highest estimated consumption among illicit drugs was for THC (2369 ± 1037 mg day-1 1000 inh-1) followed by cocaine (353 ± 192 mg day-1 1000 inh-1). There was a negative correlation between consumption of caffeine, cocaine, MDMA, nicotine, and THC with human mobility, expressed by cellular phone mobility reports (P-value = 0.0094, 0.0019, 0.0080, 0.0009, and 0.0133, respectively). Our study is the first long-term drug consumption evaluation during the COVID-19 pandemic, with continuous sampling for almost a whole year. The observed reduction in consumption of both licit and illicit drugs is probably associated with stay-at-home orders and reduced access, which can be due to the closure of commercial facilities during some time of the evaluated period, smaller drug supply, and reduced income of the population due to the shutdown of companies and unemployment. The assay described in this study can be used as a complementary and cost-effective tool to the long-term monitoring of drug use biomarkers in wastewater, a relevant epidemiological strategy currently limited to short collection times.
Collapse
Affiliation(s)
- Roberta Zilles Hahn
- Laboratory of Analytical Toxicology, Universidade Feevale, Rua Rubem Berta, nº 200, CEP 93525-080, Novo Hamburgo, Brazil.
| | - Marcos Frank Bastiani
- Laboratory of Analytical Toxicology, Universidade Feevale, Rua Rubem Berta, nº 200, CEP 93525-080, Novo Hamburgo, Brazil
| | - Lilian de Lima Feltraco Lizot
- Laboratory of Analytical Toxicology, Universidade Feevale, Rua Rubem Berta, nº 200, CEP 93525-080, Novo Hamburgo, Brazil
| | - Anelise Schneider
- Laboratory of Analytical Toxicology, Universidade Feevale, Rua Rubem Berta, nº 200, CEP 93525-080, Novo Hamburgo, Brazil
| | | | - Yasmin Fazenda Meireles
- Laboratory of Analytical Toxicology, Universidade Feevale, Rua Rubem Berta, nº 200, CEP 93525-080, Novo Hamburgo, Brazil
| | - Mariana Freitas Viana
- Laboratory of Analytical Toxicology, Universidade Feevale, Rua Rubem Berta, nº 200, CEP 93525-080, Novo Hamburgo, Brazil
| | - Carlos Augusto do Nascimento
- Department of Production Engineering, Faculdades Integradas de Taquara, Av. Oscar Martins Rangel, nº 4500, CEP 95612-150, Taquara, Brazil
| | - Rafael Linden
- Laboratory of Analytical Toxicology, Universidade Feevale, Rua Rubem Berta, nº 200, CEP 93525-080, Novo Hamburgo, Brazil; National Institute of Forensic Science and Technology (INCT Forense), Porto Alegre, Brazil.
| |
Collapse
|
28
|
Hsu SY, Bayati M, Li C, Hsieh HY, Belenchia A, Klutts J, Zemmer SA, Reynolds M, Semkiw E, Johnson HY, Foley T, Wieberg CG, Wenzel J, Johnson MC, Lin CH. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. WATER RESEARCH 2022; 223:118985. [PMID: 36030667 PMCID: PMC9376872 DOI: 10.1016/j.watres.2022.118985] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/15/2022] [Accepted: 08/13/2022] [Indexed: 05/29/2023]
Abstract
Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in the communities since the coronavirus disease 2019 (COVID-19) outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater is critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (PMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated and validated for their utility in normalizing the SARS-CoV-2 loads through two normalizing approaches using the data from 64 wastewater treatment plants (WWTPs) in Missouri. Their utility in assessing the real-time population contributing to the wastewater was also evaluated. The best performing candidate was further tested for its capacity for improving correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City of Columbia, Missouri, a university town with a constantly fluctuating population. Our results showed that, except CRE, the direct and indirect normalization approaches using biomarkers allow accounting for the changes in wastewater dilution and differences in relative human waste input over time regardless flow volume and population of the given WWTP. Among selected biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 load per capita due to its high accuracy, low variability, and high temporal consistency to reflect the change in population dynamics and dilution in wastewater. It also demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater. In addition, the viral loads normalized by the PARA-estimated population significantly improved the correlation (rho=0.5878, p < 0.05) between SARS-CoV-2 load per capita and case numbers per capita. This chemical biomarker complements the current normalization scheme recommended by CDC and helps us understand the size, distribution, and dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each sewershed.
Collapse
Affiliation(s)
- Shu-Yu Hsu
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA
| | - Mohamed Bayati
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Chenhui Li
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Hsin-Yeh Hsieh
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Anthony Belenchia
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Jessica Klutts
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Sally A Zemmer
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Melissa Reynolds
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Elizabeth Semkiw
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Hwei-Yiing Johnson
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Trevor Foley
- Missouri Department of Corrections, Jefferson City, MO, USA
| | - Chris G Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65201, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
29
|
Gudra D, Dejus S, Bartkevics V, Roga A, Kalnina I, Strods M, Rayan A, Kokina K, Zajakina A, Dumpis U, Ikkere LE, Arhipova I, Berzins G, Erglis A, Binde J, Ansonska E, Berzins A, Juhna T, Fridmanis D. Detection of SARS-CoV-2 RNA in wastewater and importance of population size assessment in smaller cities: An exploratory case study from two municipalities in Latvia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153775. [PMID: 35151738 PMCID: PMC8830921 DOI: 10.1016/j.scitotenv.2022.153775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology (WBE) has regained global importance during the COVID-19 pandemic. The mobility of people and other factors, such as precipitation and irregular inflow of industrial wastewater, are complicating the estimation of the disease prevalence through WBE, which is crucial for proper crisis management. These estimations are particularly challenging in urban areas with moderate or low numbers of inhabitants in situations where movement restrictions are not adopted (as in the case of Latvia) because residents of smaller municipalities tend to be more mobile and less strict in following the rules and measures of disease containment. Thus, population movement can influence the outcome of WBE measurements significantly and may not reflect the actual epidemiological situation in the respective area. Here, we demonstrate that by combining the data of detected SARS-CoV-2 RNA copy number, 5-hydroxyindoleacetic acid (5-HIAA) analyses in wastewater and mobile call detail records it was possible to provide an accurate assessment of the COVID-19 epidemiological situation in towns that are small (COVID-19 28-day cumulative incidence r = 0.609 and 35-day cumulative incidence r = 0.89, p < 0.05) and medium-sized towns (COVID-19 21-day cumulative incidence r = 0.997, 28-day cumulative incidence r = 0.98 and 35-day cumulative incidence r = 0.997, p < 0.05). This is the first study demonstrating WBE for monitoring COVID-19 outbreaks in Latvia. We demonstrate that the application of population size estimation measurements such as total 5-HIAA and call detail record data improve the accuracy of the WBE approach.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Sandis Dejus
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, Riga LV-1067, Latvia.
