1
|
Nisa Mughal ZU, Liman G, Aylaz G, Shaikh H, Memon S, Andac M. Graphene oxide decorated with melamine-imprinted nanobeads for SERS detection of melamine in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126156. [PMID: 40209451 DOI: 10.1016/j.saa.2025.126156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
We present a novel, cost-effective SERS substrate for melamine detection in milk. Melamine is a nitrogen-rich compound illegally used to indicate high protein content. We developed a hybrid substrate based on molecularly imprinted polymer nanobeads functionalized with graphene oxide (MIP nanobeads@fGO). MIPs act as a door for selective detection and provide chemical enhancement. fGO achieves further chemical enhancement of the Raman signal by bond-making through functionalized moieties and electrostatic interaction with the ring moiety of fGO with melamine in SERS. Prior to polymerization, the molecular interaction between vinyl imidazole (VIM) as a functional monomer and melamine as a target molecule was modeled using AutoDockTools GUI (Graphical User Interface) and AutoGrid for molecular modelling simulations and grid calculations. From the clustering histogram, melamine and VIM molecules had the lowest binding energy of -0.77 kcal/mol. Also, the free energy of Melamine-VIM interaction at 298.15 K was -2729.21 kcal/mol, which is evidence that the interaction was energetically favorable. The fGO and MIP nanobeads@fGO were characterized by various techniques including FTIR and RAMAN spectroscopy, DSL and SEM. The SERS performance of MIP nanobeads@fGO was analyzed and showed excellent performance towards melamine with an EF of 1.3 × 106 and good reproducibility with an RSD of 8.3 %. A good correlation was observed between the -log concentration of melamine (μM) and the Raman intensity (a.u.) in a broad linear range from 7.9 E-5 μM to 7.9 E2 μM, with LOD and LOQ of 1.2 μM (0.15 ppm) and 3.6 μM (0.45 ppm), respectively. The USFDA and WHO introduced the tolerable level of melamine in milk and dairy products at no >2.5 ppm. Our LOD is below the tolerable limit, indicating that the MIP nanobeads@fGO substrate can be effectively used for food safety analysis in milk samples.
Collapse
Affiliation(s)
- Zaib Un Nisa Mughal
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 Sindh, Pakistan
| | - Gorkem Liman
- Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | - Gulgun Aylaz
- Nanotechnology Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 Sindh, Pakistan
| | - Shahabuddin Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 Sindh, Pakistan
| | - Muge Andac
- Faculty of Engineering, Environmental Engineering Department, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Qi Y, Luo J, Zhang L, Fang C, Zhang X, Han C. Preparation and Characterization of a Novel Magnetic Molecularly Imprinted Polymer Capable of Isolating and Purifying Cordycepin from a Submerged Culture of the Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 2025; 27:63-79. [PMID: 39717919 DOI: 10.1615/intjmedmushrooms.2024056391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In this work, magnetic molecularly imprinted polymer (MMIP) capable of selectively recognizing and adsorbing cordycepin was prepared. The MMIP was prepared using cordycepin as the template molecule, methacrylic acid and acrylamide as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The MMIP was analyzed using various techniques including transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometer and x-ray diffraction. The adsorption properties of MMIP were subsequently investigated, including adsorption isotherms, kinetics, selectivity, and reusability. In an aqueous solution, the maximum theoretical adsorption of MMIP was 35.806 mg/g. Finally, two practical applications of MMIP were studied. Our results showed that MMIP was able to increase the purity of cordycepin in the fermentation broth of Cordyceps militaris by 5.46 times and, using in situ isolation techniques, MMIP was able to increase the total cordycepin content obtained from liquid fermentation of C. militaris by 33.41%. These results demonstrated that these MMIPs exhibit excellent magnetic properties and possess specific adsorption capability for cordycepin, enabling rapid separation. They offer advantages such as cost-effectiveness, high specificity, and recyclability.
Collapse
Affiliation(s)
- Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Chuanjian Fang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Xiuyun Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
3
|
Govindarajan VU, Renganathan V, Muthuraman MS. Naringin-templated magnetic molecularly imprinted polymers for selective quercetin extraction from onion peel. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124349. [PMID: 39504814 DOI: 10.1016/j.jchromb.2024.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
A Magnetic Molecularly Imprinted Polymer (MMIP) was developed using naringin as template molecule, acrylamide as functional monomer and polymerized by ultrasound irradiation for the adsorption of naringin. In an unexpected turn of results, the selectivity study unveiled that the synthesized MMIP exhibited a higher affinity for quercetin over naringin. Given this high selectivity, adsorption isotherm and kinetic studies were conducted for both quercetin and naringin. The adsorption isotherm indicated multilayer adsorption of the adsorbate on the adsorbent. The kinetic study showed better agreement with the pseudo-second-order kinetic model. The maximum adsorption capacity of 7.2 mg/g was achieved for quercetin at 50 mg/L and 4.9 mg/g was attained for naringin at the same concentration. Furthermore, quercetin quantification was performed by coupling MMIP with HPLC-UV, with method validation revealing the limits of detection (LOD) and quantification (LOQ) for quercetin. Additionally, agro-industrial waste onion peel, enriched with phenolic compounds such as quercetin, was subjected to solid-phase extraction using MMIP for the purification of quercetin.
