1
|
Liu S, Li X, Qin S, Zhang H, Zhang T, Zhu J, Lin L, Lian L, Xie F, Tan H, Zhao F. Comprehensive study of flusulfinam in paddy water-sediment microcosms: Enantioselective fate, degradation pathways, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137342. [PMID: 39893985 DOI: 10.1016/j.jhazmat.2025.137342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Flusulfinam, a novel chiral herbicide, demonstrates effective weed control in paddy fields. Nevertheless, a comprehensive investigation into its environmental fate in paddy systems, particularly at the enantiomeric level, remains deficient. Herein, paddy water-sediment microcosms were constructed across four sites to explore the enantiomeric behavior of flusulfinam. Enantioselective environmental behavior results show S-flusulfinam was found to preferentially accumulate in sediment, while R-flusulfinam showed preferential degradation in water and the overall system. Following this, the metabolic pathway of flusulfinam in the microcosms was also proposed. Eight metabolites were identified for the first time, and the synthesis and quantification of main metabolites M299 and M100 further substantiated the proposed flusulfinam metabolic pathways. In addition, enantioselective of R-M299 was also found in the Anhui microcosms. As predicted by Toxicity Estimation Software Tool, acute toxicity assessments revealed that M299 and M100 exhibit lower toxicity toward Danio rerio larvae and Selenastrum capricornutumwere compared to flusulfinam. Then, Illumina sequencing revealed that the degradation of flusulfanam had a significant impact on the abundance of key microbial genera, including Anaeromyxobacter, Nitrospira, Reyranella, and Sphingomonas. Overall, this study offers novel insights into the enantioselective fate of flusulfinam in paddy water-sediment ecosystems, provides a valuable reference for the assessment of environmental and ecological risks associated with flusulfinam. Finally, the R-flusulfinam is considered the safer enantiomer, as evidenced by its preferential degradation in microcosms systems and our prior research highlighting the high efficacy and low toxicity characteristic of R-flusulfinam.
Collapse
Affiliation(s)
- Shiling Liu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaoli Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Siying Qin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Heng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Tengfei Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Lin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co., Ltd., Qingdao, Shandong 266000, China
| | - Fayang Xie
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Bernhardt MFC, Ronconi-Krüger N, Nazari EM. Exposure to Pyriproxyfen Impacts Heart Development Causing Tissue and Cellular Impairments, Heart Arrhythmia and Reduced Embryonic Growth. Cardiovasc Toxicol 2025; 25:85-96. [PMID: 39527374 DOI: 10.1007/s12012-024-09944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
In recent years, concerns have been raised regarding the safety of exposure to pyriproxyfen (PPF), a larvicide commonly used in drinking water reservoirs to control populations of disease-vector mosquitoes for human safety. These concerns are focused mainly on exposure by pregnant women, since studies have shown deleterious effects of PPF on embryonic development, mainly addressing the central nervous system. However, since previous studies showed reduced growth in embryos exposed to PPF, we hypothesize that PPF exposure impairs the cardiovascular system, responsible for ensuring appropriate blood supply, which leads to stunted growth. This study aimed to investigate the impact of PPF exposure on heart ventricular morphology, its influence on cell proliferation and apoptosis, as well as assess the impact on the functionality of the heart and on embryonic growth. Chicken embryos were used as a model and two sublethal concentrations were tested: 0.01 mg/L and 10 mg/L PPF. Thinning of cardiac tissue was evident in heart structures at 10 mg/L PPF. Furthermore, DNA double-strand breaks and reduced cell proliferation were observed, combined with decreased apoptosis suggesting cell cycle arrest, especially in the left ventricle for both concentrations. In addition, these PPF concentrations induced heart arrhythmia, although no changes in heart rate were observed. Embryos exposed to 0.01 mg/L showed reduced body and heart mass, crown-rump length, and thoracic perimeter, while head circumference was reduced in both exposed groups. Together, combining morphological, molecular, and physiological parameters, this study showed the cardiotoxic effects of PPF exposure and elucidated its impacts on embryonic growth.