| | - Ance Roga
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Martins Strods
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Anton Rayan
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Kristina Kokina
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Uga Dumpis
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Laura Elina Ikkere
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, Riga LV-1067, Latvia
| | - Irina Arhipova
- Latvia University of Life Sciences and Technologies, Liela iela 2, Jelgava LV-3001, Latvia
| | - Gundars Berzins
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Aldis Erglis
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Juris Binde
- LLC "Latvian Mobile Telephone", Ropazu iela 6, Riga LV-1039, Latvia
| | - Evija Ansonska
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Aivars Berzins
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, Riga LV-1067, Latvia
| | - Talis Juhna
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia.
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia.
| |
Collapse
|
30
|
Guo Z, Hatakeyama T, Yoshimura C, Wang T, Hatano Y. Basic influent sewage quality reflects sewershed characteristics in Tokyo city. JOURNAL OF WATER AND HEALTH 2022; 20:972-984. [PMID: 35768971 DOI: 10.2166/wh.2022.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sewage comprises multifarious information on sewershed characteristics. For instance, influent sewage quality parameters (ISQPs) (e.g., total nitrogen (TN)) are being monitored regularly at all treatment plants. However, the relationship between ISQPs and sewershed characteristics is rarely investigated. Therefore, this study statistically investigated relationships between ISQPs and sewershed characteristics, covering demographic, social, and economic properties in Tokyo city as an example of a megacity. To this end, we collected ISQPs and sewershed characteristic data from 2015 to 2020 in 10 sewersheds in Tokyo city. By principal component analysis, spatial variability of ISQPs was aggregated into two principal components (89.8% contribution in total), indicating organics/nutrients and inorganic salts, respectively. Concentrations of organics/nutrients were significantly correlated with the population in sewersheds (daytime population density, family size, age distribution, etc.). Inorganic salts are significantly correlated with land cover ratios. Finally, a multiple regression model was developed for estimating the concentration of TN based on sewershed characteristics (R2=0.97). Scenario analysis using the regression model revealed that possible population movements in response to the coronavirus pandemic would substantially reduce the concentration of TN. These results indicate close relationships between ISQPs and sewershed characteristics and the potential applicability of big data of ISQPs to estimate sewershed characteristics and vice versa.
Collapse
Affiliation(s)
- Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan E-mail:
| | - Takayuki Hatakeyama
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan E-mail:
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan E-mail:
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan E-mail:
| |
Collapse
|
31
|
Duan L, Zhang Y, Wang B, Yu G, Gao J, Cagnetta G, Huang C, Zhai N. Wastewater surveillance for 168 pharmaceuticals and metabolites in a WWTP: Occurrence, temporal variations and feasibility of metabolic biomarkers for intake estimation. WATER RESEARCH 2022; 216:118321. [PMID: 35339048 DOI: 10.1016/j.watres.2022.118321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Wastewater-based epidemiology (WBE) is amply used for mining information about public health such as the estimation of consumption/intake of certain substances. Yet, proper biomarker selection is critical to obtain reliable data. This study measured a broad range of pharmaceuticals and metabolites in a wastewater treatment plant in Beijing, China, and evaluated their suitability as consumption estimation biomarkers. Wastewater sampling was conducted during a normal week and two holiday weeks to assess the impact of the holiday on population normalized daily mass loads (PNDLs). One hundred and forty-nine out of 168 pharmaceuticals were detected, with 94 analytes being quantified in all sampling events. Moreover, digestive drug cimetidine (<MDL∼672 ng L - 1) and anabolic steroid trenbolone (<MDL∼53 ng L - 1) were only detected during holiday weeks. PNDLs of some substances showed disparities between weekdays and weekends during the normal week. This study proposed a framework to diagnose whether a parent compound or its metabolite is suitable for intake/prevalence rate estimation. Our results support that not all the metabolites can be employed as biomarkers for back-calculation when the in-sewer stability of these compounds is unclear, such as metoprolol acid and O-desmethyl venlafaxine. Public healthcare data for drug utilization were applied to validate the prevalence of average substance use in this study. As a popular anti-epileptic ranging from hundreds to thousands of ng L - 1 in this study, the parent compound levetiracetam is more appropriate to be used in WBE under our framework, referring to public healthcare data. This WBE study illustrates the changes in pharmaceutical use and population lifestyle that stem from holidays and commutes. In addition, it can provide data support for the selection of more suitable biomarkers in WBE studies.
Collapse
Affiliation(s)
- Lei Duan
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Yizhe Zhang
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Bin Wang
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| | - Gang Yu
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Giovanni Cagnetta
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Nannan Zhai
- Shanghai Sciex Analytical Instrument Trading Co., Ltd Beijing Branch Company, Beijing 100015, China
| |
Collapse
|
32
|
Evaluating the Use of Alternative Normalization Approaches on SARS-CoV-2 Concentrations in Wastewater: Experiences from Two Catchments in Northern Sweden. ENVIRONMENTS 2022. [DOI: 10.3390/environments9030039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The detection of SARS-CoV-2 RNA fragments in feces has paved the way for wastewater-based epidemiology to contribute to COVID-19 mitigation measures, with its use in a public health context still under development. As a way to facilitate data comparison, this paper explores the impact of using alternative normalization approaches (wastewater treatment plant (WWTP) flow, population size estimates (derived using total nitrogen (TN), total phosphorus (TP) and census data) and pepper mild mottle virus (PMMoV)) on the relationship between viral wastewater data and clinical case numbers. Influent wastewater samples were collected at two WWTPs in Luleå, northern Sweden, between January and March 2021. TN and TP were determined upon sample collection, with RNA analysis undertaken on samples after one freeze–thaw cycle. The strength of the correlation between normalization approaches and clinical cases differed between WWTPs (r ≤ 0.73 or r ≥ 0.78 at the larger WWTP and r ≤ 0.23 or r ≥ 0.43 at the smaller WWTP), indicating that the use of wastewater as an epidemiological tool is context-dependent. Depending on the normalization approach utilized, time-shifted analyses imply that wastewater data on SARS-CoV-2 RNA pre-dated a rise in clinical cases by 0–2 and 5–8 days, for the lager and smaller WWTPs, respectively. SARS-CoV-2 viral loads normalized to the population or PMMoV better reflect the number of clinical cases when comparing wastewater data between sewer catchments.
