1
|
Xie R, Xu T, Yin Y, Liu M, Huang C, Zhang W, Li S. Quercetin attenuates DEHP-induced pyroptosis and programmed necrosis in chicken duodenum through regulation of the TLR4/MyD88/NF-κB pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126016. [PMID: 40057166 DOI: 10.1016/j.envpol.2025.126016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is not only popularly used as a plasticizer, but also ubiquitous in environment, causes an important risk to the lives and well-being of poultry. Quercetin (QUE) is a natural flavonoid with antioxidant, anti-inflammatory, anticancer and immunoregulation. Nevertheless, it's still unclear possibly DEHP causes duodenal pyroptosis and programmed necrosis in broiler chickens or perhaps QUE has a mitigating impact in this mechanism. Therefore, the present investigation was conducted to establish a model of tissue and duodenal progenitor cells models based on DEHP and QUE exposure, and in vitro experiments were added the nuclear factor-kappa-B activator1 (NF-κB Act1) and reactive oxygen species activator (Sanguinarine). The mechanism of duodenal injury was explored by immunofluorescence, Western blot and qRT-PCR. It was shown that exposure to DEHP resulted in decreased depth of the duodenal crypt, shortened cilia length, upregulation of oxidative stress markers, downregulation of antioxidant markers, and a significant increase in the promotion of ROS expression in chicken duodenum. DEHP also promoted the expression of the TLR4/MyD88/NF-κB pathway, as well as the expression of genes associated with pyroptosis and programmed necrosis. While in the DEHP + QUE co-treatment group, QUE regulated the antioxidant capacity of the duodenum and inhibited the TLR4/MyD88/NF-κB pathway, which reduced DEHP-induced pyroptosis and programmed necrosis to some extent. In in vitro experiments where NF-κB Act1 and Sanguinarin were added to the co-treated treatment group, NF-κB signalling was activated and re-up-regulated the levels of genes related to cellular pyroptosis and programmed necrosis alleviated by QUE, which further demonstrated that this pathway could regulate chicken duodenal pyroptosis and programmed necrosis. Thus, quercetin alleviated DEHP-induced chicken duodenal pyroptosis and programmed necrosis via the regulation of the TLR4/MyD88/NF-κB. This investigation supplies a theoretical footing for the hazard valuation of the plasticizer DEHP for poultry.
Collapse
Affiliation(s)
- Ruirui Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenwen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural: University, Harbin, 150030, PR China.
| |
Collapse
|
2
|
Wang J, Wei Y, Wu Y, Zhao T, Kang L, Han L, Chen J, Long C, Wei G, Shen L, Wu S. Di-(2-ethylhexyl) phthalate induces prepubertal testicular injury through MAM-related mitochondrial calcium overload in Leydig and Sertoli cell apoptosis. Toxicology 2024; 509:153956. [PMID: 39307383 DOI: 10.1016/j.tox.2024.153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
As one of the most prevalent environmental endocrine disruptors, di-(2-ethylhexyl) phthalate (DEHP) is known for its significant developmental toxicity to the male reproductive system in humans and mice. Prepubertal exposure to DEHP has been shown to cause testicular damage, but the underlying mechanisms require further investigation. To investigate this effect, prepubertal mice were exposed to 100, 250 or 500 mg/kg body weight (bw) of DEHP for 14 days, which resulted in impaired histological structure and increased apoptosis of the testes. RNA sequencing (RNA-seq) of testicular tissue suggested that DEHP led to injury in Leydig and Sertoli cells. To further elucidate these mechanisms, we conducted experiments using immature mouse Leydig (TM3) and Sertoli (TM4) cells, and exposed them to 200 μM mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP, for 24 h. We found that MEHP exposure induced oxidative stress injury and promoted cell apoptosis, and that cotreatment with N-acetylcysteine partially reversed these injuries. Given the close association between oxidative stress and mitochondrial calcium levels, we demonstrated that MEHP exposure disrupted mitochondria and increased mitochondrial calcium levels. In addition, MEHP exposure facilitated the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs), upregulated protein expression and enhanced the interactions of the IP3R3-Grp75-VDAC1 complex. Furthermore, inhibition of calcium transfer in the IP3R3-Grp75-VDAC1-MCU axis relieved MEHP-induced mitochondrial injury, oxidative stress and apoptosis in TM3 and TM4 cells. This study highlights the importance of MAM-mediated mitochondrial calcium overload and the subsequent apoptosis of Leydig and Sertoli cells as pivotal factors contributing to testicular injury induced by prepubertal exposure to DEHP.
Collapse
Affiliation(s)
- Junke Wang
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuexin Wei
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhao Wu
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Lian Kang
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lindong Han
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiadong Chen
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chunlan Long
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guanghui Wei
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Lianju Shen
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Shengde Wu
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Zhang J, Wang Z, Li X, Zhang Y, Yuan J, Wang Z, Xu F, Chen Y, Li C. Association between phthalates exposure and myocardial damage in the general population: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 261:119632. [PMID: 39025350 DOI: 10.1016/j.envres.2024.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cardiovascular consequences of phthalates exposure have been given increasing attention, but the association of phthalates with subclinical cardiovascular disease (CVD) was unknown. Accordingly, this study aimed to investigate the association between phthalates exposure and high-sensitivity cardiac troponin I (hs-cTnI), a marker of myocardial injury, which was detectable in the subclinical stage of CVD. METHODS Participants aged 6 years or older with available urinary phthalates metabolites and serum hs-cTnI concentrations were included in the National Health and Nutrition Examination Survey 2003-2004 cycle. Multivariable linear regression and weighted quantiles sum (WQS) regression were used to assess the association of hs-cTnI with individual phthalates and their co-exposure. Di-2-ethylhexylphthalate (ΣDEHP), high-molecular-weight phthalate (ΣHMWP), and low-molecular-weight phthalate (ΣLMWP) were defined as the molecular sum of phthalates metabolites in urine. RESULTS 2241 participants were finally included. The percent change of serum hs-cTnI concentrations related to per 1-standard deviation increase of logarithmic urinary phthalates concentrations was 3.4% (0.1-6.7, P = 0.04) for ΣDEHP, 3.6% (0.3-6.9, P = 0.03) for ΣHMWP, and 3.5% (0.2-6.8, P = 0.04) for ΣLMWP. Co-exposure to phthalates metabolites expressed as the WQS index also demonstrated a positive association with hs-cTnI. A similar association pattern was found in the population with no prior CVD. CONCLUSIONS This study indicated the potential of phthalates to myocardial injury which may occur even before clinically apparent CVD was identified, emphasizing the significance of reducing phthalates in the prevention of CVD.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yiwen Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaquan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zerui Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
4
|
Lu YW, Xie LY, Qi MH, Ren S, Wang YQ, Hu JN, Wang Z, Tang S, Zhang JT, Li W. Platycodin D Ameliorates Cognitive Impairment in Type 2 Diabetes Mellitus Mice via Regulating PI3K/Akt/GSK3β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12516-12528. [PMID: 38491972 DOI: 10.1021/acs.jafc.3c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Objectives: The aim of this study was to investigate the ameliorative effect of platycodin D (PD) on cognitive dysfunction in type 2 diabetes mellitus (T2DM) and its potential molecular mechanisms of action in vivo and in vitro. Materials and methods: An animal model of cognitive impairment in T2DM was established using a single intraperitoneal injection of streptozotocin (100 mg/kg) after 8 weeks of feeding a high-fat diet to C57BL/6 mice. In vitro, immunofluorescence staining and Western blot were employed to analyze the effects of PD on glucose-induced neurotoxicity in mouse hippocampal neuronal cells (HT22). Results: PD (2.5 mg/kg) treatment for 4 weeks significantly suppressed the rise in fasting blood glucose in T2DM mice, improved insulin secretion deficiency, and reversed abnormalities in serum triglyceride, cholesterol, low-density lipoprotein, and high-density lipoprotein levels. Meanwhile, PD ameliorated choline dysfunction in T2DM mice and inhibited the production of oxidative stress and apoptosis-related proteins of the caspase family. Notably, PD dose-dependently prevents the loss of mitochondrial membrane potential, promotes phosphorylation of phosphatidylinositol 3 kinase and protein kinase B (Akt) in vitro, activates glycogen synthase kinase 3β (GSK3β) expression at the Ser9 site, and inhibits Tau protein hyperphosphorylation. Conclusions: These findings clearly indicated that PD could alleviate the neurological damage caused by T2DM, and the phosphorylation of Akt at Ser473 may be the key to its effect.
Collapse
Affiliation(s)
- Ya-Wei Lu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Li-Ya Xie
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meng-Han Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yue-Qi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shan Tang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| |
Collapse
|
5
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
6
|
Zhou X, Hong Y, Chen J, Yu Y, Wang S, Wei Y, Long C, Shen L, Wu S, Wei G. The necroptosis-mediated imbalance of mitochondrial dynamics is involved in DEHP-induced toxicity to immature testes via the PGAM5-DRP1 interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123585. [PMID: 38367692 DOI: 10.1016/j.envpol.2024.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/27/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has been shown to impair male reproduction, but the potential mechanism underlying testicular injury caused by DEHP remains unclear. In vivo, rats were gavaged consecutively from postnatal day (PND) 21 to PND 31 with 0, 250, or 500 mg/kg DEHP for 10 days, and impaired mitochondria and increased necroptosis were observed in immature testes. In vitro, the GC-1 and GC-2 cell lines were exposed to monoethylhexyl phthalate (MEHP) at 100, 200 and 400 μM for 24 h, and this exposure induced oxidative stress damage, necroptosis and mitochondrial injury. Necroptosis and mitochondrial fission were inhibited by the reactive oxygen species (ROS) inhibitor acetylcysteine, and the imbalanced mitochondrial dynamics were rescued by the RIPK1 inhibitor necrostatin-1. Colocalization and co-IP analyses confirmed an interaction between dynamin-related protein 1 (DRP1) and phosphoglycerate mutase 5 (PGAM5), indicating that PGAM5 dephosphorylates DRP1 at serine 637 to induce mitochondrial fragmentation and thereby induces germ cell damage. Drug prediction with Connectivity Map (cMap) identified sulforaphane as a therapeutic drug. In summary, our findings indicate that DEHP triggers necroptosis and mitochondrial injury via a ROS storm in immature testes and that the PGAM5-DRP1 interaction is involved in this process.