Collapse
Affiliation(s)
- Maria Fernanda Conte Bernhardt
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nathália Ronconi-Krüger
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Ma S, Ma L, Lu Y, Zhang J, Xin H, Zhou Y, Feng S, Jin G, Du X, Zhang H, Yin S. Stereoselective In Vitro Metabolism, Hepatotoxicity, and Cytotoxic Effects of Four Enantiomers of the Fungicide Propiconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27775-27786. [PMID: 39654444 DOI: 10.1021/acs.jafc.4c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Propiconazole (PRO) is a chiral triazole fungicide that has been widely used for several years. However, its metabolic characteristics and hepatotoxicity in the chiral level environment remain unclear. In this study, the stereoselective behavior of PRO was investigated by using liver microsome incubation, cell viability assay, inhalation exposure, and molecular docking. Our results demonstrated that the isomers trans (-)-2R,4R-PRO and cis (+)-2R,4S-PRO exhibited slower metabolic rates in rat liver microsomes. The cytochrome P450 family 1 subfamily A polypeptide 2 enzyme was found to play a key role in the metabolism of PRO, contributing to its stereoselective behavior. Histopathological and cell viability results showed that exposure to rac-PRO could induce severe hepatotoxicity in mice. This effect might be related to the accumulation of cis (+)-2R,4S-PRO in the liver, which has a slow metabolism and is highly toxic. Our findings indicate that avoiding the application of cis (+)-2R,4S-PRO in agriculture can significantly reduce adverse effects on nontarget organisms.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lanfang Ma
- Department of Obstetrics and Gynecology, Guiyang Maternity and Child Health Care Hospital, Guiyang,Guizhou 550003, China
| | - Yanbei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jialin Zhang
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Xin
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuchen Zhou
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Shiwen Feng
- School of Veterinary and Agriculture Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xinyuan Du
- Pharmaceutical Research Institute, China Shineway Pharmaceutical Group, Beijing 100025, China
| | - Hong Zhang
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
4
|
Cabral AP, Maia FPDS, Magliano DC, Graceli JB, Soares P, Morris EAR, Miranda-Alves L. Pyriproxyfen, villain or good guy? A brief review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240154. [PMID: 39876972 PMCID: PMC11771759 DOI: 10.20945/2359-4292-2024-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Pyriproxyfen (PPF) acts as a juvenile growth regulator, interfering with normal metamorphosis and blocking the development of insects into adulthood. Although the World Health Organization (WHO) considers the use of PPF at a concentration of 0.01 mg/L as unlikely to pose health risks, recent studies have unveiled potential risks associated with PPF exposure to non-target organisms. Exposure to PPF disrupts insect development primarily by mimicking juvenile hormones; therefore, concerns linger over its impact on unintended species. Studies have highlighted the adverse effects of PPF on aquatic invertebrates, fish, and amphibians and revealed mortality and developmental abnormalities in non-target mosquito species exposed to PPF-treated water. Moreover, PPF may act as an endocrine disruptor, interfering with hormonal pathways crucial for growth, reproduction, and behavior in exposed organisms. Amphibians, for instance, display altered reproductive physiology and developmental abnormalities due to disruptions in endocrine signaling pathways caused by PPF. The ecological ramifications of PPF extend beyond direct toxicity to non-target species. Indirect effects include shifts in food web dynamics and ecosystem functioning. Reductions in insect populations, induced by PPF, can disrupt food availability for higher trophic levels, potentially destabilizing community structure and ecosystem equilibrium. Given mounting evidence of unintended consequences, robust risk assessment and regulatory oversight are imperative. Accurate classification of PPF by regulatory bodies is essential to balancing its role in disease control and pest management benefits with the need to safeguard non-target species and maintain ecosystem health. Future research must prioritize comprehensive assessments of PPF's ecological impact across various habitats and taxa to inform evidence-based policymaking.
Collapse
Affiliation(s)
- Andressa Pereira Cabral
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilPrograma de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fabrício Pereira dos Santos Maia
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - D’Angelo Carlo Magliano
- Universidade Federal FluminenseCentro de Morfologia e MetabolismoNiteróiRJBrasilCentro de Morfologia e Metabolismo, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Jones Bernardes Graceli
- Universidade Federal do Espírito SantoLaboratório de Endocrinologia e Toxicologia CelularDepartamento de MorfologiaEspírito SantoESBrasilLaboratório de Endocrinologia e Toxicologia Celular, Departamento de Morfologia, Universidade Federal do Espírito Santo, Espírito Santo, ES, Brasil
| | - Paula Soares
- Universidade do PortoInstituto de Investigação e Inovação em SaúdeGrupo de Sinalização e Metabolismo CelularPortoPortugalGrupo de Sinalização e Metabolismo Celular, i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Eduardo Andrés Rios Morris
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Leandro Miranda-Alves
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilPrograma de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade do PortoInstituto de Investigação e Inovação em SaúdeGrupo de Sinalização e Metabolismo CelularPortoPortugalGrupo de Sinalização e Metabolismo Celular, i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
da Silva AS, de Mello TF, Fagá HFE, Knorst JK, Silva FRMB, Leite GAA. Female Mice Exposed to Pyriproxyfen Since Prepuberty Showed Reproductive Impairment During Sexual Maturity and Increased Fetal Death in Their Offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:5019-5038. [PMID: 39037111 DOI: 10.1002/tox.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Abstract
Pyriproxyfen (PPF) is an insecticide used in agriculture, which is approved for use in drinking water tanks for human consumption. However, some studies indicate that it may act as an endocrine disruptor and affect nontarget organisms. This study aimed to evaluate the effects of PPF on reproduction and general health status in female mice exposed from pre-puberty to adulthood. In the first experiment, females were treated by gavage from postnatal day (PND) 23 to (PND) 75 and were distributed into three experimental groups: control (vehicle), PPF 0.1 mg/kg, and PPF 1 mg/kg. Female mice were assessed for the age of puberty onset, body mass, water and food consumption, and the estrous cycle. On PDN 75, a subgroup was euthanized, when vital and reproductive organs were collected and weighed. The thyroid, ovary, and uterus were evaluated for histomorphometry. The other subgroup was assessed in relation to reproductive performance and fetal parameters. In a second experiment, the uterotrophic assay was performed with juvenile females (PND 18) using doses of 0.01, 0.1, or 1 mg/kg of PPF. PPF treatment reduced thyroid mass and increased liver mass. Furthermore, there was an increase in ovarian interstitial tissue and, in the uterus, a decrease in the thickness of the endometrial stroma with reduced content of collagen fibers. There was also a reduction of 30% in pregnancy rate in the treated groups and an increase in the frequency of fetal death. This study suggests that, based on this experimental model, the insecticide may pose a reproductive risk for females chronically exposed to the substance from the pre-pubertal period until adulthood. These results raise concerns about prolonged exposure of women to the same compound.