Collapse
|
33
|
Hsu SY, Bayati MB, Li C, Hsieh HY, Belenchia A, Klutts J, Zemmer SA, Reynolds M, Semkiw E, Johnson HY, Foley T, Wieberg CG, Wenzel J, Johnson MC, Lin CH. Biomarkers Selection for Population Normalization in SARS-CoV-2 Wastewater-based Epidemiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.03.14.22272359. [PMID: 35313587 PMCID: PMC8936110 DOI: 10.1101/2022.03.14.22272359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the SARS-CoV-2 levels in the communities since the COVID-19 outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater can be critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (pMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated for their utility in normalizing the SARS-CoV-2 loads through developed direct and indirect approaches. Their utility in assessing the real-time population contributing to the wastewater was also evaluated. The best performed candidate was further tested for its capacity for improving correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City of Columbia, Missouri, a university town with a constantly fluctuated population. Our results showed that, except CRE, the direct and indirect normalization approaches using biomarkers allow accounting for the changes in wastewater dilution and differences in relative human waste input over time regardless flow volume and population at any given WWTP. Among selected biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 load per capita due to its high accuracy, low variability, and high temporal consistency to reflect the change in population dynamics and dilution in wastewater. It also demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater. In addition, the viral loads normalized by the PARA-estimated population significantly improved the correlation ( rho =0.5878, p <0.05) between SARS-CoV-2 load per capita and case numbers per capita. This chemical biomarker offers an excellent alternative to the currently CDC-recommended pMMoV genetic biomarker to help us understand the size, distribution, and dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each sewershed. HIGHLIGHT bullet points The paraxanthine (PARA), the metabolite of the caffeine, is a more reliable population biomarker in SARS-CoV-2 wastewater-based epidemiology studies than the currently recommended pMMoV genetic marker.SARS-CoV-2 load per capita could be directly normalized using the regression functions derived from correlation between paraxanthine and population without flowrate and population data.Normalizing SARS-CoV-2 levels with the chemical marker PARA significantly improved the correlation between viral loads per capita and case numbers per capita.The chemical marker PARA demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater.
Collapse
Affiliation(s)
- Shu-Yu Hsu
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
- Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA
| | - Mohamed B Bayati
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Chenhui Li
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Hsin-Yeh Hsieh
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Anthony Belenchia
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Jessica Klutts
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Sally A Zemmer
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Melissa Reynolds
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Elizabeth Semkiw
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Hwei-Yiing Johnson
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Trevor Foley
- Missouri Department of Corrections, Jefferson City, MO, USA
| | - Chris G Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65201, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
- Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
34
|
Wade MJ, Lo Jacomo A, Armenise E, Brown MR, Bunce JT, Cameron GJ, Fang Z, Farkas K, Gilpin DF, Graham DW, Grimsley JMS, Hart A, Hoffmann T, Jackson KJ, Jones DL, Lilley CJ, McGrath JW, McKinley JM, McSparron C, Nejad BF, Morvan M, Quintela-Baluja M, Roberts AMI, Singer AC, Souque C, Speight VL, Sweetapple C, Walker D, Watts G, Weightman A, Kasprzyk-Hordern B. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127456. [PMID: 34655869 PMCID: PMC8498793 DOI: 10.1016/j.jhazmat.2021.127456] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. In the United Kingdom, the evidence that wastewater could be used to monitor the SARS-CoV-2 virus prompted the development of National wastewater surveillance programmes. The scale and pace of this work has proven to be unique in monitoring of virus dynamics at a national level, demonstrating the importance of wastewater-based epidemiology (WBE) for public health protection. Beyond COVID-19, it can provide additional value for monitoring and informing on a range of biological and chemical markers of human health. A discussion of measurement uncertainty associated with surveillance of wastewater, focusing on lessons-learned from the UK programmes monitoring COVID-19 is presented, showing that sources of uncertainty impacting measurement quality and interpretation of data for public health decision-making, are varied and complex. While some factors remain poorly understood, we present approaches taken by the UK programmes to manage and mitigate the more tractable sources of uncertainty. This work provides a platform to integrate uncertainty management into WBE activities as part of global One Health initiatives beyond the pandemic.
Collapse
Affiliation(s)
- Matthew J Wade
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK.