Collapse
Affiliation(s)
- Vinitha Udhayabanu Govindarajan
- Process Development Laboratory (ASK1, #208), Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Vaishnavi Renganathan
- Process Development Laboratory (ASK1, #208), Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Meenakshi Sundaram Muthuraman
- Process Development Laboratory (ASK1, #208), Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.
| |
Collapse
|
4
|
Shah N, Shah M, Rehan T, Khan A, Majeed N, Hameed A, Bououdina M, Abumousa RA, Humayun M. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications. Heliyon 2024; 10:e36189. [PMID: 39253174 PMCID: PMC11382202 DOI: 10.1016/j.heliyon.2024.e36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Rasha A Abumousa
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| |
Collapse
|
5
|
Zeng S, Chen Z, Huang L, Li C, Wang P, Qin D, Gao L. A highly efficient and selective rapid detection method applied to the detection of amide herbicides in fish serum. Food Chem 2024; 449:139215. [PMID: 38581791 DOI: 10.1016/j.foodchem.2024.139215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Misuse of amide herbicides in the fisheries environment can pose unpredictable harm to aquatic products and ultimately human health. Thus, the development of a real-time, rapid on-site detection method is crucial. This study proposes for the first time, a paper-based visual detection method for amide herbicides in fish serum, by coating the molecularly imprinted polymer layer onto quantum dots, prepared fluorescent sensing materials (QDs@MIPs) for the detection of amide herbicides in aquatic products. These materials specifically cause fluorescence quenching in the presence of amide herbicides resulting in a color change. For practical application, this research designed a rapid test strip based on QDs@MIPs, meanwhile, incorporate a smartphone or a fluorescence spectrophotometer for qualitative and quantitative measurements, the limit of detection ranges of 0.061-0.500 μM. The method can be used for on-site evaluation of aquatic products, providing new technology for monitoring the safety of aquatic products.
Collapse
Affiliation(s)
- Sili Zeng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Li Huang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Chenhui Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Lei Gao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China; College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.
| |
Collapse
|
6
|
Zhang Y, Zhao W, Zhang X, Wang S. Highly efficient targeted adsorption and catalytic degradation of ciprofloxacin by a novel molecularly imprinted bimetallic MOFs catalyst for persulfate activation. CHEMOSPHERE 2024; 357:141894. [PMID: 38615958 DOI: 10.1016/j.chemosphere.2024.141894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Given the presence of emerging pollutants at low concentrations in water bodies, which are inevitably affected by background substances during the removal process. In this study, we synthesized molecularly imprinted catalysts (Cu/Ni-MOFs@MIP) based on bimetallic metal-organic frameworks for the targeted degradation of ciprofloxacin (CIP) in advanced oxidation processes (AOPs). The electrostatic interaction and functional group binding of CIP with specific recognition sites on Cu/Ni-MOFs@MIP produced excellent selective recognition (Qmax was 14.82 mg g-1), which enabled the active radicals to approach and remove the contaminants faster. Electron paramagnetic resonance (EPR) analysis and quenching experiments revealed the coexistence of ∙OH, SO42-, and 1O2, with ∙OH dominating the system. Based on experimental and theoretical calculations, the reaction sites of CIP were predicted and the possible degradation pathways and mechanisms of Cu/Ni-MOFs@MIP/PMS systems were proposed. This study opens up a new platform for the targeted removal of target pollutants in AOPs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Wenqian Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
7
|
Mughal ZUN, Aylaz G, Shaikh H, Memon S, Andac M. Development of a molecularly imprinted polymer on silanized graphene oxide for the detection of 17-estradiol in wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11006. [PMID: 38444299 DOI: 10.1002/wer.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
This research article demonstrates the synthesis, characterization, and electrochemical evaluation of a molecularly imprinted polymer (MIP) on the surface of silanized graphene oxide (silanized GO), which is nanostructured and used to quantify 17-estradiol (E2) in wastewater. As characterization methods, X-ray diffraction (XRD), Raman spectroscopy, dynamic scattering light (DSL), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were utilized to examine the synthesized GO, silanized GO, MIP-GO composite, and non-imprinted polymer (NIP)-GO (NIP-GO) composite. FTIR results confirmed the successful synthesis of GO composites. Raman study confirmed the synthesis of monolayer silanized GO, MIP-GO composite, and NIP-GO composite. Surface morphology revealed that after polymerization, the surface of silanized GO sheet-like morphology is covered with nanoparticles. Adsorption kinetics studies revealed that adsorption follows the pseudo-second-order kinetics. Further, we studied the performance of a MIP-GO-based sensor by optimizing the effects of pH, scan rate, and incubation period. The linear calibration was achieved between the oxidation peak current and E2 concentration from 0.1 to 0.81 ppm, with a detection limit of 0.037 ppm. The selectivity of the MIP-GO composite was also checked by using other estrogens, and it was found that E2 is 3.3, 0.5, and 1.4 times more selective than equilin, estriol, and estrone, respectively. The composite was successfully applied to the wastewater samples for the detection of E2, and a good percentage of recoveries were achieved. It suggests that the reported composite can be applied to real samples. PRACTITIONER POINTS: An innovative electrochemical sensor was developed for selective detection of 17-estradiol through molecularly imprinted polymer fabricated on the surface of silanized GO (MIP-GO composite). The developed method was comprehensively validated and found to be linear in the range of 0.1 to 0.8 ppm of 17-estradiol, with 0.037 ppm of limit of detection and 0.1 ppm of limit of quantification, respectively. The developed MIP-GO-composite-based electrochemical sensor was found 3.3, 0.5, and 1.4 times more selective for 17-estradiol than equiline, estriol, and estrone, respectively. The applicability of a developed sensor was also checked on wastewater samples, and a good percent recovery was obtained.