Collapse
Affiliation(s)
- Alice Santos da Silva
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tainara Fernandes de Mello
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Henrique Frederico Enz Fagá
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jennyfer Karen Knorst
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
6
|
Luckmann MR, Nazari EM. Cellular responses to developmental exposure to pyriproxyfen in chicken model: Contrasting embryos with and without exencephaly. Neurotoxicol Teratol 2024; 106:107395. [PMID: 39307295 DOI: 10.1016/j.ntt.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The insecticide pyriproxyfen (PPF), commonly used in drinking water, has already been described as a potential neurotoxic agent in non-target organisms, particularly during embryonic development. Consequently, exposure to PPF can lead to congenital anomalies in the central nervous system. Therefore, understanding the impact of this insecticide on developing neural cells is a relevant concern that requires attention. Thus, this study aimed to investigate the effects of PPF on the proliferation, differentiation, migration, and cell death of neural cells by comparing embryos that develop exencephaly with normal embryos, after exposure to this insecticide. Chicken embryos, used as a study model, were exposed to concentrations of 0.01 and 10 mg/L PPF on embryonic day E1 and analyzed on embryonic day E10. Exposed embryos received 50 μL of PPF diluted in vehicle solution, and control embryos received exclusively 50 μL of vehicle solution. After exposure, embryos were categorized into control embryos, embryos with exencephaly exposed to PPF, and embryos without exencephaly exposed to PPF. The results showed that although the impact was differentiated in the forebrain and midbrain, both brain vesicles were affected by PPF exposure, and this was observed in embryos with and without exencephaly. The most evident changes observed in embryos with exencephaly were DNA damage accompanied by alterations in cell proliferation, increased apoptosis, and reduced neural differentiation and migration. Embryos without exencephaly showed DNA damage and reduced cell proliferation and migration. These cellular events directly interfered with the density and thickness of neural cell layers. Together, these results suggest that PPF exposure causes cellular damage during neurogenesis, regardless of whether embryos display or do not display external normal morphology. This nuanced understanding provides important insights into the neurotoxicity of PPF and its potential effects on inherent events in neurogenesis.
Collapse
Affiliation(s)
- Maico Roberto Luckmann
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Evelise Maria Nazari
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
7
|
Xu Z, Zheng Q, Li N, Deng W, Qin T, Lv T, Wang L, Li M, Chen X, Zhang W, Liu B, Peng X. Rational design of a dual-mode fluorescent probe for portable detection of pyriproxyfen in the environment and food. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135364. [PMID: 39111178 DOI: 10.1016/j.jhazmat.2024.135364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
The development of a fluorescent probe for pyriproxyfen (PPF) is crucial due to its potential threat to human health. However, the chemical inertness and low solubility of PPF present significant challenges for the detection of PPF in aqueous solutions using fluorescent probes. Herein, we have originally proposed a complex based on 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4 H-chromen-4-one (HOF) and serum albumin (SA) as a dual-mode fluorescent probe, HOF@SA. This probe utilizes an indicator displacement assay (IDA) to release the dye HOF from the probe at low PPF concentrations (< 10 µM) and embeds the free dye HOF into the micelle of PPF at high concentrations (> 10 µM). This results in dual-mode fluorescent response characteristics for PPF: a turn-off response at low concentrations and a ratiometric response at high concentrations. An investigation of sensing behavior of HOF@SA for PPF detection exhibits rapid response (< 60 s), high sensitivity (LOD ∼4.7 ppb), high selectivity, and excellent visual detection capability (from cyan to yellow). Moreover, with the aid of a portable device, this method enables to analyze PPF in environmental and food samples. These results promote the advancement of a fluorescent probe approach for PPF analysis in environment and food.
Collapse
Affiliation(s)
- Zhongyong Xu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Zheng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; Advanced Materials and Devices Laboratory, School of Materials Science and Engineering, Hanshan Normal University, Guangdong 521041, China
| | - Na Li
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weihua Deng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingle Li
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqiang Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenxing Zhang
- Advanced Materials and Devices Laboratory, School of Materials Science and Engineering, Hanshan Normal University, Guangdong 521041, China.