| | - Anna Lo Jacomo
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Bristol University, Department of Engineering Mathematics, Bristol BS8 1TW, UK
| | - Elena Armenise
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Mathew R Brown
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Joshua T Bunce
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK; Department for Environment, Food and Rural Affairs, Seacole Building, 2 Marsham Street, London SW1P 4DF, UK
| | - Graeme J Cameron
- Scottish Environment Protection Agency, Strathallan House, Stirling FK9 4TZ, UK
| | - Zhou Fang
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Kata Farkas
- Bangor University, School of Natural Sciences, Deiniol Road, Bangor LL57 2UW, UK
| | - Deidre F Gilpin
- Queen's University Belfast, School of Pharmacy, Lisburn Road, Belfast BT9 7BL, UK
| | - David W Graham
- Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK
| | - Alwyn Hart
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Till Hoffmann
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Imperial College London, Department of Mathematics, London SW7 2AZ, UK
| | - Katherine J Jackson
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - David L Jones
- Bangor University, School of Natural Sciences, Deiniol Road, Bangor LL57 2UW, UK; The University of Western Australia, UWA School of Agriculture and Environment, Perth, WA 6009, Australia
| | - Chris J Lilley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK
| | - John W McGrath
- Queen's University Belfast, School of Biological Sciences, Chlorine Gardens, Belfast BT9 5DL, UK
| | - Jennifer M McKinley
- Queen's University Belfast, School of Natural and Built Environment, Stranmills Road, Belfast BT9 5AG, UK
| | - Cormac McSparron
- Queen's University Belfast, School of Natural and Built Environment, Stranmills Road, Belfast BT9 5AG, UK
| | - Behnam F Nejad
- Queen's University Belfast, School of Natural and Built Environment, Stranmills Road, Belfast BT9 5AG, UK
| | - Mario Morvan
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Marcos Quintela-Baluja
- Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Adrian M I Roberts
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Andrew C Singer
- UK Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK
| | - Célia Souque
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; University of Oxford, Department of Zoology, Mansfield Road, Oxford OX1 3SZ, UK
| | - Vanessa L Speight
- University of Sheffield, Department of Civil and Structural Engineering, Mappin Street, Sheffield S1 3JD, UK
| | - Chris Sweetapple
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; University of Exeter, Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, Exeter EX4 4QF, UK
| | - David Walker
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Glenn Watts
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Andrew Weightman
- Cardiff University, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | | |
Collapse
|
35
|
Sweetapple C, Melville-Shreeve P, Chen AS, Grimsley JMS, Bunce JT, Gaze W, Fielding S, Wade MJ. Building knowledge of university campus population dynamics to enhance near-to-source sewage surveillance for SARS-CoV-2 detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150406. [PMID: 34571237 PMCID: PMC8450208 DOI: 10.1016/j.scitotenv.2021.150406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 05/05/2023]
Abstract
Wastewater surveillance has been widely implemented for monitoring of SARS-CoV-2 during the global COVID-19 pandemic, and near-to-source monitoring is of particular interest for outbreak management in discrete populations. However, variation in population size poses a challenge to the triggering of public health interventions using wastewater SARS-CoV-2 concentrations. This is especially important for near-to-source sites that are subject to significant daily variability in upstream populations. Focusing on a university campus in England, this study investigates methods to account for variation in upstream populations at a site with highly transient footfall and provides a better understanding of the impact of variable populations on the SARS-CoV-2 trends provided by wastewater-based epidemiology. The potential for complementary data to help direct response activities within the near-to-source population is also explored, and potential concerns arising due to the presence of heavily diluted samples during wet weather are addressed. Using wastewater biomarkers, it is demonstrated that population normalisation can reveal significant differences between days where SARS-CoV-2 concentrations are very similar. Confidence in the trends identified is strongest when samples are collected during dry weather periods; however, wet weather samples can still provide valuable information. It is also shown that building-level occupancy estimates based on complementary data aid identification of potential sources of SARS-CoV-2 and can enable targeted actions to be taken to identify and manage potential sources of pathogen transmission in localised communities.
Collapse
Affiliation(s)
- Chris Sweetapple
- Joint Biosecurity Centre, Department of Health and Social Care, Windsor House, Victoria Street, London SW1H 0TL, United Kingdom; Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Peter Melville-Shreeve
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Albert S Chen
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Jasmine M S Grimsley
- Joint Biosecurity Centre, Department of Health and Social Care, Windsor House, Victoria Street, London SW1H 0TL, United Kingdom
| | - Joshua T Bunce
- Joint Biosecurity Centre, Department of Health and Social Care, Windsor House, Victoria Street, London SW1H 0TL, United Kingdom; Department for Environment, Food and Rural Affairs, Seacole Building, London SW1P 4DF, United Kingdom; School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| | - William Gaze
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Sean Fielding
- Innovation Centre, University of Exeter, Exeter EX4 4RN, United Kingdom
| | - Matthew J Wade
- Joint Biosecurity Centre, Department of Health and Social Care, Windsor House, Victoria Street, London SW1H 0TL, United Kingdom; School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
36
|
Yu H, Shao XT, Liu SY, Pei W, Kong XP, Wang Z, Wang DG. Estimating dynamic population served by wastewater treatment plants using location-based services data. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4627-4635. [PMID: 33928448 DOI: 10.1007/s10653-021-00954-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Wastewater-based epidemiology is a useful approach to estimate population-level exposure to a wide range of substances (e.g., drugs, chemicals, biological agents) by wastewater analysis. An important uncertainty in population normalized loads generated is related to the size and variability of the actual population served by wastewater treatment plants (WWTPs). Here, we built a population model using location-based services (LBS) data to estimate dynamic consumption of illicit drugs. First, the LBS data from Tencent Location Big Data and resident population were used to train a linear population model for estimating population (r2 = 0.92). Then, the spatiotemporal accuracy of the population model was validated. In terms of temporal accuracy, we compared the model-based population with the time-aligned ammonia nitrogen (NH4-N) population within the WWTP of SEG, showing a mean squared error of < 10%. In terms of spatial accuracy, we estimated the model-based population of 42 WWTPs in Dalian and compared it with the NH4-N and design population, indicating good consistency overall (5% less than NH4-N and 4% less than design). Furthermore, methamphetamine consumption and prevalence based on the model were calculated with an average of 111 mg/day/1000 inhabitants and 0.24%, respectively, and dynamically displayed on a visualization system for real-time monitoring. Our study provided a dynamic and accurate population for estimating the population-level use of illicit drugs, much improving the temporal and spatial trend analysis of drug use. Furthermore, accurate information on drug use could be used to assess population health risks in a community.