Collapse
Affiliation(s)
- Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China
| | - Siyuan Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
7
|
Zhu Y, Guan H, Zhu X, Cai J, Jiao X, Shan J, Li Y, Wu Q, Zhang Z. Astilbin antagonizes developmental cardiotoxicity after cadmium exposure in chicken embryos by inhibiting endoplasmic reticulum stress and maintaining calcium homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115847. [PMID: 38118333 DOI: 10.1016/j.ecoenv.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Cadmium (Cd) is a dangerous heavy metal with high toxicity that is known to impair development. Astilbin (ASB) is a protective flavonoid compound. We aimed to explore whether ASB can antagonize the myocardial developmental toxicity of Cd exposure. Cd (2 µg) and/or ASB (0.002 µg) were injected into embryonized eggs that were 1 day old. Histological examinations revealed Cd-induced ventricular dilation, reduced wall thickness, and disrupted myocardial fiber connections, while co-administration of ASB mitigated these effects. Electron microscopy confirmed ASB's ability to counteract Cd-induced myocardial cell myofibril damage. Real-time quantitative PCR (QRT-PCR) and western blot (WB) molecular investigations revealed that Cd increased endoplasmic reticulum stress in myocardial tissue and primary cardiomyocytes, as shown by raised expression of stress-related genes (GRP78, XBP1, GRP94, ATF4, ATF6, IRE1, and CHOP). Moreover, Cd disrupted calcium homeostasis, affecting important genes linked to Ca2+ channels and causing an excess of Ca2+ in the cytoplasm. In addition, we detected genes related to development and differentiation-related genes in myocardial tissue and primary cardiomyocytes. The results showed that the downregulation of transcription factors in the IrxA cluster, Mefs, and Tbxs families after Cd exposure indicated that cardiac transcription was hindered and cardiac markers (TnnT2, TnnC1, Gata4, Gata6, and Nkx2-5) were abnormally expressed. ASB successfully mitigated these disturbances. During the cell cycle, primary cardiomyocytes undergo growth arrest in flow cytometry. These results suggest that the maturation and differentiation of cardiomyocytes are inhibited after Cd exposure, and ASB has an antagonistic effect on Cd. The present study indicated that Cd could trigger developmental cardiotoxicity in chicken embryos and primary cardiomyocytes by endoplasmic reticulum stress and Ca2+ overload, respectively, while ASB has an antagonistic effect.
Collapse
Affiliation(s)
- Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xingxi Zhu
- Macao Polytechnic University, Macao 999078, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yangyang Li
- China Agricultural University, Beijing 10000, PR China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
8
|
Cui Y, Xiao Q, Wang Z, Zhang Q, Liu Y, Hao W, Jiang J, Meng Q, Wei X. 1,2-bis(2,4,6-tribromophenoxy) ethane, a novel brominated flame retardant, disrupts intestinal barrier function via the IRX3/NOS2 axis in rat small intestine. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132597. [PMID: 37804762 DOI: 10.1016/j.jhazmat.2023.132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Novel brominated flame retardants are widely used in electronics, textiles, furniture, and other products; they can enter the human body through ingestion and respiration and cause harm to the human body, and have been proven to have potential biological toxicity and accumulation effects. 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) is a widely used novel brominated flame retardant; however, there is a lack of research on its mechanism of toxicity, particularly that of intestinal toxicity. Currently, studies on the functionality of iroquois homeobox 3 (IRX3) are extremely limited. In our study, BTBPE was administered to Sprague-Dawley (SD) rats and rat small intestinal crypt epithelial cells (IEC6 cells) in vivo and in vitro, respectively, and hematoxylin and eosin (HE), immunohistochemical, Alcian blue-periodic acid-Schiff (AB-PAS), CCK8, acridine orange/ethidium bromide (AO/EB), fluorescent probes, qPCR, western blotting, and immunofluorescence analyses were performed. To explore the damage mechanism of BTBPE, we used siRNA to silence IRX3 and iNOs-IN-1 (yeast extract-peptone-wheat; YPW) to inhibit nitric oxide synthase 2 (NOS2). The results showed that BTBPE exposure caused inflammation and necroptosis in the jejunum and ileum, as well as destruction of the tight junctions and mucus layer. Moreover, BTBPE activated the IRX3/NOS2 axis both in vivo and in vitro. Silencing IRX3 or inhibiting NOS2 inhibits necroptosis and restores tight junctions in IEC6 cells. In conclusion, our study found that in the jejunum, ileum, and IEC6 cells, BTBPE exposure caused necroptosis and tight junction destruction by activating the IRX3/NOS2 axis. Blocking the IRX3/NOS2 axis can effectively inhibit necroptosis and restore tight junction. In addition, BTBPE exposure caused inflammation and loss of the mucous layer in the jejunum and ileum. Our study is the first to explore the mechanism of intestinal damage caused by BTBPE exposure and to discover new biological functions regulated by the IRX3/NOS2 axis, providing new research directions for necroptosis and tight junctions.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zhenyu Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
9
|
Liu X, Wang Y, Fang J, Chen R, Sun Y, Tang S, Wang M, Kan H, Li T, Chen D. Plastic additive components of PM 2.5 increase corrected QT interval: Screening for exposure markers based on airborne exposome. PNAS NEXUS 2023; 2:pgad397. [PMID: 38047040 PMCID: PMC10691654 DOI: 10.1093/pnasnexus/pgad397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
The impact of industrial chemical components of ambient fine particles (e.g. PM2.5) on cardiovascular health has been poorly explored. Our study reports for the first time the associations between human exposure to complex plastic additive (PA) components of PM2.5 and prolongation of heart rate-corrected QT (QTC) interval by employing a screening-to-validation strategy based on a cohort of 373 participants (136 in the screening set and 237 in the validation set) recruited from 7 communities across China. The high-throughput airborne exposome framework revealed ubiquitous occurrences of 95 of 224 target PAs in PM2.5, totaling from 66.3 to 555 ng m-3 across the study locations. Joint effects were identified for 9 of the 13 groups of PAs with positive associations with QTC interval. Independent effect analysis also identified and validated tris(2-chloroisopropyl) phosphate, di-n-butyl/diisobutyl adipate, and 3,5-di-tert-butyl-4-hydroxybenzaldehyde as the key exposure markers for QTC interval prolongation and changes of selected cardiovascular biomarkers. Our findings highlight the important contributions of airborne industrial chemicals to the risks of cardiovascular diseases and underline the critical need for further research on the underlying mechanisms, toxic modes of action, and human exposure risks.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yue Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Minghao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| |
Collapse
|
10
|
Sun X, Zhang W, Shi X, Wang Y, Zhang Y, Liu X, Xu S, Zhang J. Selenium deficiency caused hepatitis in chickens via the miR-138-5p/SelM/ROS/Ca 2+ overload pathway induced by hepatocyte necroptosis. Food Funct 2023; 14:9226-9242. [PMID: 37743830 DOI: 10.1039/d3fo00683b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selenoprotein M (SelM), a key thioredoxin like enzyme in the endoplasmic reticulum (ER), is closely related to hepatocyte degeneration. However, the role of miR-138-5p/SelM and necroptosis in chicken SelM-deficient hepatitis and the specific biological mechanism of liver inflammation caused by SelM deficiency have not been elucidated. We established an in vivo chicken liver Se deficiency model by feeding a low-Se diet. The miR-138-5p knockdown and overexpression models and SelM knockdown models were established in LMH cells for an in vitro study. Transmission electron microscopy, H&E staining, Fluo4-AM/ER staining, and flow cytometry were used to detect the morphological changes in chicken liver tissue and the expression changes of necroptosis and inflammation in chicken liver cells. We observed that Se deficiency resulted in liver inflammation, up-regulation of miR-138-5p expression and down-regulation of SelM expression in chickens. Oxidative stress, Ca2+ overload, energy metabolism disorder and necroptosis occurred in chicken liver tissue. Importantly, ROS and the Ca2+ inhibitor could effectively alleviate the energy metabolism disorder, necroptosis and inflammatory cytokine secretion caused by miR-138-5p overexpression and SelM knockdown in LMH cells. In conclusion, selenium deficiency causes hepatitis by upregulating miR-138-5p targeting SelM. Our research findings enrich our knowledge about the biological functions of SelM and provide a theoretical basis for the lack of SelM leading to liver inflammation in chickens.
Collapse
Affiliation(s)
- Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jiuli Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Heilongjiang Polytechnic, Harbin 150030, P. R. China.