| | - Bin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaojun Peng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Elewasy OA, Elrafie AS, Rasheed NA, Adli SH, Younis EM, Abdelwarith AA, Davies SJ, Ibrahim RE. The alleviative effect of Bacillus subtilis-supplemented diet against Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). Vet Res Commun 2024; 48:2513-2525. [PMID: 38869748 DOI: 10.1007/s11259-024-10418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
Bacterial illness causes detrimental impacts on fish health and survival and finally economic losses for the aquaculture industry. Antibiotic medication causes microbial resistance, so alternative control strategies should be applied. In this work, we investigated the probiotic-medicated diet as an alternative control approach for antibiotics in treating Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). One hundred eighty fish (50 ± 2.5 g Mean ± SD) were allocated into six groups in glass aquariums (96 L) in triplicate for 10 days. Groups 1 (G1), G2, and G 3 were intraperitoneally (IP) injected with 0.5 mL sterilized tryptic soy broth and fed on a basal diet, basal diet contained B. subtilis (BS) (1 × 10 5 CFU/ kg-1 diet), and basal diet contained trimethoprim-sulfamethoxazole (TMP-SMX) (1.5 g/kg-1 diet), respectively. Additionally, G4, G5, and G6 were IP challenged with 0.5 mL of V. cholerae (1.5 × 107 CFU) and received the same feeding regime as G 1 to 3, respectively. The results exhibited that the V. cholera-infected fish exhibited skin hemorrhage, fin rot, and the lowest survival (63.33%). Additionally, lowered immune-antioxidant biomarkers (white blood cells count, serum bactericidal activity, phagocytic activity, phagocytic index, and lysozymes) with higher lipid peroxidation marker (malondialdehyde) were consequences of V. cholerae infection. Noteworthy, fish-fed therapeutic diets fortified with BS and TMP-SMX showed a substantial amelioration in the clinical signs and survival. The BS diet significantly improved (P < 0.05) the immune-antioxidant indices of the infected fish compared to the TMP-SMX diet. The current findings supported the use of a BS-enriched diet as an eco-friendly approach for the control of V. cholerae in O. niloticus.
Collapse
Affiliation(s)
- Omnia A Elewasy
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Amira S Elrafie
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Neveen A Rasheed
- Agriculture Research Center (ARC), Giza, Egypt
- Immunology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
| | - Sara H Adli
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| |
Collapse
|
9
|
Sun L, Wang K, Li W, Pang X, Zhao P, Hua R, Yang X, Zhu M. Enantioselective effects of chiral prothioconazole and its metabolites: Oxidative stress in HepG2 cells and lysozyme activity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105696. [PMID: 38072551 DOI: 10.1016/j.pestbp.2023.105696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Chiral pesticides may exhibit enantioselectivity in terms of bioconcentration, environmental fate, and reproductive toxicity. Here, chiral prothioconazole and its metabolites were selected to thoroughly investigate their enantioselective toxicity and mechanisms at the molecular and cellular levels. Multispectral techniques revealed that the interaction between chiral PTC/PTCD and lysozyme resulted in the formation of a complex, leading to a change in the conformation of lysozyme. Meanwhile, the effect of different conformations of PTC/PTCD on the conformation of lysozyme differed, and its metabolites were able to exert a greater effect on lysozyme compared to prothioconazole. Moreover, the S-configuration of PTCD interacted most strongly with lysozyme. This conclusion was further verified by DFT calculations and molecular docking as well. Furthermore, the oxidative stress indicators within HepG2 cells were also affected by chiral prothioconazole and its metabolites. Specifically, S-PTCD induced more substantial perturbation of the normal oxidative stress processes in HepG2 cells, and the magnitude of the perturbation varied significantly among different configurations (P > 0.05). Overall, chiral prothioconazole and its metabolites exhibit enantioselective effects on lysozyme conformation and oxidative stress processes in HepG2 cells. This work provides a scientific basis for a more comprehensive risk assessment of the environmental behaviors and effects caused by chiral pesticides, as well as for the screening of highly efficient and less biotoxic enantiomeric monomers.
Collapse
Affiliation(s)
- Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Kangquan Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Wenze Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiaohui Pang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Pengfei Zhao
- Anhui Environmental Science and Technology Research Institute Co., Ltd., No. 699 Dabieshan Road, High tech Zone, Hefei, Anhui 230000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
10
|
Bugda H, Guven Ezer B, Rencuzogullari E. In vitro screening of genotoxicity and mutagenicity of pyriproxyfen in human lymphocytes and Salmonella typhimurium TA98 and TA100 strains. Drug Chem Toxicol 2023; 46:955-961. [PMID: 35982527 DOI: 10.1080/01480545.2022.2113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
Pyriproxyfen (PPX) is a pesticide/larvicide used to increase productivity in agriculture against insects by inhibiting development of insects' larvae. In this study, cytotoxic, genotoxic, and mutagenic effects of PPX were investigated in human peripheral lymphocytes and Salmonella typhimurium strains by performing chromosomal aberration, micronucleus (MN) tests, and Ames test, respectively. For the chromosome aberration (CA) and MN methods, blood from four healthy donors (two men and two women, nonsmokers) were used. Two hundred microliters of blood was inoculated into PbMax medium and prepared according to International Guidelines. For the Ames test, S. typhimurium TA98 and TA100 strains were used to detect frameshift and base pair substitution mutagens, respectively. PPX induced both the CA percentage and MN frequency in human peripheral lymphocytes and exhibited cytotoxic effects. In addition, it showed a mutagenic effect at all doses in TA98 and TA100 strains in the presence of S9mix; however, no such effect was observed in the absence of S9mix. According to the obtained results, it can be said that PPX has genotoxic and mutagenic potentials.