Collapse
Affiliation(s)
- Han Yu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Si-Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Xiang-Peng Kong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China.
| |
Collapse
|
37
|
Zheng Q, Ren Y, Wang Z, Liu J, Zhang Y, Lin W, Gao J, Thomas KV, Thai PK. Assessing patterns of illicit drug use in a Chinese city by analyzing daily wastewater samples over a one-year period. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125999. [PMID: 34229374 DOI: 10.1016/j.jhazmat.2021.125999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Wastewater-based epidemiology (WBE) has been used extensively around the globe to provide information on illicit drug consumption. In China, most WBE studies to date only include a limited number of samples per catchment, making it difficult to derive any temporal consumption patterns. This study addresses this knowledge gap by identifying the temporal consumption trends of nine drugs in a Chinese megacity using WBE over a one-year period. Daily influent samples (n = 279) were collected from a wastewater treatment plant serving ~500,000 residents. All target drugs showed similar levels of consumption throughout the week. These findings were different to previous WBE studies in developed countries, where amphetamine-type drugs have shown higher consumption on weekends than during the week. Such a difference could be due to the users' demographics and behaviors as reported in previous surveys and warrant more research to help formulate appropriate drug control policies in China. Our study also observed that declining methamphetamine and ketamine consumption between 2012 and 2018, while consumption of MDMA and methadone were stable over the same period.
Collapse
Affiliation(s)
- Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China.
| | - Zhe Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Jinhua Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| |
Collapse
|
38
|
Mota CR, Bressani-Ribeiro T, Araújo JC, Leal CD, Leroy-Freitas D, Machado EC, Espinosa MF, Fernandes L, Leão TL, Chamhum-Silva L, Azevedo L, Morandi T, Freitas GTO, Costa MS, Carvalho BO, Reis MTP, Melo MC, Ayrimoraes SR, Chernicharo CAL. Assessing spatial distribution of COVID-19 prevalence in Brazil using decentralised sewage monitoring. WATER RESEARCH 2021; 202:117388. [PMID: 34229195 PMCID: PMC8666095 DOI: 10.1016/j.watres.2021.117388] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
Brazil has become one of the epicentres of the COVID-19 pandemic, with cases heavily concentrated in large cities. Testing data is extremely limited and unreliable, which restricts health authorities' ability to deal with the pandemic. Given the stark demographic, social and economic heterogeneities within Brazilian cities, it is important to identify hotspots so that the limited resources available can have the greatest impact. This study shows that decentralised monitoring of SARS-CoV-2 RNA in sewage can be used to assess the distribution of COVID-19 prevalence in the city. The methodology developed in this study allowed the identification of hotspots by comprehensively monitoring sewers distributed through Belo Horizonte, Brazil's third largest city. Our results show that the most vulnerable neighbourhoods in the city were the hardest hit by the pandemic, indicating that, for many Brazilians, the situation is much worse than reported by official figures.
Collapse
Affiliation(s)
- Cesar R Mota
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil.
| | - Thiago Bressani-Ribeiro
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Juliana C Araújo
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Cíntia D Leal
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Deborah Leroy-Freitas
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Elayne C Machado
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Maria Fernanda Espinosa
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Luyara Fernandes
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Thiago L Leão
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil; Centro Federal para Educação Tecnológica de Minas Gerais (CEFET-MG), Brazil
| | - Lucas Chamhum-Silva
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Lariza Azevedo
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Thiago Morandi
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | - Gabriel Tadeu O Freitas
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| | | | | | | | - Marília C Melo
- Minas Gerais Institute for Water Management (IGAM), Brazil
| | | | - Carlos A L Chernicharo
- Universidade Federal de Minas Gerais (UFMG). Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte, Brazil
| |
Collapse
|
39
|
Amereh F, Negahban-Azar M, Isazadeh S, Dabiri H, Masihi N, Jahangiri-Rad M, Rafiee M. Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens 2021. [PMID: 34451410 DOI: 10.3390/pathogens10080946.pmid:34451410;pmcid:pmc8402176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The etiological agent for novel coronavirus (COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), not only affects the human respiratory system, but also the gastrointestinal tract resulting in gastrointestinal manifestations. The high rate of asymptomatic infected individuals has challenged the estimation of infection spread based on patients' surveillance, and thus alternative approaches such as wastewater-based epidemiology (WBE) have been proposed. Accordingly, the number of publications on this topic has increased substantially. The present systematic review thus aimed at providing state-of-the-knowledge on the occurrence and existing methods for sampling procedures, detection/quantification of SARS-CoV-2 in sewage samples, as well as anticipating challenges and providing future research direction to improve the current scientific knowledge. Articles were collected from three scientific databases. Only studies reporting measurements of virus in stool, urine, and wastewater samples were included. Results showed that improving the scientific community's understanding in these avenues is essential if we are to develop appropriate policy and management tools to address this pandemic pointing particularly towards WBE as a new paradigm in public health. It was also evident that standardized protocols are needed to ensure reproducibility and comparability of outcomes. Areas that require the most improvements are sampling procedures, concentration/enrichment, detection, and quantification of virus in wastewater, as well as positive controls. Results also showed that selecting the most accurate population estimation method for WBE studies is still a challenge. While the number of people infected in an area could be approximately estimated based on quantities of virus found in wastewater, these estimates should be cross-checked by other sources of information to draw a more comprehensive conclusion. Finally, wastewater surveillance can be useful as an early warning tool, a management tool, and/or a way for investigating vaccination efficacy and spread of new variants.
Collapse
Affiliation(s)
- Fatemeh Amereh
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Masoud Negahban-Azar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740, USA
| | - Siavash Isazadeh
- Environmental Service, Suez Water North America, Paramus, NJ 07652, USA
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Najmeh Masihi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Mahsa Jahangiri-Rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19168, Iran
| | - Mohammad Rafiee
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| |
Collapse
|
40
|
Amereh F, Negahban-Azar M, Isazadeh S, Dabiri H, Masihi N, Jahangiri-rad M, Rafiee M. Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens 2021; 10:946. [PMID: 34451410 PMCID: PMC8402176 DOI: 10.3390/pathogens10080946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/04/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The etiological agent for novel coronavirus (COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), not only affects the human respiratory system, but also the gastrointestinal tract resulting in gastrointestinal manifestations. The high rate of asymptomatic infected individuals has challenged the estimation of infection spread based on patients' surveillance, and thus alternative approaches such as wastewater-based epidemiology (WBE) have been proposed. Accordingly, the number of publications on this topic has increased substantially. The present systematic review thus aimed at providing state-of-the-knowledge on the occurrence and existing methods for sampling procedures, detection/quantification of SARS-CoV-2 in sewage samples, as well as anticipating challenges and providing future research direction to improve the current scientific knowledge. Articles were collected from three scientific databases. Only studies reporting measurements of virus in stool, urine, and wastewater samples were included. Results showed that improving the scientific community's understanding in these avenues is essential if we are to develop appropriate policy and management tools to address this pandemic pointing particularly towards WBE as a new paradigm in public health. It was also evident that standardized protocols are needed to ensure reproducibility and comparability of outcomes. Areas that require the most improvements are sampling procedures, concentration/enrichment, detection, and quantification of virus in wastewater, as well as positive controls. Results also showed that selecting the most accurate population estimation method for WBE studies is still a challenge. While the number of people infected in an area could be approximately estimated based on quantities of virus found in wastewater, these estimates should be cross-checked by other sources of information to draw a more comprehensive conclusion. Finally, wastewater surveillance can be useful as an early warning tool, a management tool, and/or a way for investigating vaccination efficacy and spread of new variants.