| |
Collapse
|
11
|
Zhang J, Qian J, Zhang W, Chen X. The pathophysiological role of receptor-interacting protein kinase 3 in cardiovascular disease. Biomed Pharmacother 2023; 165:114696. [PMID: 37329707 DOI: 10.1016/j.biopha.2023.114696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023] Open
Abstract
Recent studies have found that receptor interacting protein kinase 3 (RIPK3) can mediate CaMK Ⅱ phosphorylation and oxidation, open mitochondrial permeability transition pore (mPTP), and induce myocardial necroptosis. The increased expression or phosphorylation of RIPK3 is one of the important markers of necroptosis; Inhibition of CaMK Ⅱ phosphorylation or oxidation significantly reduces RIPK3 mediated myocardial necroptosis; Studies have shown that necroptosis plays an important role in the occurrence and development of cardiovascular diseases; Using the selective inhibitor GSK '872 of RIPK3 can effectively inhibit the occurrence and development of cardiovascular diseases, and can reverse cardiovascular and cardiac dysfunction caused by overexpression of RIPK3. In this review, we provide a brief overview of the current knowledge on RIPK3 in mediating necroptosis, inflammatory response, and oxidative stress, and discussed the role of RIPK3 in cardiovascular diseases such as atherosclerosis, myocardial ischaemia, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianan Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xianfen Chen
- Department of Pharmacy, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
12
|
Cui Y, Xiao Q, Yuan Y, Zhuang Y, Hao W, Jiang J, Meng Q, Wei X. Ozone-oxidized black carbon particles change macrophage fate: Crosstalk between necroptosis and macrophage extracellular traps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121655. [PMID: 37068650 DOI: 10.1016/j.envpol.2023.121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
The impacts of environmental PM 2.5 on public health have become a major concern all over the world. Many studies have shown that PM 2.5 still poses a threat to public health even at very low levels. Physical or chemical reactions occur between primary particles and other components in the environment, which changes the properties of primary particles. Such newly formed particles with changed properties are called secondary particles. Ozone-oxidized black carbon (oBC) is a key part of PM 2.5 and a representative secondary particle. Macrophages extracellular traps (METs) is a means for macrophages to capture and destroy invading pathogens, thereby exercising innate immunity. Necroptosis is a kind of programmed cell death, which is accompanied by the destruction of membrane integrity, thus inducing inflammatory reaction. However, there is no research on the crosstalk mechanism between necroptosis and MET after oBC exposure. In our study, AO/EB staining, SYTOX Green staining, fluorescent probe, qPCR, Western blot, and immunofluorescence were applied. This experiment found that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in our experiment: phorbol 12-myristate 13-acetate (PMA)), they will form METs, capture and kill pathogens, thus exerting innate immune function. However, exposure to oBC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, and prevent the formation of METs, lose the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. This study was the first to explore the crosstalk mechanism between necroptosis and METs after oBC exposure.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
13
|
Cai J, Liu P, Zhang X, Shi B, Jiang Y, Qiao S, Liu Q, Fang C, Zhang Z. Micro-algal astaxanthin improves lambda-cyhalothrin-induced necroptosis and inflammatory responses via the ROS-mediated NF-κB signaling in lymphocytes of carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2023:108929. [PMID: 37414307 DOI: 10.1016/j.fsi.2023.108929] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Lambda-cyhalothrin (LCY) is a widely used toxic pesticide that causes harmful effects on the immune organs of fish and aquatic species. Micro-algal astaxanthin (MAA), a heme pigment found in haematococcus pluvialis, has been shown to benefit antioxidants and immunity in aquaculture. To investigate how MAA protects carp lymphocytes from LCY-induced immunotoxicity, a model of fish lymphocytes treated with LCY and/or MAA was established. Lymphocytes from carp (Cyprinus carpio L.) were given LCY (80 μM) and/or MAA (50 μM) as a treatment for a period of 24 h. Firstly, LCY exposure resulted in excessive ROS and malondialdehyde production and reduces antioxidant enzymes (SOD and CAT), indicating a reduced capacity of the antioxidant system. Secondly, the results of flow cytometry and AO/EB labeling proved that lymphocytes treated with LCY have a larger ratio of necroptosis. In addition, LCY upregulated the levels of necroptosis-related regulatory factors (RIP1, RIP3 and MLKL) via the ROS-mediated NF-κB signaling pathway in lymphocytes. Thirdly, LCY treatment caused increased secretion of inflammatory genes (IL-6, INF-γ, IL-4, IL-1β and TNF-α), leading to immune dysfunction in lymphocytes. Surprisingly, LCY-induced immunotoxicity was inhibited by MAA treatment, indicating that it effectively attenuated the LCY-induced changes described above. Overall, we concluded that MAA treatment could ameliorate LCY-induced necroptosis and immune dysfunction by inhibiting the ROS-mediated NF-κB signaling in lymphocytes. It provides insights into the protection of farmed fish from agrobiological threats in fish under LCY and the value of MAA applications in aquaculture.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shenqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
14
|
Liu Y, Shi X, Tian Y, Zhai S, Liu Y, Xiong Z, Chu S. An insight into novel therapeutic potentials of taxifolin. Front Pharmacol 2023; 14:1173855. [PMID: 37261284 PMCID: PMC10227600 DOI: 10.3389/fphar.2023.1173855] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Taxifolin is a flavonoid compound, originally isolated from the bark of Douglas fir trees, which is often found in foods such as onions and olive oil, and is also used in commercial preparations, and has attracted the interest of nutritionists and medicinal chemists due to its broad range of health-promoting effects. It is a powerful antioxidant with excellent antioxidant, anti-inflammatory, anti-microbial and other pharmacological activities. This review focuses on the breakthroughs in taxifolin for the treatment of diseases from 2019 to 2022 according to various systems of the human body, such as the nervous system, immune system, and digestive system, and on the basis of this review, we summarize the problems of current research and try to suggest solutions and future research directions.
Collapse
Affiliation(s)
- Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Ma XY, Zhu Y, Xu YR, Saleem MAU, Jian PA, Yi BJ, Li XN, Li JL. Mitocytosis Is Critical for Phthalate-Induced Injury to the Ovarian Granulosa Cell Layer in Quail ( Coturnix japonica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5745-5755. [PMID: 36977485 DOI: 10.1021/acs.jafc.2c08601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phthalates are widely used synthetic chemicals that determine endocrine disruption effects on female reproductivity and oviposition. Our study demonstrated that the mitochondrial quality in ovarian granulosa cells (GCs) is associated with a poor prognosis in female reproduction. However, the molecular mechanism of di-(2-ethylhexyl) phthalate (DEHP) exposure on the quail ovarian GC layer is still unknown. To validate the effects of DEHP on the GC layer, 8 days' old 150 female Japanese quail were treated orally with DEHP (250, 500, and 750 mg/kg BW/day) for 45 days to explore the toxic effects of DEHP on the ovarian GC layer. Histopathological assessment and ultrastructure observation found that DEHP decreased the thickness of the GC layer, resulted in mitochondrial damage, and activated mitocytosis. Additionally, the results further suggested that DEHP impacted the secretion of steroid hormones (reduced FSH, E2, and T levels and boosted Prog, PRL, and LH levels) by triggering mitocytosis (enhanced transcription of MYO19 and protein of KIF5B levels), mitochondrial dynamics (increasing mRNA and protein levels of OPA1, DRP1, MFN1, and MFN2), mitophagy (increasing mRNA and protein levels of Parkin, LC3B, and P62), and inducing GC function disorder. In conclusion, our research provided a new idea to explain the mechanism of DEHP toxicity of the ovarian GC layer in quail and presented insights into the role of mitocytosis in DEHP-induced ovarian GC layer injury.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
16
|
Liu H, Xu L, Zhou L, Han W, Li Z, Liu C. DBP induced autophagy and necrotic apoptosis in HepG2 cells via the mitochondrial damage pathway. Food Chem Toxicol 2023; 176:113782. [PMID: 37059380 DOI: 10.1016/j.fct.2023.113782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Phthalate esters (PAEs) are widely present in human tissues and pose significant health risks. In this study, HepG2 cells were treated with 0.0625, 0.125, 0.25, 0.5 and 1 mM Dibutyl phthalate (DBP) for 48 h to investigate mitochondrial toxicity. The results showed that DBP caused mitochondrial damage, autophagy, apoptosis and necroptosis; Transcriptomics analysis identified that MAPK and PI3K were significant factors in the cytotoxic changes induced by DBP; N-Acetyl-L-cysteine (NAC), SIRT1 activator, ERK inhibitor, p38 inhibitor and ERK siRNA treatments counteracted the changes of SIRT1/PGC-1α and Nrf2 pathway-related proteins, autophagy and necroptotic apoptosis proteins induced by DBP. While PI3K and Nrf2 inhibitors exacerbated the changes in SIRT1/PGC-1α, Nrf2-associated proteins and autophagy and necroptosis proteins induced by DBP. In addition, the autophagy inhibitor 3-MA alleviated the increase in DBP-induced necroptosis proteins. These results suggested that DBP-induced oxidative stress activated the MAPK pathway, inhibited the PI3K pathway, which in turn inhibited the SIRT1/PGC-1α pathway and Nrf2 pathway, thereby causing cell autophagy and necroptosis.
Collapse
Affiliation(s)
- Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Linjing Xu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Lizi Zhou
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Wenna Han
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Zhongyi Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Combined exposure to di(2-ethylhexyl) phthalate and polystyrene microplastics induced renal autophagy through the ROS/AMPK/ULK1 pathway. Food Chem Toxicol 2022; 171:113521. [PMID: 36423728 DOI: 10.1016/j.fct.2022.113521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and polystyrene microplastics (PS-MPs) are new environmental pollutants that attracted increased attention. At present, the effects and underlying mechanisms of action of combined exposure of DEHP and PS-MPs on the kidney have not been elucidated. To investigate the renal toxicity of DEHP and PS-MPs exposure, we established single and combined DEHP and PS-MPs exposure models in mice and HEK293 cells, respectively. Hematoxylin and eosin staining, transmission electron microscopy, monodansylcadaverine staining, immunofluorescence, real-time quantitative PCR, Western blot analysis and other methods were used to detect relevant indicators. The results showed that the expression levels of ROS/AMPK/ULK1 and Ppargc1α/Mfn2 signaling pathway-related genes were significantly increased in the DEHP and PS-MPs exposure models. The mRNA and protein expression levels of autophagy markers were also upregulated. In addition, we found that the expression levels of mRNAs and proteins in the combined exposure group were more significantly increased than those in the single exposure group. In conclusion, combined exposure to DEHP and PS-MPs caused oxidative stress and activated the AMPK/ULK1 pathway, thereby inducing renal autophagy. Our results enhance the field of nephrotoxicity studies of plasticizers and microplastics and provide new light on combined toxicity studies of DEHP and PS-MPs.