Collapse
Affiliation(s)
- Havva Bugda
- Department of Biology, Adiyaman University, Institute of Graduate Education, Adiyaman, Turkey
| | - Banu Guven Ezer
- Department of Biology, Adiyaman University, Institute of Graduate Education, Adiyaman, Turkey
| | - Eyyup Rencuzogullari
- Department of Biology, Faculty of Science and Letters, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
11
|
Li G, Li Y, He C, Wei Y, Cai K, Lu Q, Liu X, Zhu Y, Xu K. The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105586. [PMID: 37945223 DOI: 10.1016/j.pestbp.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 11/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kunpei Cai
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuebin Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
12
|
Kong Y, Wen Y, Su G, Peng Y, Cui X. Tissue-specific uptake and distribution of liquid crystal monomers (LCMs) in mice. ENVIRONMENT INTERNATIONAL 2023; 174:107894. [PMID: 37003217 DOI: 10.1016/j.envint.2023.107894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Increasing evidence indicated that liquid crystal monomers (LCMs) in liquid crystal displays can be released into the environment, and ubiquitously detected in environmental matrices and even human bodies. Yet databases regarding its uptake and distribution in mammals are lacking. In this study, four LCMs (namely 3dFB, 2OdF3B, 2teFT, and 6OCB) with various physiochemical properties and structures were selected as the target compounds. The LCMs were in vivo and in vitro exposed to mice and rat liver microsomes (RLM). LCMs were found in all mouse tissues, including brain. Pharmacokinetics parameters, Cmax-tissue/Cmax-blood, ranged from 27.5 to 214, indicating the preferential deposition of LCMs to tissues rather than blood. The LCMs distributed preferentially to lipophilic tissues, and relative mass contribution of LCMs from liver and adipose was 43-98 %. The physicochemical properties (i.e., Kow, molecular weight, and functional groups) had pronounced effect on distribution and accumulation of LCMs. The 2teFT with the highest Kow and molecular weight showed the relatively higher accumulation potential and half elimination time in all the tissues. The 6OCB containing cyano-group was more accumulative than the fluorinated 3dFB with the comparable Kow. In RLM assays, 2teFT and 6OCB were resistant to metabolic degradation. While 3dFB and 2OdF3B underwent rapid degradation with 93.7 % and 72.4 % being metabolized at 360 min. Findings in this study bear significant implications for the biomonitoring and overall risk evaluation of LCMs.
Collapse
Affiliation(s)
- Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Di S, Liu R, Liu Z, Xu H, Zhao H, Lu Y, Qi P, Wang Z, Wang X. Comprehensive evaluation of chiral penflufen metabolite (penflufen-3-hydroxy-butyl): Identification, synthesis, enantioseparation, toxicity and enantioselective metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114549. [PMID: 36669279 DOI: 10.1016/j.ecoenv.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Identification and evaluations of pesticide metabolites are necessary for risk assessment and toxicological research. In this study, the metabolites of penflufen (a widely used chiral pesticide) in rat liver microsomes were identified using liquid chromatography Q-Exactive Plus mass spectrometry. In total, 17 penflufen metabolites were identified, and most of them were hydroxylation products, which were generated by oxygenation at different candidate sites of penflufen. The relative abundance of metabolite M12 (penflufen-3-hydroxy-butyl, 32 %) was the largest, followed by M8 (15.6 %) and M2 (12.8 %). The major metabolite penflufen-3-hydroxy-butyl was first synthesized by 11 reactions with a 99.73 % purity. The absolute configuration of M12 enantiomers were confirmed after preparing enantiomers, and establishing the enantioseparation method. The M12 enantiomers toxicity to Danio rerio (LC50, >10 mg/L) and four kinds of phytopathogens (EC50, 148-34969 mg/L) were significantly lower than parents (LC50, 0.449-24.3 mg/L; EC50, 0.027-92.0 mg/L). In rat liver microsomes, approximately 40-47 % of the penflufen enantiomers were metabolized to M12 enantiomers, and R-penflufen was preferentially metabolized. The generation concentrations of S-M12 were higher than R-M12 after 10 min, and the metabolic half-lives of R-M12 (29.0-32.5 min) were shorter than S-M12 (35.2-38.1 min), and were approximately 4 times longer than parent penflufen enantiomers (4.5-9.5 min). Simultaneously, the generated contents (relative contents) of M8 (27.1-57 %) and M10 (2.22-8.36 %) from S-penflufen were lower than those from R-penflufen (M8, 24.7-92.4 %; M10, 27.4-69.5 %). The enantioselective evaluations of M12, M10 and M8 deserve further study. These findings were helpful in understanding the fate and risks of chiral penflufen.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Ruiquan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Yuele Lu
- Institute of Fermentation Engineering and College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
14
|
Sun X, Ye Y, Sun J, Tang L, Yang X, Sun X. Advances in the study of liver microsomes in the in vitro metabolism and toxicity evaluation of foodborne contaminants. Crit Rev Food Sci Nutr 2022; 64:3264-3278. [PMID: 36226776 DOI: 10.1080/10408398.2022.2131728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Foodborne contaminants are closely related to anthropologic activities and represent an important food safety hazard. The study of metabolic transformation and toxic side effects of foodborne contaminants in the body is important for their safety assessment. Liver microsomes contain a variety of enzymes related to substance metabolism and biotransformation. An in vitro model simulating liver metabolic transformation is associated with a significant advantage in the study of the metabolic transformation mechanisms of contaminants. This review summarizes the recent progress in the application of liver microsomes in metabolic transformation and toxicity evaluation of various foodborne pollutants based on metabolic kinetics, molecular docking and enzyme inhibition studies. The purpose of this review is to distinguish the existing studies involving liver microsomes and provide strategies for their application in the future. Finally, the prospects and challenges of the liver microsomal model are discussed.