Collapse
Affiliation(s)
- Fatemeh Amereh
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Masoud Negahban-Azar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740, USA
| | - Siavash Isazadeh
- Environmental Service, Suez Water North America, Paramus, NJ 07652, USA;
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran;
| | - Najmeh Masihi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
| | - Mahsa Jahangiri-rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19168, Iran;
| | - Mohammad Rafiee
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| |
Collapse
|
41
|
Langa I, Gonçalves R, Tiritan ME, Ribeiro C. Wastewater analysis of psychoactive drugs: Non-enantioselective vs enantioselective methods for estimation of consumption. Forensic Sci Int 2021; 325:110873. [PMID: 34153554 DOI: 10.1016/j.forsciint.2021.110873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The consumption of licit and illicit psychoactive drugs (PAD) is ubiquitous in all communities and a serious public health problem. Measuring drug consumption is difficult but essential for health-care professionals, risk assessment and policymakers. Different sources of information have been used for a comprehensive analysis of drug consumption. Among them, Wastewater based epidemiology (WBE) emerged as an essential and complementary methodology for estimating licit and illicit drugs consumption. This methodology can be used for quantification of unchanged drugs or their human-specific metabolites in wastewater for estimation of consumption or screening of new PAD. Although some limitations are still being pointed out (e.g., estimation of the population size, use of suitable biomarkers or pharmacokinetics studies), the non-invasive and potential for monitoring real-time data on geographical and temporal trends in drug use have been showing its capacity as a routine and complementary tool. Chromatographic methods, both non-enantioselective and enantioselective are the analytical tools used for quantification of PAD in wastewaters and further estimation of consumption. Therefore, this manuscript aims to summarize and critically discuss the works used for wastewater analysis of PAD based on WBE using non-enantioselective and enantioselective methods for estimation of consumption. Non-enantioselective methods are among the most reported including for chiral PAD. Nevertheless, a trend has been seen towards the development of enantioselective methods as most PAD are chiral and determination of the enantiomeric fraction can provide additional information (e.g., distinction between consumption or direct disposal, or manufacture processes) and fulfill some WBE gaps.
Collapse
Affiliation(s)
- Ivan Langa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Ricardo Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Cláudia Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
42
|
D'Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Servos MR, Srikanthan N, MacKenzie M, Figeys D, Manuel D, Jüni P, MacKenzie AE, Delatolla R. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMID: 33508669 DOI: 10.1016/j.scitotenv.2021.145319l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Malcolm MacKenzie
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto M5G 1M1, Canada
| | - Douglas Manuel
- Department of Family Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Peter Jüni
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto M5T 3M6, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
43
|
D'Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Servos MR, Srikanthan N, MacKenzie M, Figeys D, Manuel D, Jüni P, MacKenzie AE, Delatolla R. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145319. [PMID: 33508669 PMCID: PMC7826013 DOI: 10.1016/j.scitotenv.2021.145319] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 04/14/2023]
Abstract
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Malcolm MacKenzie
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto M5G 1M1, Canada
| | - Douglas Manuel
- Department of Family Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Peter Jüni
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto M5T 3M6, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
44
|
Wilder ML, Middleton F, Larsen DA, Du Q, Fenty A, Zeng T, Insaf T, Kilaru P, Collins M, Kmush B, Green HC. Co-quantification of crAssphage increases confidence in wastewater-based epidemiology for SARS-CoV-2 in low prevalence areas. WATER RESEARCH X 2021; 11:100100. [PMID: 33842875 PMCID: PMC8021452 DOI: 10.1016/j.wroa.2021.100100] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 05/17/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 RNA is increasingly being incorporated into public health efforts to respond to the COVID-19 pandemic. In order to obtain the maximum benefit from these efforts, approaches to wastewater monitoring need to be rapid, sensitive, and relatable to relevant epidemiological parameters. In this study, we present an ultracentrifugation-based method for the concentration of SARS-CoV-2 wastewater RNA and use crAssphage, a bacteriophage specific to the human gut, to help account for RNA loss during transit in the wastewater system and sample processing. With these methods, we were able to detect, and sometimes quantify, SARS-CoV-2 RNA from 20 mL wastewater samples within as little as 4.5 hours. Using known concentrations of bovine coronavirus RNA and deactivated SARS-CoV-2, we estimate recovery rates of approximately 7-12% of viral RNA using our method. Results from 24 sewersheds across Upstate New York during the spring and summer of 2020 suggested that stronger signals of SARS-CoV-2 RNA from wastewater may be indicative of greater COVID-19 incidence in the represented service area approximately one week in advance. SARS-CoV-2 wastewater RNA was quantifiable in some service areas with daily positives tests of less than 1 per 10,000 people or when weekly positive test rates within a sewershed were as low as 1.7%. crAssphage DNA concentrations were significantly lower during periods of high flow in almost all areas studied. After accounting for flow rate and population served, crAssphage levels per capita were estimated to be about 1.35 × 1011 and 2.42 × 108 genome copies per day for DNA and RNA, respectively. A negative relationship between per capita crAssphage RNA and service area size was also observed likely reflecting degradation of RNA over long transit times. Our results reinforce the potential for wastewater surveillance to be used as a tool to supplement understanding of infectious disease transmission obtained by traditional testing and highlight the potential for crAssphage co-detection to improve interpretations of wastewater surveillance data.