Collapse
|
18
|
Wen ZJ, Wang ZY, Zhang YF. Adverse cardiovascular effects and potential molecular mechanisms of DEHP and its metabolites-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157443. [PMID: 35868369 DOI: 10.1016/j.scitotenv.2022.157443] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Currently, cardiovascular disease (CVD) is a health hazard that is associated with progressive deterioration upon exposure to environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP) has been one of the focuses of emerging concern due to its ubiquitous nature and its toxicity to the cardiovascular (CV) system. DEHP has been noted as a causative risk factor or a risk indicator for the initiation and augment of CVDs. DEHP represents a precursor that contributes to the pathogenesis of CVDs through its active metabolites, which mainly include mono (2-ethylhexyl) phthalate (MEHP). Herein, we systematically presented the association between DEHP and its metabolites and adverse CV outcomes and discussed the corresponding effects, underlying mechanisms and possibly interventions. Epidemiological and experimental evidence has suggested that DEHP and its metabolites have significant impacts on processes and factors involved in CVD, such as cardiac developmental toxicity, cardiac injury and apoptosis, cardiac arrhythmogenesis, cardiac metabolic disorders, vascular structural damage, atherogenesis, coronary heart disease and hypertension. DNA methylation, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbance may pinpoint the relevant mechanisms. The preventive and therapeutic measures are potentially related with P-glycoprotein, heat-shock proteins, some antioxidants, curcumin, apigenin, β-thujaplicin, glucagon-like peptide-1 receptor agonists and Ang-converting enzyme inhibitors and so on. Promisingly, future investigations should aid in thoroughly assessing the causal relationship and molecular interactions between CVD and DEHP and its metabolites and explore feasible prevention and treatment measures accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
19
|
Zhang W, Sun X, Qi X, Liu X, Zhang Y, Qiao S, Lin H. Di-(2-Ethylhexyl) Phthalate and Microplastics Induced Neuronal Apoptosis through the PI3K/AKT Pathway and Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10771-10781. [PMID: 36006862 DOI: 10.1021/acs.jafc.2c05474] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Di-(2-Ethylhexyl) phthalate (DEHP) and microplastics (MPs) have released widespread residues to the environment and possess the ability to cause damage to humans and animals. However, there are still gaps in the study of damage to neurons caused by DEHP and MPs in mice cerebra and whether they have combined toxic effects. To investigate the underlying mechanism of action, mice were fed 200 mg/kg DEHP and 10 mg/L MPs in vivo. In vitro, NS20Y (CBNumber: CB15474825) cells were treated with 25 μM DEHP and 775 mg/L MPs. Next, qRT-PCR and western blot analysis were performed to evaluate PI3K/AKT pathway genes, mitochondrial dynamics-related genes, apoptosis-related genes, and GSK-3β and its associated genes, mRNA, and protein expression. To determine pathological changes in the mice cerebra, hematoxylin and eosin (H&E) staining, transmission electron microscopy, and TUNEL staining were employed. To determine the levels of reactive oxygen species (ROS) and apoptosis cells in vitro, ROS staining, acridine orange/ethidium bromide (AO/EB) staining, and flow cytometry were performed. Our results demonstrated that DEHP and MPs caused changes in mitochondrial function, and GSK-3β and its associated gene expression in mice through the PI3K/AKT pathway, which eventually led to apoptosis of neurons. Moreover, our findings showed that DEHP and MPs have a combined toxic effect on mice cerebra. Our findings facilitate the understanding of the neurotoxic effects of DEHP and MPs on neurons in the cerebra of mice and help identify the important role of maintaining normal mitochondrial function in protecting cerebrum health.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
20
|
Li X, Zhang H, Qiao S, Ma W, Cai J, Zhang X, Zhang Z. Melatonin administration alleviates 2,2,4,4-tetra-brominated diphenyl ether (PBDE-47)-induced necroptosis and secretion of inflammatory factors via miR-140-5p/TLR4/NF-κB axis in fish kidney cells. FISH & SHELLFISH IMMUNOLOGY 2022; 128:228-237. [PMID: 35940536 DOI: 10.1016/j.fsi.2022.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
2,2,4,4-tetra-brominated diphenyl ether (PBDE-47)-the dominant homologue of polybrominated diphenyl ethers-is a toxic environmental pollutant in the aquatic environment that continuously exists and bioaccumulates in the aquatic food chain. In experimental disease models, melatonin (MEL) has been reported to attenuate necroptosis and inflammatory responses. To further explore the mechanism underlying PBDE-47 toxicity and the mitigative impact of MEL detoxification, in this study, fish kidney cell models of PBDE-47 poisoning and/or MEL treatment were developed. The Ctenopharyngodon idellus kidney (CIK) cell line was treated with PBDE-47 (100 μM) and/or MEL (60 μM) for 24 h. Experimental data suggest that PBDE-47 exposure resulted in the enhancement of cytoplasmic Ca2+ concentration, induction of calcium dysmetabolism, decrease in the miR-140-5p miRNA level, upregulation of Toll-like Receptor 4 (TLR4) and nuclear factor-kappaB (NF-κB), triggering of receptor interacting serine/threonine kinase-induced necroptosis, and NF-κB pathway mediated secretion of inflammatory factors in CIK cells. PBDE-47-induced CIK cell damage could be mitigated by MEL through the regulation of calcium channels and the restoration of disorders of the miR-140-5p/TLR4/NF-κB axis. Overall, MEL relieved PBDE-47-induced necroptosis and the secretion of inflammatory factors through the miR-140-5p/TLR4/NF-κB axis. These findings enrich the current understanding of the toxicological molecular mechanisms of the PBDE-47 as well as the detoxification mechanisms of the MEL.
Collapse
Affiliation(s)
- Xueyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Zhang W, Yin K, Shi J, Shi X, Qi X, Lin H. The decrease of selenoprotein K induced by selenium deficiency in diet improves apoptosis and cell progression block in chicken liver via the PTEN/PI3K/AKT pathway. Free Radic Biol Med 2022; 189:20-31. [PMID: 35841984 DOI: 10.1016/j.freeradbiomed.2022.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023]
Abstract
Selenoprotein K (SELK) is imperative for normal development of chicken. It does regulate to chicken's physiological function. However, the injury of SELK-deficiency done on chicken liver and its underlying mechanism involved has not yet been covered. Therefore, we built SELK- deficiency model by feeding diet which contained low concentration of selenium (Se) to discuss SELK's regulation mechanism. Through using TUNEL, TEM, western blot and qRT-PCR we found apoptosis occurred in chicken liver in the SELK-deficiency groups. In the meanwhile, our study showed there were differentially expressed of the PTEN/PI3K/AKT pathway, calcium homeostasis, endoplasmic reticulum healthy and cell cycle progression in SELK-deficiency chicken liver tissues. In order to claim the regulation mechanism of SELK, we set SELK-knock down model in the LMH. The results in vitro were coincided with those in vivo. In the SELK-deficiency groups, the PTEN/PI3K/AKT pathway was activated and then induced ERS which eventually resulted in apoptosis in chicken liver. As the same time, the PTEN/PI3K/AKT pathway also regulated the combined effective of MDM2-p53, which leaned liver cells to G1/S blocking. Our findings support the potential of SELK in maintain the health of chicken liver, and indicate that adding proper amount of Se on the daily dietary may alleviate the deficiency of selenium.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kai Yin
- College of Wildlife & Protected Area, Northeast Forestry University, Harbin, 150040, PR China
| | - Jiahui Shi
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
22
|
The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 2022; 27:697-719. [DOI: 10.1007/s10495-022-01760-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
|
23
|
Qiao S, Sun Y, Jiang Y, Chen X, Cai J, Liu Q, Zhang Z. Melatonin ameliorates nickel induced autophagy in mouse brain: diminution of oxidative stress. Toxicology 2022; 473:153207. [PMID: 35568058 DOI: 10.1016/j.tox.2022.153207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/18/2022]
Abstract
Nickel(Ni) is a neurotoxic environmental pollutant. Oxidative stress is thought to be the main mechanism behind the development of Ni neurotoxicity. Melatonin (Mt) has significant efficacy as an antioxidant. In this paper, we investigated the damage that Ni causes to the autophagy of the nervous system. Furthermore, Mt has can intervene upon the damage caused by Ni, which can protect the nervous system. Herein, we randomly divided 80 8-week-old male wild-type C57BL/6N mice into four groups, including the C group, Ni group, Mt group, and Mt+Ni group. Ni was gavaged at a concentration of 10mg/kg, while was Mt was administered at a concentration of 2mg/kg for 21 days at 0.1ml/10g body weight of the mice. Histopathological and ultrastructural observations demonstrated altered states, such as neuronal atrophy, as well as typical autophagic features in the Ni group. Mt was able to intervene effectively in Ni-induced neurotoxicity. The antioxidant capacity assay also demonstrated that Ni can lead to a large amount of reactive oxygen species (ROS) production within the mouse brain. Furthermore, the same Mt was effective at reducing ROS production. In order to further illustrate this point, we added the broad-spectrum phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 to NS20Y cells. The presence of inhibitors effectively demonstrates that, within the PI3K/AKT/mTOR pathway, autophagy occurs. In conclusion, these data suggest that Ni causes oxidative stress damage and induces autophagy within the mouse brain by inhibiting the PI3K/AKT/mTOR pathway, and that Mt can effectively alleviate the oxidative stress caused by Ni, and reducing Ni induces autophagy in the mouse brain through the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment.
| |
Collapse
|
24
|
Zhong W, Cheng J, Yang X, Liu W, Li Y. Heliox Preconditioning Exerts Neuroprotective Effects on Neonatal Ischemia/Hypoxia Injury by Inhibiting Necroptosis Induced by Ca 2+ Elevation. Transl Stroke Res 2022; 14:409-424. [PMID: 35445968 DOI: 10.1007/s12975-022-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Our previous studies have indicated that heliox preconditioning (HePC) may exert neuroprotective effects on neonatal hypoxic-ischemic encephalopathy (HIE). The present study was to investigate whether HePC alleviates neonatal HIE by inhibiting necroptosis and explore the potential mechanism. Seven-day-old rat pups were randomly divided into Sham group, HIE group, HIE + HePC group, HIE + Dantrolene (DAN) group, and HIE + Necrostatin-1 (Nec-1) group. HIE was induced by common carotid artery ligation and subsequent hypoxia exposure. The neurological function, brain injury, and molecular mechanism were evaluated by histological staining, neurobehavioral test, Western blotting, Ca2+, immunofluorescence staining, co-immunoprecipitation (Co-IP), and transmission electron microscopy (TEM). Results supported that the expression of necroptosis markers and p-RyR2 in the brain increased significantly after HIE. HePC, DAN, or Nec-1 was found to improve the neurological deficits after H/I and inhibit neuronal necroptosis. Interestingly, both HePC and DAN inhibited the increases in cytoplasmic Ca2+ and CaMK-II phosphorylation in the brain secondary to HIE, but Nec-1 failed to affect Ca2+. In conclusion, our results suggest HePC may alleviate cytoplasmic Ca2+ overload by regulating p-RyR2, which inhibits the necroptosis in the brain, exerting neuroprotective effects on HIE.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenwu Liu
- Naval Characteristic Medical Center Diving and Hyperbaric Medicine Research Laboratory, Shanghai, 200433, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
25
|
Ye Q, Liu C, Wu P, Wu J, Lin L, Li Y, Ahmed Z, Rehman S, Zhu N. Insights into photocatalytic degradation of phthalate esters over MSnO 3 perovskites (M = Mg, Ca): Experiments and density functional theory. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114511. [PMID: 35093753 DOI: 10.1016/j.jenvman.2022.114511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
In this study, the physicochemical and photocatalytic properties of two kinds of stannate perovskite oxides (MgSnO3 and CaSnO3) were investigated under simulated sunlight, where dimethyl phthalate (DMP) and diethyl phthalate (DEP) were selected as the probe pollutants. The results of photochemical characterization showed that MgSnO3 perovskite exhibited better photocatalytic performance than CaSnO3 perovskite. MgSnO3 perovskite could effectively degrade 75% of DMP and 79% of DEP through pseudo-first-order reaction kinetics, which remained good in pH 3.0 to 9.0. Quenching experiments and electron paramagnetic resonance (EPR) characterization indicated that photogenerated holes (h+), superoxide (O2-), and hydroxyl radicals (OH) worked in the photo-degradation, while O2- played the most important role. Furthermore, intermediates identification and density functional theory (DFT) calculations were used to explore the degradation mechanism. For both DMP and DEP, the reactive oxygen species (ROS, including O2- and OH) were responsible for the hydroxylation of benzene ring and the breaking of the aliphatic chain, while h+ was prone to break the aliphatic chain. This work is expected to provide new insights on the photocatalytic mechanism of stannate perovskites for environmental remediation.