Collapse
Affiliation(s)
- Zaib Un Nisa Mughal
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Gulgun Aylaz
- Nanotechnology Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Shahabuddin Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Muge Andac
- Faculty of Engineering, Environmental Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Zhang J, Yuan S, Beng S, Luo W, Wang X, Wang L, Peng C. Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres. Curr Protein Pept Sci 2024; 25:286-306. [PMID: 38178676 DOI: 10.2174/0113892037277894231208065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujuan Beng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
9
|
Dumitru MV, Sandu T, Miron A, Zaharia A, Radu IC, Gavrilă AM, Sârbu A, Iovu H, Chiriac AL, Iordache TV. Hybrid Cryogels with Superabsorbent Properties as Promising Materials for Penicillin G Retention. Gels 2023; 9:443. [PMID: 37367113 DOI: 10.3390/gels9060443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
This present study describes the investigation of new promising hybrid cryogels able to retain high amounts of antibiotics, specifically penicillin G, using chitosan or chitosan-biocellulose blends along with a naturally occurring clay, i.e., kaolin. In order to evaluate and optimize the stability of cryogels, three types of chitosan were used in this study, as follows: (i) commercial chitosan; (ii) chitosan prepared in the laboratory from commercial chitin; and (iii) chitosan prepared in the laboratory from shrimp shells. Biocellulose and kaolin, previously functionalized with an organosilane, were also investigated in terms of their potential to improve the stability of cryogels during prolonged submergence under water. The organophilization and incorporation of the clay into the polymer matrix were confirmed by different characterization techniques (such as FTIR, TGA, SEM), while their stability in time underwater was investigated by swelling measurements. As final proof of their superabsorbent behavior, the cryogels were tested for antibiotic adsorption in batch experiments, in which case cryogels based on chitosan extracted from shrimp shells seem to exhibit excellent adsorption properties for penicillin G.
Collapse
Affiliation(s)
- Marinela Victoria Dumitru
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Teodor Sandu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Andreea Miron
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Anamaria Zaharia
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Ionuț Cristian Radu
- Faculty of Chemical Engineering and Biotechnology, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Ana-Mihaela Gavrilă
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Andrei Sârbu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Horia Iovu
- Faculty of Chemical Engineering and Biotechnology, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Anita-Laura Chiriac
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Tanța Verona Iordache
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| |
Collapse
|
10
|
Xiang J, Zhou P, Mei H, Liu X, Wang H, Wang X, Li Y. Highly efficient nanocomposites based on molecularly imprinted magnetic covalent organic frameworks for selective extraction of bisphenol A from liquid matrices. Mikrochim Acta 2023; 190:200. [PMID: 37140689 DOI: 10.1007/s00604-023-05778-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 05/05/2023]
Abstract
Highly efficient nanocomposites, hydrophobic molecularly imprinted magnetic covalent organic frameworks (MI-MCOF), have been farbricated by a facile Schiff-base reaction. The MI-MCOF was based on terephthalaldehyde (TPA) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as functional monomer and crosslinker, anhydrous acetic acid as catalyst, bisphenol AF as dummy template, and NiFe2O4 as magnetic core. This organic framework significantly reduced the time consumption of conventional imprinted polymerization and avoided the use of traditional initiator and cross-linking agents. The synthesized MI-MCOF exhibited superior magnetic responsivity and affinity, as well as high selectivity and kinetics for bisphenol A (BPA) in water and urine samples. The equilibrium adsorption capacity (Qe) of BPA on the MI-MCOF was 50.65 mg g-1, which was 3-7-fold higher than of its three structural analogues. The imprinting factor of BPA reached up to 3.17, and the selective coefficients of three analogues were all > 2.0, evidencing the excellent selectivity of fabricated nanocomposites to BPA. Based on the MI-MCOF nanocomposites, the magnetic solid-phase extraction (MSPE), combined with HPLC and fluorescence detection (HPLC-FLD), offered superior analytical performance: wide linear range of 0.1-100 μg L-1, high correlation coefficient of 0.9996, low limit of detection of 0.020 μg L-1, good recoveries of 83.5-110%, and relative standard deviations (RSDs) of 0.5-5.7% in environmental water, beverage, and human urine samples. Consequently, the MI-MCOF-MSPE/HPLC-FLD method provides a good prospect in selective extraction of BPA from complex matrices while replacing traditional magnetic separation and adsorption materials.
Collapse
Affiliation(s)
- Jianxing Xiang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Chongqing Jiangbei Center for Disease Control and Prevention, Chongqing, 400000, China
| | - Peipei Zhou
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - He Mei
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaodong Liu
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yanyan Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China.
| |
Collapse
|
11
|
Zhou SX, Lin XT, Wang J, Wang HX, Chen GT. Novel hydrocortisone magnetic molecularly imprinted polymers: Preparation, characterization, and application. Food Chem 2023; 421:136196. [PMID: 37116443 DOI: 10.1016/j.foodchem.2023.136196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
In this work, magnetic molecularly imprinted polymers (MMIPs) were prepared by a surface imprinting method using Fe3O4 nanoparticles as a support. The products were characterized by FT-IR spectroscopy, VSM, TGA, SEM, and TEM. Combined with HPLC, hydrocortisone in milk powder and milk were separated and purified, and their contents were monitored. The results showed that MMIPs with a particle size of approximately 1000 nm were successfully prepared. The adsorption mechanism of MMIPs was confirmed by kinetic adsorption and thermodynamic adsorption experiments; the maximum adsorption capacity was found to be 17.2 mg g-1, and adsorption equilibrium could be reached within 40 min. In the actual sample application, the recovery rates of milk powder and milk were 93.88-99.15% and 95.80-98.10%, respectively. These results showed that MMIPs had good performance in selectively identifying hydrocortisone and were suitable for determining hydrocortisone in milk products.