Collapse
Affiliation(s)
- Xinyu Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Merleau LA, Larrigaldie I, Bousquet O, Devers S, Keller M, Lécureuil C, Meunier J. Exposure to pyriproxyfen (juvenile hormone agonist) does not alter maternal care and reproduction in the European earwig. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72729-72746. [PMID: 35610459 DOI: 10.1007/s11356-022-20970-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sublethal exposure to pesticides can alter the survival and reproduction of a wide range of non-target organisms. However, it remains unclear whether this exposure can alter behaviours that are often essential for long-term population dynamics and maintenance, such as parental care. In this study, we tested the effect of pyriproxyfen exposure (an insect growth regulator) on maternal care in the European earwig, an insect that is both used in pest control in pip-fruit orchards and considered a pest in stone fruit orchards. We exposed 424 females at doses either 10 times lower, equivalent or 10 times higher than normal application rates in French orchards. As maternal care can change over the weeks of family life, we exposed the earwig mothers at five different days before and after egg hatching. We then measured the expression of ten forms of maternal care towards eggs and juveniles, six non-caring behaviours, eggs and juvenile development, metabolic reserves in mothers at egg hatching and females' production of a terminal clutch. First, our results revealed that the three tested doses of pyriproxyfen were non-lethal and confirmed that maternal care decreased throughout both pre- and post-hatching family life. However, we did not detect any effect of pyriproxyfen on maternal care and non-care behaviours, eggs and juvenile development, quantities of lipids, proteins and glycogen in mothers at egg hatching, and on the production of a future clutch. Overall, these findings suggest that the maximal doses of pyriproxyfen authorized in French orchards is likely to have limited effects on the short- and long-term maintenance of populations of the European earwig and raises fundamental questions about the nature of the link between juvenile hormone and parental care in insects.
Collapse
Affiliation(s)
- Leslie-Anne Merleau
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Izïa Larrigaldie
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Océane Bousquet
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Séverine Devers
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRAE/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
16
|
Evaluation of DNA Damage, Biomarkers of Oxidative Stress, and Status of Antioxidant Enzymes in Freshwater Fish ( Labeo rohita) Exposed to Pyriproxyfen. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5859266. [PMID: 35720182 PMCID: PMC9205694 DOI: 10.1155/2022/5859266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023]
Abstract
Pyriproxyfen (PPF) mimics a natural hormone in insects and disrupts their growth. It is a well-known synthetic insecticide and aromatic juvenile hormone analog frequently used in agriculture and vegetable crops to control various insect species. At present, scanty information is available about the possible potential threats of PPF in aquatic organisms. Therefore, in this study, different toxico-pathologic endpoints of PPF like DNA damage, biomarkers of oxidative stress, and status of antioxidant enzymes were determined in Labeo rohita (freshwater fish). In our study, 60 active, free from any external obvious ailments, same size, age, and body mass were randomly allocated to four glass aquaria (T0-T3) separately containing 100 L water. The fish present in groups T1, T2, and T3 were administered PPF dissolved in water 300, 600, and 900 μg/L for 30 days. Different tissues including the blood and visceral organs were obtained from each fish on days 10, 20, and 30 of the experiment. Results on various morphological and nuclear changes in red blood cells of PPF-exposed Labeo rohita fish including pear-shaped erythrocytes, spherocytes, red blood cells with a blebbed nucleus, micronucleus, and nuclear remnants were significantly increased. Our results on genotoxicity (comet assay) recorded significantly (P ≤ 0.05) increased DNA damage in various tissues of insecticide-exposed fish. The results on oxidative stress profile (reactive oxygen species and thiobarbituric acid reactive substances) and antioxidant enzymes (reduced glutathione superoxide dismutase, peroxidase, and catalase) in multiple tissues of Labeo rohita fish concluded significantly (P ≤ 0.05) higher quantity of biomarkers of oxidative stress and lower concentrations of different antioxidant enzymes in treated fish. Hence, the findings of our experimental research determine that PPF could induce adverse toxic impacts on multiple tissues of Labeo rohita fish.