Collapse
Affiliation(s)
- Quanyun Ye
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Chenhui Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Lin Lin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yihao Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| |
Collapse
|
26
|
Li S, Liu R, Xia S, Wei G, Ishfaq M, Zhang Y, Zhang X. Protective role of curcumin on aflatoxin B1-induced TLR4/RIPK pathway mediated-necroptosis and inflammation in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113319. [PMID: 35189522 DOI: 10.1016/j.ecoenv.2022.113319] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
This study set out to assess the mitigative effects of curcumin on AFB1-induced necroptosis and inflammation in chicken liver. Ninety-six one-day-old AA broiler chickens were separated into four groups, including control group, AFB1 (1 mg/kg) group, curcumin (300 mg/kg) + AFB1 (1 mg/kg) group and curcumin (300 mg/kg) group. After 28 days treatment, livers were collected for different experimental analyses. The morphological observation results showed obvious necrotic characteristics, including cell swelling, rupture of cell and mitochondrial membranes and inflammation in chicken livers. AFB1 exposure increased oxidative stress index (ROS and MDA) and decreased the antioxidant activity markers (SOD, CAT and GSH) and ATPase activities in chickens' liver. ELISA results showed that AFB1 exposure significantly induced the cytokines (TNF-α, iNOS, IL-6 and IL-1β) release from the liver tissues. While, western blot and qRT-PCR results showed that the protein and mRNA expressions of inflammatory (TLR4/myd88/NF-κB) and necroptosis (RIPK1/RIPK3/MLKL) genes were up-regulated by AFB1 exposure. We suspect that signal crosstalk between TLR4 and TNF-α triggers inflammation and RIPK1/RIPK3 mediating necroptosis in AFB1-induced chicken liver injury. Curcumin can regulate the TLR4/RIPK signaling pathway, reduced oxidative stress biomarkers and inflammatory cytokines levels and attenuated the expression of necroptosis and inflammation genes altered by AFB1 to reduce necroptosis of chicken liver tissue. In conclusion, curcumin can protect against AFB1-induced necroptosis and inflammation by TLR4/RIPK pathway in chicken liver.
Collapse
Affiliation(s)
- Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China; Animal Genome Engineering Research Team, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Shun Xia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Gaoqiang Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China; Huanggang Normal University, 438000 Huanggang, China
| | - Yixin Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China.
| |
Collapse
|
27
|
Yin C, Zhang Q, Zhao J, Li Y, Yu J, Li W, Wang Q. Necrostatin-1 Against Sevoflurane-Induced Cognitive Dysfunction Involves Activation of BDNF/TrkB Pathway and Inhibition of Necroptosis in Aged Rats. Neurochem Res 2022; 47:1060-1072. [PMID: 35040026 DOI: 10.1007/s11064-021-03505-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
Postoperative cognitive dysfunction (POCD) induced by anesthesia or surgery has become a common complication in the aged population. Sevoflurane, a clinical inhalation anesthetic, could stimulate calcium overload and necroptosis to POCD. In addition, necroptosis inhibitor necrostatin-1 (Nec-1) alleviated cognitive impairment caused by multiple causes, including postoperative cognitive impairment. However, whether Nec-1 exerts a neuroprotective effect on POCD via calcium and necroptosis remains unclear. We anesthetized Sprague-Dawley rats with sevoflurane to construct the POCD model and to explore the mechanism underlying neuroprotective effects of Nec-1 in POCD. Rats were treated with Nec-1 (6.25 mg/kg) 1 h prior to anesthesia. Open field test and Morris water maze were employed to detect the cognitive function. In this study, rats exposed to sevoflurane displayed cognitive dysfunction without changes in spontaneous activity; however, the sevoflurane-induced POCD could be relieved by Nec-1 pretreatment. Nec-1 decreased sevoflurane-induced calcium overload and calpain activity in the hippocampus. In addition, Nec-1 alleviated the expression of p-RIPK1, RIPK1, p-RIPK3, RIPK3, p-MLKL and MLKL. Furthermore, Nec-1 remarkably increased BDNF and p-TrkB/TrkB expression in the hippocampus of aged rats. Ultimately, our research manifests evidence that Nec-1 may play a neuroprotective role against sevoflurane-induced cognitive impairment via the increase of BDNF/TrkB and suppression of necroptosis-related pathway.
Collapse
Affiliation(s)
- Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China.,Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Juan Zhao
- Teaching Experiment Center, Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Jiaxu Yu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Wei Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China.
| |
Collapse
|
28
|
Liu L, Liu X, Zhao L, Liu Y. 1,8-cineole alleviates bisphenol A-induced apoptosis and necroptosis in bursa of Fabricius in chicken through regulating oxidative stress and PI3K/AKT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112877. [PMID: 34634738 DOI: 10.1016/j.ecoenv.2021.112877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), an important chemical raw material, is now a ubiquitous environmental contaminant. As an endocrine disruptor similar to estrogen, BPA increases the risk of various metabolic and chronic diseases. BPA has immunotoxicity to humans and animals. 1,8-cineole (CIN) is a plant-derived monoterpene with antioxidant and antiapoptosis actions. However, there are no reports about whether CIN could antagonize the BPA-induced apoptosis and necroptosis in bursa of Fabricius (BF) of chicken. This study was to elucidate the ameliorative mechanism of CIN on the apoptosis and necroptosis in BF induced by BPA. 120 broilers (1-day-old) were randomly divided into four groups: control group, CIN group, CIN and BPA co-treatment group, and BPA group. TUNEL analysis results, histopathological variations, and the overexpression of proapoptosis biomakers (Caspase 3, Bax, Cyt-c, and p53) and necroptosis pathway-related factors (RIPK1, RIPK3, MLKL, and FADD) indicated that BPA exposure induced the apoptosis and necroptosis in chicken BF. Moreover, BPA treatment elevated the levels of oxidative stress indexes (MDA, iNOS, and NO) and weaken antioxidases activity (SOD, GPx, and CAT) and total antioxidant capacity in chicken BF. BPA administration also lessened the expression of PI3K and AKT and promoted HSPs (HSP27, HSP40, HSP60, and HSP70) activation. whereas CIN supplementation prominently mitigated BPA-caused these changes and the apoptosis and necroptosis damages. In brief, this study illuminated that CIN could protect the chicken BF against BPA-induced apoptosis and necroptosis through restraining oxidative stress and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| | - Xiangling Liu
- The Second Clinical Medical School, Harbin Medical University, Harbin 150086, PR China
| | - Liangyou Zhao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| |
Collapse
|
29
|
Zheng Y, Guan H, Yang J, Cai J, Liu Q, Zhang Z. Calcium overload and reactive oxygen species accumulation induced by selenium deficiency promote autophagy in swine small intestine. ACTA ACUST UNITED AC 2021; 7:997-1008. [PMID: 34738030 PMCID: PMC8536506 DOI: 10.1016/j.aninu.2021.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/23/2022]
Abstract
Selenium (Se) deficiency can seriously affect the small intestine of swine, and cause diarrhea in swine. However, the specific mechanism of Se deficiency-induced swine diarrhea has rarely been reported. Here, to explore the damage of Se deficiency on the calcium homeostasis and autophagy mechanism of swine, in vivo and in vitro models of swine intestinal Se deficiency were established. Twenty-four pure line castrated male Yorkshire pigs (45 d old, 12.50 ± 1.32 kg, 12 full-sibling pairs) were divided into 2 equal groups and fed Se-deficient diet (0.007 mg Se/kg) as the Se-deficiency group, or fed Se-adequate diet (0.3 mg Se/kg) as the control group for 16 weeks. The intestinal porcine enterocyte cell line (IPEC-J2) was divided into 2 groups, and cultured by Se-deficient medium as the Se-deficient group, or cultured by normal medium as the control group. Morphological observations showed that compared with the control group, intestinal cells in the Se-deficiency group were significantly damaged, and autophagosomes increased. Autophagy staining and cytoplasmic calcium staining results showed that in the Se-deficiency group, autophagy increased and calcium homeostasis was destroyed. According to the reactive oxygen species (ROS) staining results, the percentage of ROS in the Se-deficiency group was higher than that in the control group in the in vitro model. Compared with the control group, the protein and mRNA expressions of autophagy-calcium-related genes including Beclin 1, microtubule-associated proteins 1A (LC3-1), microtubule-associated proteins 1B (LC3-2), autophagy-related protein 5 (ATG5), autophagy-related protein 12 (ATG12), autophagy-related protein 16 (ATG16), mammalian target of rapamycin (mTOR), calmodulin-dependent protein kinase kinase β (CAMKK-β), adenosine 5′-monophosphate-activated protein kinase (AMPK), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and calpain in the Se-deficiency group were significantly increased which was consistent in vivo and in vitro (P < 0.05). Altogether, our results indicated that Se deficiency could destroy the calcium homeostasis of the swine small intestine to trigger cell autophagy and oxidative stress, which was helpful to explain the mechanism of Se deficiency-induced diarrhea in swine.