Collapse
Affiliation(s)
- Si-Xuan Zhou
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Xiao-Tong Lin
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Jie Wang
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Hai-Xiang Wang
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Gui-Tang Chen
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China.
| |
Collapse
|
12
|
da Conceição P, Dos Santos Neto AG, Khan S, Tanaka AA, Santana AEG, Del Pilar Taboada-Sotomayor M, Goulart MOF, Santos ACF. Extraction-assisted voltammetric determination of homocysteine using magnetic nanoparticles modified with molecularly imprinted polymer. Mikrochim Acta 2023; 190:159. [PMID: 36973457 DOI: 10.1007/s00604-023-05738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
A magnetic graphite-epoxy composite (m-GEC) electrochemical sensor is presented based on magnetic imprinted polymer (mag-MIP) to determine homocysteine (Hcy). Mag-MIP was synthesized via precipitation polymerization, using functionalized magnetic nanoparticles (Fe3O4) together with the template molecule (Hcy), the functional monomer 2-hydroxyethyl methacrylate (HEMA), and the structural monomer trimethylolpropane trimethacrylate (TRIM). For mag-NIP (magnetic non-imprinted polymer), the procedure was the same in the absence of Hcy. Morphological and structural properties of the resultant mag-MIP and mag-NIP were examined using TEM, FT-IR, and Vibrating Sample Magnetometer. Under optimized conditions, the m-GEC/mag-MIP sensor showed a linear range of 0.1-2 µmol L-1, with a limit of detection (LOD) of 0.030 µmol L-1. In addition, the proposed sensor responded selectively to Hcy compared to several interferents present in biological samples. The recovery values determined by differential pulse voltammetry (DPV) were close to 100% for natural and synthetic samples, indicating good method accuracy. The developed electrochemical sensor proves to be a suitable device for determining Hcy, with advantages related to magnetic separation and electrochemical analysis.
Collapse
Affiliation(s)
- Poliana da Conceição
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil
| | - Antonio Gomes Dos Santos Neto
- Departamento de Química, Universidade Federal do Maranhão, Avenida dos Portugueses, MA, 1966, 65080-805, São Luís, Brazil
| | - Sabir Khan
- Instituto de Química, INCT-DATREM, Universidade Estadual Paulista, Rua Prof. Francisco Degni, 55, Araraquara, SP, Brazil
| | - Auro A Tanaka
- Departamento de Química, Universidade Federal do Maranhão, Avenida dos Portugueses, MA, 1966, 65080-805, São Luís, Brazil
- National Institute of Science and Technology of Bioanalytics (INCT-Bio), Campinas, Brazil
| | - Antônio Euzébio G Santana
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil
| | | | - Marília O F Goulart
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil
- National Institute of Science and Technology of Bioanalytics (INCT-Bio), Campinas, Brazil
| | - Ana Caroline Ferreira Santos
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil.
- National Institute of Science and Technology of Bioanalytics (INCT-Bio), Campinas, Brazil.
| |
Collapse
|
13
|
Ma X, Wang Y, Wang W, Heinlein J, Pfefferle LD, Tian X. Strategic preparation of porous magnetic molecularly imprinted polymers via a simple and green method for high-performance adsorption and removal of meropenem. Talanta 2023; 258:124419. [PMID: 36893497 DOI: 10.1016/j.talanta.2023.124419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
In this study, a facile method has been developed to synthesize a novel type of porous magnetic molecularly imprinted polymers (Fe3O4-MER-MMIPs) for the selective adsorption and removal of meropenem. The Fe3O4-MER-MMIPs, with abundant functional groups and sufficient magnetism for easy separation, are prepared in aqueous solutions. The porous carriers reduce the overall mass of the MMIPs, greatly improving their adsorption capacity per unit mass and optimizing the overall value of the adsorbents. The green preparation conditions, adsorption performance, and physical and chemical properties of Fe3O4-MER-MMIPs have been carefully studied. The developed submicron materials exhibit a homogeneous morphology, satisfactory superparamagnetism (60 emu g-1), large adsorption capacity (11.49 mg g-1), quick adsorption kinetics (40 min), and good practical implementation in human serum and environmental water. Finally, the protocol developed in this work delivers a green and feasible method for synthesizing highly efficient adsorbents for the specific adsorption and removal of other antibiotics as well.
Collapse
Affiliation(s)
- Xuan Ma
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Wenting Wang
- Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, Jiangsu, 210023, China
| | - Jake Heinlein
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
| | - Xuemeng Tian
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
14
|
Ma J, He C, Lian Z. Multivariate optimization of magnetic molecular imprinting solid-phase extraction to entrap rhodamine B in seawater. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
15
|
Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, ALJohani AA. A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. CHEMOSPHERE 2022; 308:136471. [PMID: 36126738 DOI: 10.1016/j.chemosphere.2022.136471] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
This article discusses the unique properties and performance of carbon-based molecularly-imprinted polymers (MIPs) for detecting hazardous pollutants in aqueous solutions. Although MIPs have several advantages such as specific recognition sites, selectivity, and stability, they suffer from a series of drawbacks, including loss of conductivity, electrocatalytic activity, and cost, which limit their use in various fields. Carbon-based MIPs, which utilize carbon electrodes, carbon nanoparticles, carbon dots, carbon nanotubes, and graphene substrates, have been the focus of research in recent years to enhance their properties and remove their weaknesses as much as possible. These carbon-based nanomaterials have excellent sensitivity and specificity for molecular identification. As a result, they have been widely used in various applications, such as assessing the environmental, biological, and food samples. This article examines the growth of carbon-based MIPs and their environmental applications.