Collapse
|
17
|
Wang Z, Li R, Wu Q, Duan J, Tan Y, Sun X, Chen R, Shi H, Wang M. Enantioselective Metabolic Mechanism and Metabolism Pathway of Pydiflumetofen in Rat Liver Microsomes: In Vitro and In Silico Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2520-2528. [PMID: 35184556 DOI: 10.1021/acs.jafc.1c06928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pydiflumetofen (PYD) has been used worldwide. However, the enantioselective fate of PYD within mammals is not clear. Thus, the enantioselective metabolism and its potential mechanisms of PYD were explored via in vitro and in silico. Consistent results were observed between metabolism and enzyme kinetics experiments, with S-PYD metabolizing faster than R-PYD in rat liver microsomes. Moreover, CYP3A1 and carboxylesterase 1 were found to be major enzymes participating in the metabolism of PYD. Based on the computational results, S-PYD bound with CYP3A1 and carboxylesterase 1 more tightly with lower binding free energy than R-PYD, explaining the mechanism of enantioselective metabolism. Nine phase I metabolites of PYD were identified, and metabolic pathways of PYD were speculated. This study is the first to clarify the metabolism of PYD in mammals, and further research to evaluate the toxicological implications of these metabolites will help in assessing the risk of PYD.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rou Chen
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Zhao H, Hu J. Total residue levels and risk assessment of flufenacet and its four metabolites in corn. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Luckmann MR, de Melo MS, Spricigo MC, da Silva NM, Nazari EM. Pyriproxyfen exposure induces DNA damage, cell proliferation impairments and apoptosis in the brain vesicles layers of chicken embryos. Toxicology 2021; 464:152998. [PMID: 34695508 DOI: 10.1016/j.tox.2021.152998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Larvicide pyriproxyfen (PPF), used in drinking water reservoirs to control Aedes mosquitoes, has already been shown as a possible cause of congenital anomalies in the central nervous system. However, the neurotoxic effects of PPF on the development of vertebrate embryos are still underexplored. Thus, the aim of this study was to investigate the effects of PPF on the morphometric parameters of the head and brain, as well as on the cell layers of the forebrain and midbrain, using embryos of Gallus domesticus as a model. Two sublethal PPF concentrations (0.01 mg/L and 10 mg/L), as defined by a survival curve, were tested. Analysis of the biometry of embryos showed significant reduction in body and brain mass and also in measurements of the head and brain. A reduction in cell layer thickness of the forebrain and midbrain was observed, accompanied by a reduction in the numerical density of cells per area. Changes in brain and head sizes and in the thickness of the cell layers of the forebrain and midbrain were significant at 10 mg/L PPF. Notably, PPF caused DNA doublestrand breaks and induced apoptosis in embryos exposed to 10 mg/L, which were accompanied by a reduction in cell proliferation. Regarding neuronal and glial differentiation, no changes were observed in the number of neurons and glial cells on the analyzed layers. Furthermore, PPF did not impact the head ossification process. These findings reveal that PPF is a strong stressor for neurodevelopment, causing damage to the cell architecture of brain vesicles.
Collapse
Affiliation(s)
- Maico Roberto Luckmann
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Mirian Celene Spricigo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Norma Machado da Silva
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
20
|
He Z, Wang Z, Gao B, Liu S, Zhao X, Shi H, Wang M. Stereostructure-activity mechanism of cyproconazole by cytochrome P450 in rat liver microsomes: A combined experimental and computational study. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125764. [PMID: 33827004 DOI: 10.1016/j.jhazmat.2021.125764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Cyproconazole (CPZ), representing the chiral triazole fungicides, is widely used in the pharmaceutical and agricultural fields. To clarify its potential adverse effects on the generalized CYP-mediated processes within mammalian, a comparative experimental and computational approach was employed to investigate the CYP-mediated metabolism processes of CPZ stereoisomers in rat liver microsomes (RLMs). The depletion rate of CPZ stereoisomers in vitro incubation system with RLMs followed the order RR-> SS-> SR-> RS-CPZ. The results of kinetic assays were in line with the depletion rate results. Further inhibition assay confirmed the stereoselective metabolism of CPZ stereoisomers by different CYP isoforms. Molecular dynamics (MD) simulation revealed the stereoselective metabolism mechanism. Several hydrogen bonds and π-stacking restrict the position of CPZ isomers in the active cavity of CYPs so that the 4'-nitrogen on the triazole ring can bind closely to the heme of CYP, which results in the metabolism of CPZ isomers. By combining the computational and experimental approaches, the structure-activity relationship of CPZ and CYP was elucidated, and this method can be further applied to predict the degree of uncertainty in the process of xenobiotic biotransformation of triazole fungicides and serve as a basis for risk assessment.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China; Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Shiling Liu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
21
|
In Silico Prediction of the Mechanism of Action of Pyriproxyfen and 4'-OH-Pyriproxyfen against A. mellifera and H. sapiens Receptors. Int J Mol Sci 2021; 22:ijms22147751. [PMID: 34299368 PMCID: PMC8306554 DOI: 10.3390/ijms22147751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background. Poisoning from pesticides can be extremely hazardous for non-invasive species, such as bees, and humans causing nearly 300,000 deaths worldwide every year. Several pesticides are recognized as endocrine disruptors compounds that alter the production of the normal hormones mainly by acting through their interaction with nuclear receptors (NRs). Among the insecticides, one of the most used is pyriproxyfen. As analogous to the juvenile hormone, the pyriproxyfen acts in the bee’s larval growth and creates malformations at the adult organism level. Methods. This work aims to investigate the possible negative effects of pyriproxyfen and its metabolite, the 4′-OH-pyriproxyfen, on human and bee health. We particularly investigated the mechanism of binding of pyriproxyfen and its metabolite with ultraspiracle protein/ecdysone receptor (USP-EcR) dimer of A. mellifera and the relative heterodimer farnesoid X receptor/retinoid X receptor alpha (FXR-RXRα) of H. sapiens using molecular dynamic simulations. Results. The results revealed that pyriproxyfen and its metabolite, the 4′-OH- pyriproxyfen, stabilize each dimer and resulted in stronger binders than the natural ligands. Conclusion. We demonstrated the endocrine interference of two pesticides and explained their possible mechanism of action. Furthermore, in vitro studies should be carried out to evaluate the biological effects of pyriproxyfen and its metabolite.