Collapse
Affiliation(s)
- Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
30
|
Li X, Zhao X, Yao Y, Guo M, Li S. New insights into crosstalk between apoptosis and necroptosis co-induced by chlorothalonil and imidacloprid in Ctenopharyngodon idellus kidney cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146591. [PMID: 33770597 DOI: 10.1016/j.scitotenv.2021.146591] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Overuse and co-exposure of pesticides have become a public health problem and threat seriously water health and environmental organisms and even humans. Chlorothalonil (CT) and imidacloprid (IMI) are high-selling pesticides worldwide, which can persist in the environment, and present a series of severely toxic effects on non-target animals. However, the effect of co-application on aquatic organisms is unknown. Based on the concept of the toxic unit (TU), toxic interaction of CT and IMI was evaluated and showed the additive and synergistic toxicity on Ctenopharyngodon idellus (grass carp) kidney cell line (CIK cells). Cell death analysis found an obvious increase of the apoptosis and necrosis rates exposed to CT and IMI, and aggravation when applied together. Moreover, CT and IMI co-exposure accelerated the inhibition of CYP450s/ROS/HIF-1α signal, the decline of energy metabolism, mitochondrial dynamics disorder, activation of Bcl2/Bax/Cyt C/Casp3/Casp9 pathway and RIP1/RIP3/MLKL pathway. Bioinformatics analysis showed autophagy, cell response, NOD-like receptor signaling pathway might be affected by co-exposure. In summary, the above results indicate that co-exposure to CT and IMI has synergistic toxicity and aggravates cell death via inhibition of the CYP450s/ROS/HIF-1α signal. These data provide new insights for evaluating the stacking interaction and revealing the toxicological effects of pesticide mixture.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
31
|
Li T, Fu B, Zhang X, Zhou Y, Yang M, Cao M, Chen Y, Tan Y, Hu R. Overproduction of Gastrointestinal 5-HT Promotes Colitis-Associated Colorectal Cancer Progression via Enhancing NLRP3 Inflammasome Activation. Cancer Immunol Res 2021; 9:1008-1023. [PMID: 34285037 DOI: 10.1158/2326-6066.cir-20-1043] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Chronic inflammation is a key driver for colitis-associated colorectal cancer. 5-hydroxytryptamine (5-HT), a neurotransmitter, has been reported to promote inflammation in the gastrointestinal tract. However, the mechanism behind this remains unclear. In this study, we found that 5-HT levels, as well as the expression of tryptophan hydroxylase 1 (TPH1), the 5-HT biosynthesis rate-limiting enzyme, were significantly upregulated in colorectal tumor tissues from patients with colorectal cancer, colorectal cancer mouse models, and colorectal cancer cell lines when compared with normal colorectal tissues or epithelial cell lines. Colorectal cancer cell-originated 5-HT enhanced NLRP3 inflammasome activation in THP-1 cells and immortalized bone marrow-derived macrophages (iBMDM) via its ion channel receptor, HTR3A. Mechanistically, HTR3A activation led to Ca2+ influx, followed by CaMKIIα phosphorylation (Thr286) and activation, which then induced NLRP3 phosphorylation at Ser198 (mouse: Ser194) and inflammasome assembling. The NLRP3 inflammasome mediated IL1β maturation, and release upregulated 5-HT biosynthesis in colorectal cancer cells by inducing TPH1 transcription, revealing a positive feedback loop between 5-HT and NLRP3 signaling. Silencing TPH1 or HTR3A by short hairpin RNA slowed down tumor growth in an established CT26 and iBMDM coimplanted subcutaneous allograft colorectal cancer mouse model, whereas treatment with TPH1 inhibitor 4-chloro-DL-phenylalanine or HTR3A antagonist tropisetron alleviated tumor progression in an azoxymethane/dextran sodium sulfate-induced colorectal cancer mouse model. Addressing the positive feedback loop between 5-HT and NLRP3 signaling could provide potential therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Bin Fu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Yingying Tan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
32
|
Zhao H, Wang Y, Liu Y, Yin K, Wang D, Li B, Yu H, Xing M. ROS-Induced Hepatotoxicity under Cypermethrin: Involvement of the Crosstalk between Nrf2/Keap1 and NF-κB/iκB-α Pathways Regulated by Proteasome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6171-6183. [PMID: 33843202 DOI: 10.1021/acs.est.1c00515] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CMN) is a man-made insecticide, and its abuse has led to potential adverse effects, particularly in sensitive populations such as aquatic organisms. The present study was focused on the toxic phenotype and detoxification mechanism in grass carp (Ctenopharyngodon idella) after treatment with waterborne CMN (0.651 μg/L) for 6 weeks in vivo or 6.392 μM for 24 h in vitro. In vivo, we describe the toxic phenotype of the liver of grass carp in terms of pathological changes, serum transaminase levels, oxidative stress indexes, and apoptosis rates. RNA-Seq analysis (2 × 3 cDNA libraries) suggested a compromise of proteasome and oxidative phosphorylation signaling pathways under CMN exposure. Thus, these two pathways were chosen for the in vitro study, which suggested that the CMN intoxication-induced proteasome pathway caused hepatotoxicity in the liver cell line of grass carp (L8824 cells). Moreover, pretreatment with MG132, a proteasome inhibitor, displayed protection against the toxic effects of CMN by enhancing antioxidative and anti-inflammatory capability by directly inhibiting the proteasomal degradation of nuclear factor erythroid-2 related factor (Nrf2) and IκB-α, thus turning on the transcription of downstream genes of Nrf2 and NF-κB, respectively. Taken together, these results suggest proteasome activity as a reason for CMN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| |
Collapse
|
33
|
Cui Y, Zhang X, Yin K, Qi X, Zhang Y, Zhang J, Li S, Lin H. Dibutyl phthalate-induced oxidative stress, inflammation and apoptosis in grass carp hepatocytes and the therapeutic use of taxifolin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142880. [PMID: 33131843 DOI: 10.1016/j.scitotenv.2020.142880] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of plastic products has led to the widespread presence of plasticizers in the environment. As a common environmental pollutant, research on plasticizer toxicity is insufficient in fish cells. In particular, research on the toxicity of dibutyl phthalate (DBP) in grass carp hepatocyte lines is insufficient. To further explore these mechanisms, we treated grass carp hepatocytes with 300 μM DBP, a common plasticizer, for 24 h, and hepatocytes were also treated with 1 μM taxifolin (TAX), an antioxidant, for 24 h to study its antagonistic effect on DBP. After DBP exposure, oxidative stress levels and inflammation in hepatocytes increased, and the mRNA and protein expression of apoptosis-related markers increased significantly, leading to hepatocyte apoptosis. Moreover, AO/EB staining, Hoechst staining and flow cytometry also showed that the level of apoptotic cells increased after DBP exposure. Notably, both TAX pretreatment and TAX simultaneous treatment alleviated oxidative stress, increased inflammatory factor levels and apoptosis induced by DBP. In comparison, the effect of simultaneous TAX treatment was better than that of TAX pretreatment. Our results showed that TAX alleviates DBP-induced apoptosis in grass carp hepatocytes through oxidative stress and inflammation, and TAX pretreatment and simultaneous treatment exhibited specific effects. Specifically, simultaneous treatment had a better effect. Our study assessed the toxicity of DBP in grass carp hepatocytes and provided a theoretical and research basis for the in vivo study of animal models in the future. The innovation of this study involves the exploration of the interaction between DBP and TAX for the first time. This study may enrich knowledge regarding the theoretical mechanism of DBP toxicity in fish hepatocytes and propose methods address DBP toxicity.
Collapse
Affiliation(s)
- Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
34
|
Wang J, Zhao T, Chen J, Kang L, Wei Y, Wu Y, Han L, Shen L, Long C, Wu S, Wei G. Multiple transcriptomic profiling: p53 signaling pathway is involved in DEHP-induced prepubertal testicular injury via promoting cell apoptosis and inhibiting cell proliferation of Leydig cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124316. [PMID: 33162236 DOI: 10.1016/j.jhazmat.2020.124316] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely-used plasticizer and has long been recognized as an endocrine-disrupting chemical with male reproductive toxicities. DEHP exposure at the prepubertal stage may lead to extensive testicular injury. However, the underlying mechanisms remain to be elucidated. In the present study, we gavaged male C57BL/6 mice with different concentrations of DEHP (0, 250, and 500 mg/kg-bw·d) from postnatal day 22-35, and exposed TM3 Leydig cells with 0, 100, 200, 300, and 400 μM of MEHP (bioactive metabolite of DEHP) for 12-48 h. RNA sequencing was performed both in testicular tissue and TM3 cells. The results showed that DEHP disrupts testicular development and reduces serum testosterone levels in male prepubertal mice. Bioinformatic analysis and experimental verification have revealed that DEHP/MEHP induces cell cycle arrest in TM3 cells and increases apoptosis both in vivo and in vitro. Furthermore, the p53 signaling pathway was found to be activated upon DEHP/MEHP treatment. The inhibition of p53 by pifithrin-α significantly reduced MEHP-induced injuries in TM3 cells. Cumulatively, these findings revealed the involvement of the p53 signaling pathway in DEHP-induced prepubertal testicular injury by promoting cell apoptosis and inhibiting cell proliferation of Leydig cells.
Collapse
Affiliation(s)
- Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tianxin Zhao
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Jiadong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lian Kang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yuexin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yuhao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lindong Han
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| |
Collapse
|
35
|
Qianru C, Xueyuan H, Bing Z, Qing Z, Kaixin Z, Shu L. Regulation of H 2S-induced necroptosis and inflammation in broiler bursa of Fabricius by the miR-15b-5p/TGFBR3 axis and the involvement of oxidative stress in this process. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124682. [PMID: 33307448 DOI: 10.1016/j.jhazmat.2020.124682] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant, having toxic effects on immune system. Necroptosis has been discussed as a new form of cell death and plays an important role in inflammation. To investigate the mechanism of H2S-induced immune injury, and the role of microRNAs (miRNAs) in this process, based on the results of high-throughput sequencing, we selected the most significantly changed miR-15b-5p for subsequent experiments. We further predicted and determined the targeting relationship between miR-15b-5p and TGFBR3 in HD11 through miRDB, Targetscan and dual-luciferase, and found that miR-15b-5p is highly expressed in H2S-induced necroptosis and inflammation. To understand whether miR-15b-5p/TGFBR3 axis could involve in the process of necroptosis and inflammation, we further revealed that the high expression of miR-15b-5p and the knockdown of TGFBR3 can induce necroptosis. Nec-1 treatment enhanced the survival rate of cells. Notably, H2S exposure induces oxidative stress and activates the TGF-β pathway, which are collectively regulated by the miR-15b-5p/TGFBR3 axis. Our present study provides a new perspective for necroptosis regulated by the miR-15b-5p/TGFBR3 axis and reveals a new form of inflammation regulation in immune diseases.