Collapse
Affiliation(s)
- Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Omid Tavakkoli
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Mohsen Mesbah
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Tayebeh Khademi
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Irina Kirpichnikova
- Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| | - Akil Ahmad
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Anas Ayesh ALJohani
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
16
|
Chittireddy HNPR, Kumar JVS, Bhimireddy A, Shaik MR, Shaik AH, Alwarthan A, Shaik B. Development and Validation for Quantification of Cephapirin and Ceftiofur by Ultraperformance Liquid Chromatography with Triple Quadrupole Mass Spectrometry. Molecules 2022; 27:molecules27227920. [PMID: 36432023 PMCID: PMC9696115 DOI: 10.3390/molecules27227920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cross contamination of β-lactams is one of the highest risks for patients using pharmaceutical products. Penicillin and some non-penicillin β-lactams may cause potentially life-threatening allergic reactions. The trace detection of β-lactam antibiotics in cleaning rinse solutions of common reactors and manufacturing aids in pharmaceutical facilities is very crucial. Therefore, the common facilities adopt sophisticated cleaning procedures and develop analytical methods to assess traces of these compounds in rinsed solutions. For this, a highly sensitive and reproducible ultra-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-MS/MS) method was developed for the analysis of Cephapirin and Ceftiofur. As per the FDA guidelines described in FDA-2011-D-0104, the contamination of these β-lactam antibiotics must be regulated. The analysis was performed on an XBridge C18 column with 100 mm length, 4.6 mm diameter, and 3.5 µm particle size at an oven temperature of about 40 °C. The mobile phase was composed of 0.15% formic acid in water and acetonitrile as mobile phases A and B, and a flow rate was set to 0.6 mL/min. The method was validated for Cephapirin and Ceftiofur. The quantification precision and accuracy were determined to be the lowest limit of detection 0.15 parts per billion (ppb) and the lowest limit of quantification 0.4 ppb. This method was linear in the range of 0.4 to 1.5 ppb with the determination of coefficient (R2 > 0.99). This sensitive and fast method was fit-for-purpose for detecting and quantifying trace amounts of β-lactam contamination, monitoring cross contamination in facility surface cleaning, and determining the acceptable level of limits for regulatory purposes.
Collapse
Affiliation(s)
- Hari Naga Prasada Reddy Chittireddy
- Department of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - J. V. Shanmukha Kumar
- Department of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
- Correspondence: (J.V.S.K.); (M.R.S.); Tel.: +91-9000586007 (J.V.S.K.); +966-11-4670439 (M.R.S.)
| | | | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (J.V.S.K.); (M.R.S.); Tel.: +91-9000586007 (J.V.S.K.); +966-11-4670439 (M.R.S.)
| | - Althaf Hussain Shaik
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwarthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
He C, Ma J, Xu H, Ge C, Lian Z. Selective capture and determination of doxycycline in marine sediments by using magnetic imprinting dispersive solid-phase extraction coupled with high performance liquid chromatography. MARINE POLLUTION BULLETIN 2022; 184:114215. [PMID: 36307947 DOI: 10.1016/j.marpolbul.2022.114215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are frequently used in aquaculture as feed additives and finally enter the marine environment that can pose potential threat to humans. In this study, magnetic molecularly imprinted nanocomposites were prepared by surface imprinting and applied as selective sorbents for specific capture of doxycycline. A multivariate approach based on response surface methodology with Box-Behnken design was adopted to optimize the dispersive solid-phase extraction of doxycycline from marine sediment. Three key parameters, including adsorbent amount and type of washing/eluting solvent, were screened. Under optimum conditions, the limit of detection was 0.03 μg g-1 with good linearity from 0.5 to 20 μg g-1 followed by HPLC detection. Finally, two sediment samples were analysed and satisfactory recoveries between 90.60 % and 93.76 % were obtained with acceptable relative standard deviations (≤4.12 %), suggesting a promising applicability of the developed method for efficient extraction and sensitive quantification of antibiotics in complex marine environmental matrix.
Collapse
Affiliation(s)
- Cheng He
- Marine College, Shandong University, Weihai 264209, China
| | - Jiaxin Ma
- Marine College, Shandong University, Weihai 264209, China
| | - Huan Xu
- Marine College, Shandong University, Weihai 264209, China
| | - Changzi Ge
- Marine College, Shandong University, Weihai 264209, China
| | - Ziru Lian
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
18
|
Electrochemical detection of aminoglycoside antibiotics residuals in milk based on magnetic molecularly imprinted particles and metal ions. Food Chem 2022; 389:133120. [DOI: 10.1016/j.foodchem.2022.133120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
19
|
İlyasoglu G, Kose-Mutlu B, Mutlu-Salmanli O, Koyuncu I. Removal of organic micropollutans by adsorptive membrane. CHEMOSPHERE 2022; 302:134775. [PMID: 35537632 DOI: 10.1016/j.chemosphere.2022.134775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.
Collapse
Affiliation(s)
- Gülmire İlyasoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Oyku Mutlu-Salmanli
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
20
|
Poonia K, Raizada P, Singh A, Verma N, Ahamad T, Alshehri SM, Khan AAP, Singh P, Hussain CM. Magnetic molecularly imprinted polymer photocatalysts: synthesis, applications and future perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Banan K, Ghorbani-Bidkorbeh F, Afsharara H, Hatamabadi D, Landi B, Keçili R, Sellergren B. Nano-sized magnetic core-shell and bulk molecularly imprinted polymers for selective extraction of amiodarone from human plasma. Anal Chim Acta 2022; 1198:339548. [DOI: 10.1016/j.aca.2022.339548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/04/2023]
|
22
|
Wang Y, Zhao W, Gao R, Hussain S, Hao Y, Tian J, Chen S, Feng Y, Zhao Y, Qu Y. Preparation of lightweight daisy-like magnetic molecularly imprinted polymers via etching synergized template immobilization for enhanced rapid detection of trace 17β-estradiol. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127216. [PMID: 34592596 DOI: 10.1016/j.jhazmat.2021.127216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
17β-estradiol (E2), as one of the pharmaceutical and personal care product, frequently contaminates environmental water as estrogen pollutant and possesses great risk to human survival as well as the sustainable development of the ecosystem. Herein, to achieve an effective adsorbent system for the selective removal of E2 from the environmental water, Fe3O4 nanoparticles are subjected to chemical etching to reduce the overall mass and then employed as carriers to prepare a novel type of lightweight daisy-like magnetic molecularly imprinted polymers (LD-MMIPs) adopting template immobilization strategy. The LD-MMIPs based etched magnetic nanoparticles not only exhibit light mass but also have plentiful imprinted sites in the etched channels, which significantly increases the adsorption capacity for E2. The daisy-like LD-MMIPs own strong magnetic responsiveness, well crystallinity, fast binding kinetics, high adsorption amount, and excellent selectivity. Moreover, combining with HPLC, the LD-MMIPs as adsorbents have been successfully used to specifically recognize and detect trace E2 in environmental water. Thus, the proposed LD-MMIPs with high adsorption capacity hold great potential in monitoring water pollution. Additionally, this work also provides an alternative strategy for improving the adsorption capacity of magnetic molecularly imprinted polymers through a convenient chemical etching technology.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenchang Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jiahao Tian
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shihui Chen
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunhao Feng
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yubo Zhao
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuyao Qu
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3106. [PMID: 34835870 PMCID: PMC8623625 DOI: 10.3390/nano11113106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications due to their unique and tunable magnetic properties, the existing versatility with regard to their (bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in the agricultural sector.
