1
|
Anggraini Z, Nurliati G, Pratama HA, Sriwahyuni H, Sumarbagiono R, Shadrina N, Mirawaty M, Pamungkas NS, Putra ZP, Yusuf M. A critical review about phytoremediation of heavy metals and radionuclides: from mechanisms to post-remediation strategies. CHEMOSPHERE 2025; 381:144475. [PMID: 40383018 DOI: 10.1016/j.chemosphere.2025.144475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Phytoremediation has emerged as an environmentally friendly and cost-effective solution for mitigating heavy metal and radionuclide contamination in soil and water. While extensive research has been conducted on phytoremediation mechanisms and the effectiveness of various plant species in pollutant uptake, limited attention has been given to the crucial aspect of post-remediation biomass management, particularly for biomass containing heavy metals and radionuclides. This review provides a pioneering perspective by integrating phytoremediation mechanisms with a comprehensive discussion of post-remediation biomass treatment methods, such as incineration, solidification, gasification, and pyrolysis, which are essential for reducing environmental risks. This study's output highlights that solidification is more suitable for radioactive biomass management for safe long-term storage and sustainable radioactive waste management; however, it does not produce value-added products. Meanwhile, gasification offers relatively low-emission biomass treatment compared to incineration and enables superior energy conversion efficiency and lower costs on a large scale compared to pyrolysis. The findings contribute to improving the overall efficiency of phytoremediation and provide insights into post-remediation biomass handling methods, reinforcing the feasibility of phytoremediation as a sustainable large-scale remediation solution. By identifying research gaps and proposing future directions to enhance the sustainability of phytoremediation, this review serves as an advantageous reference for policymakers, researchers, and environmental practitioners in designing effective phytoremediation strategies and post-remediation biomass management policies.
Collapse
Affiliation(s)
- Zeni Anggraini
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia.
| | - Gustri Nurliati
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia.
| | - Hendra Adhi Pratama
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Heru Sriwahyuni
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Raden Sumarbagiono
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Nazhira Shadrina
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Mirawaty Mirawaty
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Niken Siwi Pamungkas
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Zico Pratama Putra
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Muhammad Yusuf
- Interdisciplinary Research Center for Industrial Nuclear Energy (IRC-INE), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Zhou J, Liu Z, Li Z, Xie R, Jiang X, Cheng J, Chen T, Yang X. Heavy metals release in lead-zinc tailings: Effects of weathering and acid rain. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136645. [PMID: 39603131 DOI: 10.1016/j.jhazmat.2024.136645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Heavy metals (HMs) release from lead (Pb)-zinc (Zn) tailings poses significant environmental risks to surrounding areas. Furthermore, with the natural weathering and frequently happened acid rain events, the release of HMs could be elevated. This study conducted a series of laboratory column experiments with thermodynamics and hydrogeochemical analysis to investigate the environmental behavior of HMs release in Pb-Zn tailings under natural weathering conditions and acid rain events. Results showed that the weathering of calcite facilitates the release of Pb (17.9 mg/kg) and cadmium (Cd) (0.15 mg/kg), while acid rain promotes Zn release (10.5 mg/kg) from the Fe-Mn oxides, with no significant change for arsenic (As). Among the influencing factors during the column experiments, the oxidation-reduction potential (ORP) was identified as the primary indicator for the predictions of the HMs release behavior based upon the Random Forest model (R2 = 0.973 - 0.997). Correlation analysis revealed a strong relationship between coexistent ions and HM release patterns. Therefore, saturation index (SI) could effectively identify the influence range of each mineral phase on HM release. This study provides scientific evidence for effective management in carbonate-type tailings ponds.
Collapse
Affiliation(s)
- Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhen Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Ruoni Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xueqing Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiayi Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Jumah AB. A comprehensive review of production, applications, and the path to a sustainable energy future with hydrogen. RSC Adv 2024; 14:26400-26423. [PMID: 39175671 PMCID: PMC11340430 DOI: 10.1039/d4ra04559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024] Open
Abstract
Green hydrogen, a versatile and sustainable energy carrier, has garnered increasing attention as a critical element in the global transition to a low-carbon economy. This review article comprehensively examines the production, applications, and potential of green hydrogen, accompanied by the challenges and future prospects associated with its widespread adoption. The production of green hydrogen is a central focus, due to its environmental benefits and distinctive characteristics. The article delves into the various techniques and technologies employed in green hydrogen production, emphasizing the need for cost reduction and increased scale for economic viability. Focusing particularly on applications, the review discusses the diverse sectors where green hydrogen demonstrates immense promise. Challenges and limitations are explored, including the intermittent nature of renewable energy sources, high production costs, and the need for extensive hydrogen infrastructure. The article also highlights the pressing need for innovation in electrolysis technology and materials, emphasizing the potential for cost reduction and increased efficiency. As industries gradually transition to green hydrogen as a cleaner feedstock, its demand and cost-competitiveness are projected to increase. This review article thoroughly evaluates the current status of green hydrogen and provides valuable insights into its potential role in the transition to a sustainable energy system.