Collapse
Affiliation(s)
- Chi Qianru
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hu Xueyuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhang Qing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhang Kaixin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
36
|
Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q, Zhang Z. NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology 2021; 453:152720. [PMID: 33592257 DOI: 10.1016/j.tox.2021.152720] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) chloride, as widely distributed toxic environmental pollutants by using in industry, severely imperils animal and human health. Pyroptosis is a Cas1-dependent pro-inflammatory programmed cell death and involves in various types of diseases. Nevertheless, the mechanism of pyroptosis and Cd-induced neurotoxicity remains obscure. To investigate the specific molecular mechanisms of Cd-induced neurotoxicity, 10 weaned piglets were randomly divided into 2 groups treated with 0 and 20 mg/kg CdCl2 in the diet for 40 days. The levels of pyroptosis, mitochondrial and inflammation-related genes were validated by qRT-PCR and WB in vivo. Our results revealed that Cd caused cerebral histopathology lesions, inducing cerebral pyroptosis and the mass generation of inflammatory cytokines, as indicated by the increased NLRP3 inflammasome activation (NLRP3, Cas1 and ASC) and the upregulation of inflammation factors IL-2, IL-6, IL-7 and inhibition of IL-10. Subsequently, further research indicated that Cd triggered pyroptosis via activating the TRAF6-IkB-α-NF-κB pathway, which interfered with the phosphorylation and ubiquitination of IkB-α. Furthermore, Cd caused mitochondrial dysfunction and fragmentation by inhibiting the AMPK-PGC-1α-NRF1/2 signaling pathway and reduced the expression of mitochondrial-related regulatory factors OPA1, TFAM and mtDNA, resulting in the increase of NLRP3 inflammasome. Besides, we found eight hub genes (IKK, IKB-α, NLRP3, TRAF6, NF-κB, AMPK, TNFα and PGC-1α), mainly related to the interaction between the NF-κB pathway and NLRP3 inflammasome. Overall, these results demonstrated that Cd could promote the IL-1β/IkB-α-NF-κB-NLRP3 inflammasome activation positive feedback loop to result in neuroinflammation in swine, which provided new insights in understanding Cd-induced toxicity.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
37
|
Wang Y, Zhao H, Mu M, Guo M, Xing M. Zinc offers splenic protection through suppressing PERK/IRE1-driven apoptosis pathway in common carp (Cyprinus carpio) under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111473. [PMID: 33068983 DOI: 10.1016/j.ecoenv.2020.111473] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) occurs naturally and concentrations in water bodies can reach high levels, leading to accumulation in vital organs like the spleen. Being an important organ in immune response and blood development processes, toxic effects of As on the spleen could compromise immunity and cause associated disorders in affected individuals. Splenic detoxification is key to improving the chances of survival but relatively little is known about the mechanisms involved. Essential trace elements like zinc have shown immune-modulatory effects humans and livestock. This study aimed to investigate the mechanisms involved in As-induced splenic toxicity in the common carp (Cyprinus carpio), and the protective effects of zinc (Zn). Our findings suggest that environmental exposure to As caused severe histological injuries and Ca2+ accumulation in the spleen of common carp. Additionally, transcriptional and translational profiles of endoplasmic reticulum stress, apoptosis and autophagy-related genes of the spleen showed upward trends under As toxicity. Treatment with Zn appears to offer protection against As-induced splenic injury in common carp and the pathologic changes above were alleviated. Our results provide additional insight into the mechanism of As toxicity in common carp while elucidating the role of Zn, a natural immune-modulator, as a potential antidote against As poisoning.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
38
|
Cui Y, Zhang Q, Yin K, Song N, Wang B, Lin H. DEHP-induce damage in grass carp hepatocytes and the remedy of Eucalyptol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111151. [PMID: 32858329 DOI: 10.1016/j.ecoenv.2020.111151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The wide application of plastic products led to the wide exposure of plasticizer in environment. As a new environmental pollutant, plasticizers' toxicity researches were far from enough in fish. In order to further explore these mechanisms, we used Diethylhexyl phthalate (DEHP), a common plasticizer, treated the grass carp hepatocytes, and selected Eucalyptol (EUC) to study its antagonistic effect on DEHP. The results showed that after DEHP exposure, oxidative stress level and inflammation in grass carp hepatocytes were increased, and then mRNA and protein expression of apoptosis related markers were increased significantly, leading to hepatocytes apoptosis. Moreover, AO/EB staining and Hoethst staining also showed that the number of apoptotic cells increased after DEHP exposure. It should be noted that both EUC pretreatment and EUC simultaneous treatment could alleviate the oxidative stress, levels of inflammatory factors and apoptosis induced by DEHP. In comparison, the effect of EUC simultaneous treatment was better. Our results showed that DEHP induced apoptosis in grass carp hepatocytes through oxidative stress and inflammation, while EUC could alleviate apoptosis by reducing oxidative stress and inflammation caused by DEHP. The innovation of this study was to explore the interaction between DEHP and EUC for the first time. This study found that DEHP could cause apoptosis in grass carp hepatocytes through oxidative stress and inflammation; EUC had a good antagonistic effect on a series of damage in grass carp hepatocytes caused by DEHP, and EUC pretreatment and simultaneous treatment had a certain effect, among which, simultaneous treatment had a better effect. This study enriched the theoretical mechanism of DEHP toxicity in fish hepatocytes, and put forward the methods to solve the toxicity of DEHP.
Collapse
Affiliation(s)
- Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
39
|
Jiayong Z, Shengchen W, Xiaofang H, Gang S, Shiwen X. The antagonistic effect of selenium on lead-induced necroptosis via MAPK/NF-κB pathway and HSPs activation in the chicken spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111049. [PMID: 32758698 DOI: 10.1016/j.ecoenv.2020.111049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Recent studies identified a novel programmed and regulated cell death that was characterized by a necrotic cell death morphology, termed necroptosis. Lead (Pb) is known as a persistent inorganic environmental pollutant that affects the health of humans and animals worldwide. However, there are no detailed reports of Pb-induced necroptosis of immune tissue. Selenium (Se) is a trace element that antagonizes the toxicity of heavy metals. Here, chickens were randomly divided into four groups, treated with Pb ((CH3OO)2Pb, 150 mg/kg) and/or Se (Na2SeO3, 2 mg/kg), aim to study the effect and mechanism of necroptosis in Pb-induced spleen injury and the antagonistic effects of Se on Pb toxicity. Our results showed that Pb exposure evidently increased the accumulation of Pb in spleen and caused necroptosis by upregulating the expression of RIP1, RIP3 and MLKL, and decreasing Caspase8 expression. Meanwhile, Pb treatment inhibited the activities of SOD, GPX, and CAT, caused the accumulation of NO and MDA, and induced oxidative stress, which promoted the expression of MAPK/NF-κB pathway genes (ERK, JNK, P38, NF-κB and TNF-α) and activated HSPs (HSP27, HSP40, HSP60, HSP70 and HSP90). However, the increased content of Pb in spleen and Pb-caused necroptosis were inhibited by Se cotreatment. Overall, we conclude that Se can prevent Pb-induced necroptosis by restoring antioxidant functions and blocking the MAPK/NF-κB pathway and HSPs activation in chicken spleen.
Collapse
Affiliation(s)
- Zhang Jiayong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Wang Shengchen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Xiaofang
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Sun Gang
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China.
| | - Xu Shiwen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
40
|
Zhang Z, Liu Q, Yang J, Yao H, Fan R, Cao C, Liu C, Zhang S, Lei X, Xu S. The proteomic profiling of multiple tissue damage in chickens for a selenium deficiency biomarker discovery. Food Funct 2020; 11:1312-1321. [PMID: 32022057 DOI: 10.1039/c9fo02861g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of numerous cancers because of the impressive development of novel proteomic strategies. Selenium (Se) is an essential trace element in humans and animals. Se deficiency could lead to Keshan disease in humans, mulberry heart disease in pigs and damage of tissues including cardiac injury, apoptosis in the liver, reduction in the immune responses in spleen and cerebral lesions in chickens. However, it is well know that plasma biomarkers are not specific and also show alterations in various diseases including those caused by Se deficiency. Therefore, new definition biomarkers are needed to improve disease surveillance and reduce unnecessary chicken losses due to Se deficiency. To identify new biomarkers for Se deficiency, we performed exploratory heart, liver, spleen, muscle, vein, and artery proteomic screens to further validate the biomarkers using Venn analysis, GO enrichment, heatmap analysis, and IPA analysis. Based on the bioinformatics methods mentioned above, we found that differentially expressed genes and proteins are enriched to the PI3K/AKT/mTOR signal pathway and insulin pathway. We further used western blot to detect the expression of proteins related to the two pathways. Results showed that the components of the PI3K/AKT/mTOR signal pathway were definitely decreased in heart, liver, spleen, muscle, vein and artery tissues in the Se deficient group. Expression IGF and IGFBP2 of the insulin pathway were differentially increased in the heart, liver, and spleen in Se deficient group samples and decreased in muscle and artery. In conclusion, 5 proteins, namely PI3K, AKT, mTOR, IGF, and IGFBP2, were differentially expressed, which could be potentially useful Se deficient biomarkers. In the present study, proteomic profiling was used to elucidate protein biomarkers that distinguished Se deficient samples from the controls, which might provide a new direction for the diagnosis and targeted treatment induced by Se deficiency in chickens.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ruifeng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Changyu Cao
- College of Life and Science, Foshan University, Foshan, 528000, P. R. China
| | - Ci Liu
- College of Animal Technology, Shanxi Agricultural University, Jinzhong, 030600, P. R. China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14583, USA
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14583, USA
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
41
|
Gong Y, Yang J, Cai J, Liu Q, Zhang Z. Selenoprotein Gpx3 knockdown induces myocardial damage through Ca 2+ leaks in chickens. Metallomics 2020; 12:1713-1728. [PMID: 32968752 DOI: 10.1039/d0mt00027b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione peroxidase 3 (Gpx3) is a pivotal selenoprotein that acts as an antioxidant. However, the role of Gpx3 in maintaining the normal metabolism of cardiomyocytes remains to be elucidated in more detail. Herein, we employed a model of Gpx3 interference in chicken embryos in vivo and Gpx3 knockdown chicken cardiomyocytes in vitro. Real-time PCR, western blotting and fluorescent staining were performed to detect reactive oxygen species (ROS), the calcium (Ca2+) concentration, endoplasmic reticulum (ER) stress, myocardial contraction, inflammation and heat shock proteins (HSPs). Our results revealed that Gpx3 suppression increased the level of ROS, which induced Ca2+ leakage in the cytoplasm by blocking the expression of Ca2+ channels. The imbalance of Ca2+ homeostasis triggered ER stress and blocked myocardial contraction. Furthermore, we found that Ca2+ imbalance in the cytoplasm induced severe inflammation, and HSPs might play a protective role throughout these processes. In conclusion, Gpx3 suppression induces myocardial damage through the activation of Ca2+-dependent ER stress.