Collapse
Affiliation(s)
- Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Kyriakos Athanasiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus;
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | | |
Collapse
|
24
|
Fizir M, Dahiru NS, Cui Y, Zhi H, Dramou P, He H. Simple and Efficient Detection Approach of Quercetin from Biological Matrix by Novel Surface Imprinted Polymer Based Magnetic Halloysite Nanotubes Prepared by a Sol-Gel Method. J Chromatogr Sci 2021; 59:681-695. [PMID: 33395480 DOI: 10.1093/chromsci/bmaa120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/25/2022]
Abstract
Molecular imprinted polymers coated magnetic halloysite nanotubes (MHNTs-MIPs) were prepared through sol-gel method by using quercetin (Que), APTES and TEOS as template, monomer and cross-linker agent, respectively. The synthesized MHNTs-MIPs were characterized by fourier transform infrared, scanning electron microscope, transmission electron microscope, XRD and vibrating sample magnetometer. Various parameters influencing the binding capacity of the MHNTs-MIPs were investigated with the help of response surface methodology. Selectivity experiments showed that the MHNTs-MIPs exhibited the maximum selective rebinding to Que. Therefore, the MHNTs-MIPs was applied as a solid-phase extraction adsorbent for the extraction and preconcentration of quercetin and luteolin in serum and urine samples. The limits of detection for quercetin and luteolin range from 0.51 to 1.32 ng mL-1 in serum and from 0.23 to 1.05 ng mL-1 in urine, the recoveries are between 95.20 and 103.73% with the RSD less than 5.77%. While the recovery hardly decreased after several cycles. The designed MHNTs-MIP with high affinity, sensitivity and maximum selectivity toward Que in SPE might recommend a novel method for the extraction of flavonoids in other samples like natural products.
Collapse
Affiliation(s)
- Meriem Fizir
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China.,Laboratoire de Valorisation des Substances Naturelles, Université Djilali Bounaâma, Khemis-Miliana, Algeria
| | - Nasiru Sintali Dahiru
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Yanru Cui
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Hao Zhi
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Pierre Dramou
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Hua He
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Pharmaceutical University, Ministry of Education, 639 Longmian Avenue, Nanjing, 211198, Jiangsu Province, China
| |
Collapse
|
25
|
Mudhoo A, Sillanpää M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4393-4413. [PMID: 34341658 PMCID: PMC8320315 DOI: 10.1007/s10311-021-01289-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/18/2021] [Indexed: 05/24/2023]
Abstract
Pure water will become a golden resource in the context of the rising pollution, climate change and the recycling economy, calling for advanced purification methods such as the use of nanostructured adsorbents. However, coming up with an ideal nanoadsorbent for micropollutant removal is a real challenge because nanoadsorbents, which demonstrate very good performances at laboratory scale, do not necessarily have suitable properties in in full-scale water purification and wastewater treatment systems. Here, magnetic nanoadsorbents appear promising because they can be easily separated from the slurry phase into a denser sludge phase by applying a magnetic field. Yet, there are only few examples of large-scale use of magnetic adsorbents for water purification and wastewater treatment. Here, we review magnetic nanoadsorbents for the removal of micropollutants, and we explain the integration of magnetic separation in the existing treatment plants. We found that the use of magnetic nanoadsorbents is an effective option in water treatment, but lacks maturity in full-scale water treatment facilities. The concentrations of magnetic nanoadsorbents in final effluents can be controlled by using magnetic separation, thus minimizing the ecotoxicicological impact. Academia and the water industry should better collaborate to integrate magnetic separation in full-scale water purification and wastewater treatment plants.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
26
|
Khalifa ME, Ali TA, Abdallah AB. Molecularly Imprinted Polymer Based GCE for Ultra-sensitive Voltammetric and Potentiometric Bio Sensing of Topiramate. ANAL SCI 2021; 37:955-962. [PMID: 33191368 DOI: 10.2116/analsci.20p313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Topiramate (TOP) drug is classified as one of the most commonly used human drugs for anticonvulsants and antiepileptic, so its rapid detection and monitoring is of great importance. In this work, new potentiometric (MIP/PVC/GCE) and voltammetric (MIP/GO/GCE) sensors for the selective and sensitive determination of TOP were fabricated based on the molecularly imprinted polymer (MIP) approach. The MIP was synthesized by the polymerization of acrylamide and methacrylic acid as monomers, in the presence of TOP as a template and ethylene glycol dimethacrylate as a cross-linker. The obtained products were characterized by FT-IR, SEM, BET, and EDX. The MIP was embedded in a plasticized polyvinyl chloride membrane and used as a potentiometric sensor for sensing TOP. Alternatively, the synthesized MIP and graphene oxide (GO) were deposited layer-by-layer on the surface of GCE to construct a voltammetric sensor for studying the electrochemical behavior of the drug. Under optimized conditions, both electrochemical sensors showed excellent linear relationships between the concentration of TOP and the response signals of MIP/GO/GCE or MIP/PVC/GCE sensors in the 2.7 × 10-10 to 4.9 × 10-3 M and 1 × 10-9 to 3.4 × 10-3 M ranges, respectively. Also, both sensors have good reproducibility and high stability for up to 15 days for a voltammetric sensor and 28 days for a potentiometric sensor. The utility of these sensors was checked for TOP analysis in different real samples with good recovery (92.8 - 99%).