Collapse
|
22
|
Zhang Z, Wang Z, Li QX, Hua R, Wu X. Enantioselective metabolism of phenylpyrazole insecticides by rat liver microsomal CYP3A1, CYP2E1 and CYP2D2. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104861. [PMID: 34119225 DOI: 10.1016/j.pestbp.2021.104861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/11/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11-0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49-0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5-2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (-7.56 kcal mol-1) and R-ethiprole (-6.45 kcal mol-1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Zhiqiang Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
23
|
He R, Fan J, Chen R, Guo D, Zhao M, Zhang Z, Liang C, Chen M, Song H, Zhang W. Stereoselective in vitro metabolism of cyproconazole in rat liver microsomes and identification of major metabolites. CHEMOSPHERE 2021; 264:128495. [PMID: 33038739 DOI: 10.1016/j.chemosphere.2020.128495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The vast usage of agrochemicals enhances food security globally but may pose challenge to understand the risk assessment to non-target organisms and human beings, and liver microsomes are responsible for metabolism of these agrochemicals in vivo. In this study, stereoselective metabolism of chiral triazole fungicide cyproconazole in rat liver microsomes has been investigated through chiral LC-MS/MS technique. The half-lives of four cyproconazole stereoisomers were different ranging from 95 to 187 min, and (2S, 3R)-cyproconazole preferentially metabolized in rat liver microsomes. In addition, the results from metabolism kinetic study indicated that rat liver microsomes showed the stronger potency to deplete (2S, 3R)-cyproconazole than the others. Then, homology modeling and molecular docking results revealed that the docking energy between (2S, 3R)-cyproconazole and the cytochrome P450 CYP3A1 (-7.46 kcal⋅mol-1) was higher than the others, meaning that (2S, 3R)-cyproconazole exhibited the strongest binding ability to this enzyme. Moreover, two main metabolites of cyproconazole coming from hydroxylation and dehydration were observed, and possible metabolic reactions of cyproconazole in rat liver microsomes were identified through using an LCQ ion trap mass spectrometer. This kind of systematic metabolic investigation of cyproconazole at chiral level would provide valuable information for ecological and human health risk assessment of chiral pesticides.
Collapse
Affiliation(s)
- Rujian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China.
| | - Ran Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| | - Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China; Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou, 510663, PR China
| | - Mengjiu Zhao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| | - Zhifeng Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| | - Chuying Liang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| | - Ming Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| | - Haiyan Song
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China
| |
Collapse
|
24
|
Hou M, Lv M, Zhang X, Wang Y, Zhao S, Wu J, Peng S, Zhao M. Discovery of novel (6S/12aS)-heptachpyridone capable of inhibiting thrombosis in vivo. Bioorg Med Chem Lett 2020; 30:127440. [PMID: 32730945 DOI: 10.1016/j.bmcl.2020.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
The in vitro conversion of (1S,3S)-1-dimethoxylethyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, (1S,3S)-DCCA, in rat plasma is monitored by HPLC-FT-ICR-MS. We show that the in vitro conversion of (1S,3S)-DCCA in rat plasma for 1 h leads to forming (6S/12aS)-bisdimethoxyethylheptachpyridone, reflecting intermolecular condensation of (1S,3S)-DCCA, and the in vitro conversion of (6S/12aS)-bisdimethoxyethylheptachpyridone in rat plasma for 1 h leads to forming (6S/12aS)-heptachpyridone, reflecting hydrolysis of (6S/12aS)-bisdimethoxyethylheptachpyridone. At a dose of 1.0 μmol/kg (6S/12aS)-heptachpyridone orally inhibits venous thrombosis and arterial thrombosis in vivo. Bleeding time, clotting time and international normalized ratio show that at this dose (6S/12aS)-heptachpyridone has no bleeding risk, does not lengthen clotting time and does not change the exogenous coagulation pathway. We also show that the reactions promoted by rat plasma are easy to practice by chemical synthesis. Thus our findings build a bridge across the in vivo conversion and the application.
Collapse
Affiliation(s)
- Mengyu Hou
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Manjie Lv
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100026, China.
| |
Collapse
|