Collapse
Affiliation(s)
- Maxwell L. Wilder
- Department of Environmental and Forest Biology, SUNY-ESF, Syracuse, NY 13210
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210
| | - David A. Larsen
- Department of Public Health, Syracuse University, Syracuse, NY 13244
| | - Qian Du
- Quadrant Biosciences, Syracuse, NY 13210
| | - Ariana Fenty
- Department of Environmental and Forest Biology, SUNY-ESF, Syracuse, NY 13210
| | - Teng Zeng
- Department of Civil & Environmental Engineering, Syracuse University, Syracuse, NY 13244
| | - Tabassum Insaf
- Bureau of Environmental and Occupational Epidemiology, New York State Department of Health, Albany, NY 12337
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY 12144
| | - Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, NY 13244
| | - Mary Collins
- Department of Environmental Studies, SUNY-ESF, Syracuse, NY 13210
| | - Brittany Kmush
- Department of Public Health, Syracuse University, Syracuse, NY 13244
| | - Hyatt C. Green
- Department of Environmental and Forest Biology, SUNY-ESF, Syracuse, NY 13210
| |
Collapse
|
45
|
Cong ZX, Shao XT, Liu SY, Pei W, Wang DG. Wastewater analysis reveals urban, suburban, and rural spatial patterns of illicit drug use in Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25503-25513. [PMID: 33459987 DOI: 10.1007/s11356-021-12371-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Illicit drug use in rural and suburban areas of China has not been studied extensively, as most studies have focused on illicit drug use in urban areas. To compare the differences between urban, suburban, and rural drug use, we collected influent samples from 19 urban, 9 suburban, and 18 rural wastewater treatment plants in Dalian, respectively. A method using solid-phase extraction combined with derivatization for gas chromatography -mass spectrometry analysis was applied to detect biomarker concentrations. The concentrations of methamphetamine and morphine ranged from 3.12 to 605 ng/L and < 2.35 to 198 ng/L, respectively. Norketamine was found in only four samples (5.56 to 14.5 ng/L), while 3,4-methylenedioxymethamphetamine and benzoylecgonine were not detected in any samples. Methamphetamine use in rural areas (16.3 mg/day/1000 inhabitant (inh), prevalence: 0.06%) was significantly lower than those in urban (77.1 mg/day/1000 inh, prevalence: 0.23%) and suburban (234 mg/day/1000 inh, prevalence: 0.70%) areas. Heroin use in suburban areas (57.6 mg/day/1000 inh, prevalence: 0.10%) was significantly higher than that in urban (13.9 mg/day/1000 inh, prevalence: 0.02%) and rural (8.68 mg/day/1000 inh, prevalence: 0.02%) areas. The results indicate relatively low levels of illicit drug use in rural areas of Dalian, related to low incomes and outflow of the working-age population. Illicit drug use was most prevalent in suburban areas of Dalian, which may be influenced by large floating populations and few anti-drug efforts in suburban areas.
Collapse
Affiliation(s)
- Zi-Xiang Cong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Si-Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, China.
| |
Collapse
|
46
|
Anand U, Adelodun B, Pivato A, Suresh S, Indari O, Jakhmola S, Jha HC, Jha PK, Tripathi V, Di Maria F. A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. ENVIRONMENTAL RESEARCH 2021; 196:110929. [PMID: 33640498 PMCID: PMC7906514 DOI: 10.1016/j.envres.2021.110929] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 05/08/2023]
Abstract
According to the WHO, on October 16, 2020, the spreading of the SARS-CoV-2, responsible for the COVID-19 pandemic, reached 235 countries and territories, and resulting in more than 39 million confirmed cases and 1.09 million deaths globally. Monitoring of the virus outbreak is one of the main activities pursued to limiting the number of infected people and decreasing the number of deaths that have caused high pressure on the health care, social, and economic systems of different countries. Wastewater based epidemiology (WBE), already adopted for the surveillance of life style and health conditions of communities, shows interesting features for the monitoring of the COVID-19 diffusion. Together with wastewater, the analysis of airborne particles has been recently suggested as another useful tool for detecting the presence of SARS-CoV-2 in given areas. The present review reports the status of research currently performed concerning the monitoring of SARS-CoV-2 spreading by WBE and airborne particles. The former have been more investigated, whereas the latter is still at a very early stage, with a limited number of very recent studies. Nevertheless, the main results highlights in both cases necessitate more research activity for better understating and defining the biomarkers and the related sampling and analysis procedures to be used for this important aim.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Pawan Kumar Jha
- Centre for Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Francesco Di Maria
- LAR(5) Laboratory - Dipartimento di Ingegneria - University of Perugia, via G. Duranti 93, 06125, Perugia, Italy.
| |
Collapse
|
47
|
Pandopulos AJ, Bade R, Tscharke BJ, O'Brien JW, Simpson BS, White JM, Gerber C. Application of catecholamine metabolites as endogenous population biomarkers for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142992. [PMID: 33498117 DOI: 10.1016/j.scitotenv.2020.142992] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 05/24/2023]
Abstract
Wastewater-based epidemiology studies use catchment populations to normalise chemical marker mass loads in 24-h composite wastewater samples. However, one of the biggest uncertainties within the field is the accuracy of the population used. A population marker in wastewater may significantly reduce the uncertainty. This study evaluated the catecholamine metabolites - homovanillic acid (HVA) and vanillylmandelic acid (VMA) - as potential population biomarkers. Influent wastewater 24-h composite samples were collected from 38 wastewater catchments from around Australia (representing ~33% of Australia's population), extracted and analysed by liquid chromatography tandem mass spectrometry. Measured mass loads were compared to population sizes determined by mapping catchment maps against high-resolution census data. Both biomarkers correlated with coefficient of determinations (r2) of 0.908 and 0.922 for HVA and VMA, respectively. From the regression analysis, a slope (i.e. the daily per-capita excretion) of 1.241 and 1.067 mg.day-1.person-1 was obtained for HVA and VMA, respectively. The mass load ratio between VMA:HVA were very similar to that reported in literature for urinary analysis among all catchments. Overall, this study provided further evidence that catecholamine metabolites are suitable candidates as population biomarkers for future studies.