Collapse
Affiliation(s)
- Magdi E Khalifa
- Department of Chemistry, Faculty of Science, Mansoura University
| | | | - A B Abdallah
- Department of Chemistry, Faculty of Science, Mansoura University
| |
Collapse
|
27
|
Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: Fundamentals and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Yu J, Liu H, Wang Y, Li J, Wu D, Wang X. Fluorescent sensing system based on molecularly imprinted phase-change microcapsules and carbon quantum dots for high-efficient detection of tetracycline. J Colloid Interface Sci 2021; 599:332-350. [PMID: 33957426 DOI: 10.1016/j.jcis.2021.04.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Aiming at enhancing the detection efficiency and identification accuracy of tetracycline under a high-temperature condition, this study focuses on an innovative fluorescent sensing system (MIP@CQD-PCM) based on molecularly imprinted phase-change microcapsules along with the carbon quantum dots (CQDs) embedded in their shell. This system was fabricated by microencapsulating n-eicosane as a phase change material (PCM) core within a CQDs-embedded SiO2 shell, followed by coating a tetracycline-templated molecularly imprinted polymer (MIP) layer onto the surface of the SiO2 shell. The specific recognition sites to tetracycline molecules were finally achieved by removal of tetracycline template from the MIP layer. Comprehensive characterizations and investigations on the structure and performance of the fluorescent sensing system were given to confirm its successful fabrication in accordance to our design strategy. The resultant MIP@CQD-PCM exhibits a satisfactory thermal storage capacity and phase-change cycle stability for temperature regulation and thermal management applications under a phase-change enthalpy of over 162 J/g. Most of all, a typical fluorescence-quenching effect was obtained from the combination of the CQDs embedded in the SiO2 shell and the tetracycline molecules adsorbed in the MIP layer. This makes the MIP@CQD-PCM achieve an enhanced capability for the fluorescence identification of tetracycline in a high-temperature environment through the in situ thermal management of its PCM core. The MIP@CQD-PCM also displays high selectivity and good reusability for tetracycline detection in industrial applications. This work provides a promising strategy for the design and development of fluorescent sensing systems with high recognition efficiency and identification accuracy in the detection of hazardous substances.
Collapse
Affiliation(s)
- Jinghua Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yatao Wang
- Coal Chemical R & D Center, Kailuan Group Limited Liability Corporation, Tangshan, Hebei 063018, China
| | - Jianhua Li
- Coal Chemical R & D Center, Kailuan Group Limited Liability Corporation, Tangshan, Hebei 063018, China
| | - Dezhen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
29
|
Guan G, Pan JH, Li Z. Innovative utilization of molecular imprinting technology for selective adsorption and (photo)catalytic eradication of organic pollutants. CHEMOSPHERE 2021; 265:129077. [PMID: 33277000 DOI: 10.1016/j.chemosphere.2020.129077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The rapid development of industrialization and urbanization results in a numerous production of various organic chemicals to meet the increasing demand in high-quality life. During the synthesis and utilization of these chemical products, their residues unavoidably emerged in environments to severely threaten human's health. It is thus urgent to exploit effective technology for readily removing the organic pollutants with high selectivity and good reusability. As one of the most promising approaches, molecular imprinting technology (MIT) employs a chemically synthetic route to construct artificial recognition sites in highly-crosslinked matrix with complementary cavity and functional groups to target species, which have been attracting more and more interest for environmental remediation, such as the selective adsorption/separation and improved catalytic degradation of pollutants. In this review, MIT is first introduced briefly to understand their preparing process, recognition mechanism and common imprinted systems. Then, their specific binding affinities are demonstrated for selectively adsorbing and removing target molecules with a large capacity. Furthermore, the innovative utilization of MIT in catalytic eradication of pollutants is comprehensively overviewed to emphasize their enhanced efficiency and improved performances, which are classified by the used catalytically-active nanocrystals and imprinted systems. After summarizing recent advances in these fields, some limitations are discussed and possible suggestions are given to guide the future exploitation on MIT for environmental protection.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, PR China
| | - Jia Hong Pan
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A∗STAR, 2 Fusionopolis Way, Singapore, 138634, Singapore.
| |
Collapse
|
30
|
Xu KX, Chen X, Huang Z, Chen ZN, Chen J, Sun JJ, Fang Y, Li JF. Ligand-Free Fabrication of Ag Nanoassemblies for Highly Sensitive and Reproducible Surface-Enhanced Raman Scattering Sensing of Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1766-1772. [PMID: 33373202 DOI: 10.1021/acsami.0c16529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The assemblies of plasmonic nanoparticles (NPs) are the universal methods for enhancing their surface-enhanced Raman scattering (SERS) activities. However, the present methods suffer from the problems of poor reproducibility, complicated fabrication, or the adsorption of ligands on the surface, which limit their practical applications. In this work, by using a facile freeze-thaw method, we are able to fabricate the assemblies of Ag NPs with highly reproducible SERS activity without the use of ligands. Moreover, the Ag NPs can be well kept in a frozen state for a long time with few influences on the reproducibility (relative standard deviation, RSD ca. 7%), while those kept in colloid (4 °C) suffer from gradual surface oxidation and aggregation. Such a simple freeze-thaw method does not require the introduction of any ligands (or linkers) with long-term stability and reproducibility, implying its wide applications in practical SERS sensing.