Collapse
Affiliation(s)
- Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | | | | | | |
Collapse
|
42
|
Phthalates Implications in the Cardiovascular System. J Cardiovasc Dev Dis 2020; 7:jcdd7030026. [PMID: 32707888 PMCID: PMC7570088 DOI: 10.3390/jcdd7030026] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Today’s sedentary lifestyle and eating habits have been implicated as some of the causes of the increased incidence of several diseases, including cancer and cardiovascular diseases. However, environmental pollutants have also been identified as another possible cause for this increase in recent decades. The constant human exposure to plastics has been raising attention regarding human health, particularly when it comes to phthalates. These are plasticizers used in the manufacture of industrial and consumer products, such as PVC (Polyvinyl Chloride) plastics and personal care products, with endocrine-disrupting properties, as they can bind molecular targets in the body and interfere with hormonal function. Since these compounds are not covalently bound to the plastic, they are easily released into the environment during their manufacture, use, or disposal, leading to increased human exposure and enhancing health risks. In fact, some studies have related phthalate exposure with cardiovascular health, having already shown a positive association with the development of hypertension and atherosclerosis in adults and some cardiometabolic risk factors in children and adolescents. Therefore, the main purpose of this review is to present and relate the most recent studies concerning the implications of phthalates effects on the cardiovascular system.
Collapse
|
43
|
Yirong C, Shengchen W, Jiaxin S, Shuting W, Ziwei Z. DEHP induces neutrophil extracellular traps formation and apoptosis in carp isolated from carp blood via promotion of ROS burst and autophagy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114295. [PMID: 32179220 DOI: 10.1016/j.envpol.2020.114295] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 05/22/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), a widely spreading environmental endocrine disruptor, has been confirmed to adversely affect the development of animals and humans. The formation of neutrophil extracellular traps (NETs) termed NETosis, is a recently identified antimicrobial mechanism for neutrophils. Though previous researches have investigated inescapable role of the immunotoxicity in DEHP-exposed model, relatively little is known about the effect of DEHP on NETs. In this study, carp peripheral blood neutrophils were treated with 40 and 200 μmol/L DEHP to investigate the underlying mechanisms of DEHP-induced NETs formation. Through the morphological observation of NETs and quantitative analysis of extracellular DNA, we found that DEHP exposure induced NETs formation. Moreover, our results proved that DEHP could increase reactive oxygen species (ROS) levels, decrease the expression of the anti-autophagy factor (mTOR) and the anti-apoptosis gene Bcl-2, and increase the expression of pro-autophagy genes (Dynein, Beclin-1 and LC3B) and the pro-apoptosis factors (BAX, Fas, FasL, Caspase3, Caspase8, and Caspase9), thus promoting autophagy and apoptosis. These results indicate that DEHP-induced ROS burst stimulates NETs formation mediated by autophagy and increases apoptosis in carp neutrophils.
Collapse
Affiliation(s)
- Cao Yirong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wang Shengchen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Sun Jiaxin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wang Shuting
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhang Ziwei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
44
|
Fu G, Wang B, He B, Feng M, Yu Y. LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res 2020; 41:32-37. [PMID: 32580628 DOI: 10.1080/10799893.2020.1783682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necroptosis is a new type of cell death. However, the role of necroptosis in LPS-related cardiomyocyte damage has not been fully understood. The aim of our study is to explore the molecular mechanism underlying inflammation-mediated cardiomyocyte necroptosis. H9C2 cardiomyocyte cell line was treated with LPS. Then, cell viability and necroptosis were measured through qPCR and ELISA. Pathway analysis was performed to verify whether Ripk3/Pgam5 signaling pathway is implicated into the regulation of cardiomyocyte necroptosis. The results demonstrated that LPS reduced cardiomyocyte viability and activated necroptosis. At the molecular levels, oxidative stress and inflammation were triggered by LPS and these alterations may contribute to the activation of necroptosis. Finally, we found that Ripk3/Pgam5 signaling pathway was activated by LPS in cardiomyocyte and this signaling pathway may explain the regulatory mechanism underlying LPS-mediated necroptosis. Altogether, our results demonstrated that septic cardiomyopathy is associated with an activation of necroptosis through the Ripk3/Pgam5 signaling pathway.
Collapse
Affiliation(s)
- Guohua Fu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Bin He
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Mingjun Feng
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yibo Yu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
45
|
Yang J, Shi G, Gong Y, Cai J, Zheng Y, Zhang Z. LncRNA 0003250 accelerates heart autophagy and binds to miR-17-5p as a competitive endogenous RNA in chicken induced by selenium deficiency. J Cell Physiol 2020; 236:157-177. [PMID: 32542694 DOI: 10.1002/jcp.29831] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (LncRNAs) have been demonstrated to be associated with a variety of myocardial diseases, but how LncRNAs regulate autophagy in selenium (Se)-deficient myocardial injury is infrequently reported. Here, we screened out a novel long noncoding RNA, microRNA, and ATG7 through transcriptomic results. We employed a Se-deficient chicken model in vivo, and primary cultured cardiomyocytes treated by correlation in vitro. The results showed that Se deficiency upregulated the expression of ATG7, and miR-17-5p inhibited cardiomyocyte autophagy by targeting ATG7. Furthermore, we found that LncRNA 0003250 regulated miR-17-5p, and thus affected the expression of ATG7 and autophagic cell death. Our present study proposed a novel model for the regulation of cardiomyocytes autophagy, which includes LncRNA 0003250, miR-17-5p and ATG7 in the chicken heart. Our conclusions may provide a feasible diagnostic tool for Se-deficient cardiomyocyte injury.
Collapse
Affiliation(s)
- Jie Yang
- Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangliang Shi
- Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yafan Gong
- Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingzeng Cai
- Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yingying Zheng
- Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ziwei Zhang
- Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
46
|
Zhang Y, Zhang J, Bao J, Tang C, Zhang Z. Selenium deficiency induced necroptosis, Th1/Th2 imbalance, and inflammatory responses in swine ileum. J Cell Physiol 2020; 236:222-234. [PMID: 32488864 DOI: 10.1002/jcp.29836] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Selenium (Se) deficiency has a significant impact on the swine breeding industry by inducing digestive system damage and diarrhea. However, the molecular mechanism remains unclear. Our objectives were to investigate if different amounts of necroptosis, inflammatory responses, and T helper cell 1/T helper cell 2 (Th1/Th2) imbalances were induced by Se deficiency in intestinal porcine jejunal epithelial cells (IPEC-J2) and swine ileum tissue. Therefore, Se-deficient models were successfully established both in vitro and in vivo. In the current study, the cell morphological observation results showed that Se deficiency seriously affected the growth and differentiation of IPEC-J2 cells. Moreover, the necroptosis staining and histomorphology observation results showed that the number of necroptotic cells increased significantly, and the ileal tissue exhibited abnormal structures, including necroptotic features and inflammatory cell infiltration, in the Se-deficient group. Furthermore, Se deficiency resulted in accelerated cell necroptosis by increasing (p < .05) the expression of genes related to the tumor necrosis factor-α pathway at both the protein and messenger RNA (mRNA) levels compared to the control group. Moreover, the relative mRNA and protein expression of the inflammatory genes and their responses to dietary Se deficiency were consistent with the resultant Th1/Th2 imbalances in vitro and in vivo. Taken together, the results suggested that Se deficiency caused necroptosis, inflammatory responses, and abnormal expression of cytokines in swine ileum tissue. These findings might help us to explain the damage induced by Se deficiency to the digestive system of swine.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiuli Zhang
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jun Bao
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Chaohua Tang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
47
|
Yang J, Gong Y, Cai J, Zheng Y, Zhang Z. Chlorpyrifos induces apoptosis and autophagy in common carp lymphocytes by influencing the TCR γ-dependent PI3K/AKT/JNK pathway. FISH & SHELLFISH IMMUNOLOGY 2020; 99:587-593. [PMID: 32112891 DOI: 10.1016/j.fsi.2020.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos is an insecticide that is widely used in agricultural production. However, little is known about how chlorpyrifos disrupts lymphocyte homeostasis in common carp. Herein, we identified TCRγ through the results of transcriptome analysis. Subsequently, we established TCR γ knockdown and overexpression models in carp head kidney lymphocyte respectively using RNA interference and the pcDNA3.1 plasmid, respectively. Real-time PCR, fluorescent staining, ultrastructure observation and flow cytometry were used to detect the levels of the PI3K/AKT pathway, autophagy and apoptosis. Our results demonstrated that chlorpyrifos significantly decreased the expression of TCR γ, TCR γ suppression thereby induced increased mRNA expression of TNF-α, Bax, caspase-3, caspase-8, caspase-9 and significantly inhibited the expression of Bcl-2, which indicated that apoptosis was triggered. This conclusion was supported by our flow cytometry and ultrastructure observation results. In addition, the control and TCR γ overexpression groups had normal cell morphology. Moreover, TCR γ suppression activated the expression of Becline-1, ATG5, ATG10, ATG12, ATG16 and reduced the expression of mTOR, with the opposite results observed in the TCR γ overexpression group. Together, these results suggested that TCR γ imbalance triggers apoptosis and autophagy in lymphocyte. Moreover, we found that TCR γ knockdown significantly increased the mRNA expression of JNK and decreased the expression of PI3K and AKT, which indicated that the PI3K/AKT/JNK pathway was activated. Our results reported here indicated that chlorpyrifos induces apoptosis and autophagy in head kidney lymphocyte through the inhibition of TCR γ.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
48
|
Zhang Y, Yu D, Zhang J, Bao J, Tang C, Zhang Z. The role of necroptosis and apoptosis through the oxidative stress pathway in the liver of selenium-deficient swine. Metallomics 2020; 12:607-616. [PMID: 32176230 DOI: 10.1039/c9mt00295b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Necroptosis is regarded as a new paradigm of cell death that plays a key role in the liver damage observed with selenium (Se) deficiency.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China
- Ministry of Agriculture and Rural Affairs
- Beijing 100193
- China
| | - Dahai Yu
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China
- Ministry of Agriculture and Rural Affairs
- Beijing 100193
- China
| | - Jiuli Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Jun Bao
- College of Animal Science
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Chaohua Tang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China
- Ministry of Agriculture and Rural Affairs
- Beijing 100193
- China
| | - Ziwei Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
- Northeast Agricultural University/Key Laboratory of Swine Facilities Engineering
| |
Collapse
|