Collapse
Affiliation(s)
- Aaron J Pandopulos
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Richard Bade
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Bradley S Simpson
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Jason M White
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Cobus Gerber
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia.
| |
Collapse
|
48
|
Hahn RZ, Augusto do Nascimento C, Linden R. Evaluation of Illicit Drug Consumption by Wastewater Analysis Using Polar Organic Chemical Integrative Sampler as a Monitoring Tool. Front Chem 2021; 9:596875. [PMID: 33859973 PMCID: PMC8042236 DOI: 10.3389/fchem.2021.596875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Illicit drug abuse is a worldwide social and health problem, and monitoring illicit drug use is of paramount importance in the context of public policies. It is already known that relevant epidemiologic information can be obtained from the analysis of urban residual waters. This approach, named wastewater-based epidemiology (WBE), is based on the measurement of specific markers, resulting from human biotransformation of the target drugs, as indicators of the consumption of the compounds by the population served by the wastewater treatment installation under investigation. Drug consumption estimation based on WBE requires sewage sampling strategies that express the concentrations along the whole time period of time. To this end, the most common approach is the use of automatic composite samplers. However, this active sampling procedure is costly, especially for long-term studies and in limited-resources settings. An alternative, cost-effective, sampling strategy is the use of passive samplers, like the polar organic chemical integrative sampler (POCIS). POCIS sampling has already been applied to the estimation of exposure to pharmaceuticals, pesticides, and some drugs of abuse, and some studies evaluated the comparative performances of POCIS and automatic composite samplers. In this context, this manuscript aims to review the most important biomarkers of drugs of abuse consumption in wastewater, the fundamentals of POCIS sampling in WBE, the previous application of POCIS for WBE of drugs of abuse, and to discuss the advantages and disadvantages of POCIS sampling, in comparison with other strategies used in WBE. POCIS sampling is an effective strategy to obtain a representative overview of biomarker concentrations in sewage over time, with a small number of analyzed samples, increased detection limits, with lower costs than active sampling. Just a few studies applied POCIS sampling for WBE of drugs of abuse, but the available data support the use of POCIS as a valuable tool for the long-term monitoring of the consumption of certain drugs within a defined population, particularly in limited-resources settings.
Collapse
Affiliation(s)
- Roberta Zilles Hahn
- Laboratory of Analytical Toxicology, Universidade Feevale, Novo Hamburgo, Brazil
| | | | - Rafael Linden
- Laboratory of Analytical Toxicology, Universidade Feevale, Novo Hamburgo, Brazil.,National Institute of Forensic Science and Technology (INCT Forense), Porto Alegre, Brazil
| |
Collapse
|
49
|
Hou C, Chu T, Chen M, Hua Z, Xu P, Xu H, Wang Y, Liao J, Di B. Application of multi-parameter population model based on endogenous population biomarkers and flow volume in wastewater epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143480. [PMID: 33213920 DOI: 10.1016/j.scitotenv.2020.143480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The consumption or prevalence of acesulfame, caffeine, paracetamol and amantadine was estimated by wastewater-based epidemiology based on a multi-parameter population model in 20 sewage treatment plants (STPs) in Hebei province, China. To minimize the uncertainties contributed by population estimation in WBE, a multi-parameter population model was established based on the population biomarkers equivalent population and flow volume-population with the weight factors calculated by the analytic hierarchy process (AHP). 4-Pyridoxic acid (4-PA), cotinine, trans-3'-hydroxycotinine (trans-3'-OH-Cot) and 1,4-methylimidazole acetic acid (MIAA) were selected as population biomarkers. The estimated model population showed the highest correlations (r2 = 0.97, p < 0.01) and lowest variation (one way-ANOVA, p = 0.82, mean variation: -0.1%) comparing to the census data, suggestion better population estimation. The estimated consumption of acesulfame, caffeine, paracetamol and amantadine was 6.7 ± 2.4 mg/day/inh, 50.5 ± 38.5 mg/day/inh, 61.5 ± 52.7 mg/day/inh and 0.52 ± 0.33 mg/day/inh, respectively. Meanwhile, the prevalence of paracetamol and amantadine was calculated to be 5.3% ± 4.5% and 0.28% ± 0.18%, respectively. The estimated results were consistent with that of previous researches in China and were also in accordance with the consumption calculated by sales data (acesulfame and paracetamol). Moreover, uncertainty study showed decrease in population-associated uncertainties by using a multi-parameter population model. The results demonstrated that the multi-parameter population model constructed in this research is feasible to apply in WBE and might lead to lower uncertainties in population estimation.
Collapse
Affiliation(s)
- Chenzhi Hou
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Tingting Chu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Mengyi Chen
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Zhendong Hua
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China; National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security of the People's Republic of China, Beijing 100741, China
| | - Peng Xu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China; National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security of the People's Republic of China, Beijing 100741, China
| | - Hui Xu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Youmei Wang
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China; National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security of the People's Republic of China, Beijing 100741, China
| | - Jun Liao
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China; School of Science, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| |
Collapse
|
50
|
Mao K, Zhang H, Pan Y, Yang Z. Biosensors for wastewater-based epidemiology for monitoring public health. WATER RESEARCH 2021; 191:116787. [PMID: 33421639 DOI: 10.1016/j.watres.2020.116787] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Public health is attracting increasing attention due to the current global pandemic, and wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring of public health by analysis of a variety of biomarkers (e.g., chemicals and pathogens) in wastewater. Rapid development of WBE requires rapid and on-site analytical tools for monitoring of sewage biomarkers to provide immediate decision and intervention. Biosensors have been demonstrated to be highly sensitive and selective tools for the analysis of sewage biomarkers due to their fast response, ease-to-use, low cost and the potential for field-testing. This paper presents biosensors as effective tools for wastewater analysis of potential biomarkers and monitoring of public health via WBE. In particular, we discuss the use of sewage sensors for rapid detection of a range of targets, including rapid monitoring of community-wide illicit drug consumption and pathogens for early warning of infectious diseases outbreaks. Finally, we provide a perspective on the future use of the biosensor technology for WBE to enable rapid on-site monitoring of sewage, which will provide nearly real-time data for public health assessment and effective intervention.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Yuwei Pan
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| |
Collapse
|