Collapse
Affiliation(s)
- Kai-Xuan Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xing Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zongxiong Huang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhen-Ni Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Junyan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
31
|
Gao M, Gao Y, Chen G, Huang X, Xu X, Lv J, Wang J, Xu D, Liu G. Recent Advances and Future Trends in the Detection of Contaminants by Molecularly Imprinted Polymers in Food Samples. Front Chem 2020; 8:616326. [PMID: 33335893 PMCID: PMC7736048 DOI: 10.3389/fchem.2020.616326] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Drug residues, organic dyes, heavy metals, and other chemical pollutants not only cause environmental pollution, but also have a serious impact on food safety. Timely and systematic summary of the latest scientific advances is of great importance for the development of new detection technologies. In particular, molecularly imprinted polymers (MIPs) can mimic antibodies, enzymes and other biological molecules to recognize, enrich, and separate contaminants, with specific recognition, selective adsorption, high affinity, and strong resistance characteristics. Therefore, MIPs have been widely used in chemical analysis, sensing, and material adsorption. In this review, we first describe the basic principles and production processes of molecularly imprinted polymers. Secondly, an overview of recent applications of molecularly imprinted polymers in sample pre-treatment, sensors, chromatographic separation, and mimetic enzymes is highlighted. Finally, a brief assessment of current technical issues and future trends in molecularly imprinted polymers is also presented.
Collapse
Affiliation(s)
- Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhang Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Lv
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Beijing, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens Bioelectron 2020; 172:112719. [PMID: 33166805 DOI: 10.1016/j.bios.2020.112719] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
The ever-increasing presence of contaminants in environmental waters is an alarming issue, not only because of their harmful effects in the environment but also because of their risk to human health. Pharmaceuticals and pesticides, among other compounds of daily use, such as personal care products or plasticisers, are being released into water bodies. This release mainly occurs through wastewater since the treatments applied in many wastewater treatment plants are not able to completely remove these substances. Therefore, the analysis of these contaminants is essential but this is difficult due to the great variety of contaminating substances. Facing this analytical challenge, electrochemical sensing based on molecularly imprinted polymers (MIPs) has become an interesting field for environmental monitoring. Benefiting from their superior chemical and physical stability, low-cost production, high selectivity and rapid response, MIPs combined with miniaturized electrochemical transducers offer the possibility to detect target analytes in-situ. In most reports, the construction of these sensors include nanomaterials to improve their analytical characteristics, especially their sensitivity. Moreover, these sensors have been successfully applied in real water samples without the need of laborious pre-treatment steps. This review provides a general overview of electrochemical MIP-based sensors that have been reported for the detection of pharmaceuticals, pesticides, heavy metals and other contaminants in water samples in the past decade. Special attention is given to the construction of the sensors, including different functional monomers, sensing platforms and materials employed to achieve the best sensitivity. Additionally, several parameters, such as the limit of detection, the linear concentration range and the type of water samples that were analysed are compiled.
Collapse
|
33
|
Aylaz G, Okan M, Duman M, Aydin HM. Study on Cost-Efficient Carbon Aerogel to Remove Antibiotics from Water Resources. ACS OMEGA 2020; 5:16635-16644. [PMID: 32685830 PMCID: PMC7364593 DOI: 10.1021/acsomega.0c01479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Because of pharmaceutical-emerging contaminants in water resources, there has been a significant increase in the antibiotic resistance in bacteria. Therefore, the removal of antibiotics from water resources is essential. Various antibiotics have been greatly studied using many different carbon-based materials including graphene-based hydrogels and aerogels. In this study, carbon aerogels (CAs) were synthesized from waste paper sources and their adsorption behaviors toward three antibiotics (hygromycin B, gentamicin, and vancomycin) were investigated, for which there exist a limited number of reports in the literature. The prepared CAs were characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and micro-computerized tomography (μ-CT). According to the μ-CT results, total porosity and open porosity were calculated as 90.80 and 90.76%, respectively. The surface area and surface-to-volume ratio were found as 795.15 mm2 and 16.79 mm-1, respectively. The specific surface area of the CAs was found as 104.2 m2/g. A detailed adsorption study was carried out based on different pH values, times, and analyte concentrations. The adsorption capacities were found as 104.16, 81.30, and 107.52 mg/g for Hyg B, Gen, and Van, respectively. For all three antibiotics, the adsorption behavior fits the Langmuir model. The kinetic studies showed that the system fits the pseudo-second-order kinetic model. The production of CAs, within the scope of this study, is safe, facile, and cost-efficient, which makes these green adsorbents a good candidate for the removal of antibiotics from water resources. This study represents the first antibiotic adsorption study based on CAs obtained from waste paper.
Collapse
Affiliation(s)
- Gülgün Aylaz
- Nanotechnology
and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara 06800, Turkey
| | - Meltem Okan
- Micro
and Nanotechnology Division, Graduate School of Natural and Applied
Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Memed Duman
- Nanotechnology
and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara 06800, Turkey
| | - Halil Murat Aydin
- Bioengineering
Division, Institute of Science & Center for Bioengineering, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
34
|
He Y, Li L, Li X, Zhang J. Preparation of Magnetic Molecularly Imprinted Polymer Fe3O4@SiO2@Ag-MIPs and Its Identification and SERS Detection of Ofloxacin. CHEM LETT 2020. [DOI: 10.1246/cl.200145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuhan He
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Xiaoxuan Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Jian Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| |
Collapse
|
35
|
Kumar S, Karfa P, Majhi KC, Madhuri R. Photocatalytic, fluorescent BiPO4@Graphene oxide based magnetic molecularly imprinted polymer for detection, removal and degradation of ciprofloxacin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110777. [DOI: 10.1016/j.msec.2020.110777] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
|