Collapse
Affiliation(s)
- Abdulrahman Bin Jumah
- Chemical Engineering Department, College of Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| |
Collapse
|
4
|
Zheng X, Zou D, Wu Q, Zhang L, Tang J, Liu F, Xiao Z. Speciation, leachability, and phytoaccessibility of heavy metals during thermochemical liquefaction of contaminated peanut straw. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:20-29. [PMID: 38246074 DOI: 10.1016/j.wasman.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
In this study, the speciation, leachability, phytoaccessibility, and environmental risks of heavy metals (Cd, Zn, and Cu) during liquefaction of contaminated peanut straw in ethanol at different temperatures (220, 260, 300, 340, and 380 °C) were comprehensively investigated. The results showed that elevated temperatures facilitated heavy metal accumulation in the biochar. The acid-soluble/exchangeable and reducible fraction percentages of heavy metals were substantially reduced in the biochar after liquefaction as the temperature increased, and the oxidizable fraction became the dominant heavy metal fraction, accounting for 44.14-78.67%. Furthermore, although an excessively high liquefaction temperature (380 °C) increased the residual fraction percentages of Zn and Cu, it was detrimental to Cd immobilization. The acid-soluble/exchangeable Cd in the contaminated peanut straw readily migrates to the bio-oil during liquefaction, with the highest concentration of 1.60 mg/kg at 260 °C liquefaction temperature, whereas Zn and Cu are predominantly bound to the unexchangeable fraction in the bio-oil. Liquefaction inhibited heavy metal leachability and phytoaccessibility in biochar, the lowest extraction rates of Cd, Zn, and Cu were 0.71%, 1.66% and 0.95% by diethylenetriamine pentaacetic acid, respectively. However, the leaching and extraction concentrations increased when the temperature was raised to 380 °C. Additionally, heavy metal risk was reduced from medium and high risk to no and low risk. In summary, liquefaction reduces heavy metal toxicity and the risks associated with contaminated peanut straw, and a temperature range of 300-340 °C for ethanol liquefaction can be considered optimal for stabilizing heavy metals.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Liqing Zhang
- Moutai Institute, Renhuai, Guizhou 564507, PR China
| | - Jialong Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Fen Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
5
|
Zhang Z, Liu H, Li Y, Ye Y, Tian J, Li J, Xu Y, Lv J. Research and optimization of hydrogen addition and EGR on the combustion, performance, and emission of the biodiesel-hydrogen dual-fuel engine with different loads based on the RSM. Heliyon 2024; 10:e23389. [PMID: 38173521 PMCID: PMC10761585 DOI: 10.1016/j.heliyon.2023.e23389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Pollutants produced by engines are a significant source of environmental pollution, so the study of engine emissions is very important. In this study, with CONVERGE software, a diesel engine model of the engine was produced. To better obtain the characteristic results of the engine, this was coupled with an improved chemical kinetics mechanism. Then, the results of this model were verified experimentally. Additionally, the effects of four different EGR rates on the combustion, performance, and emissions of a dual-fuel diesel engine were investigated by the verified model under different (50 %, 75 %, and 100 %) load conditions. Lastly, the brake specific fuel consumption, NOx emission, and HC emission were optimized by the response surface methodology (RSM). The results show that the pressure, temperature, and NOx emission in the engine's cylinder can all be reduced by raising the EGR at three different loads. Besides, the optimization results show that the engine achieves the best operating conditions at 100 % load, hydrogen fraction of 6.92 %, and EGR rate of 7.68 %.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Guangxi Earthmoving Machinery Collaborative Innovation Center, Guangxi University of Science and Technology, Liuzhou 545006, China
- Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Hui Liu
- Guangxi Earthmoving Machinery Collaborative Innovation Center, Guangxi University of Science and Technology, Liuzhou 545006, China
- Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin 537000, China
| | - Youchang Li
- Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin 537000, China
| | - Yanshuai Ye
- Guangxi Earthmoving Machinery Collaborative Innovation Center, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jie Tian
- Guangxi Earthmoving Machinery Collaborative Innovation Center, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jiangtao Li
- Guangxi Earthmoving Machinery Collaborative Innovation Center, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yuejiang Xu
- Guangxi Earthmoving Machinery Collaborative Innovation Center, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Junshuai Lv
- Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
6
|
Li L, Li X, Cao W. An experimental and thermodynamic equilibrium investigation of heavy metals transformation in supercritical water gasification of oily sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119365. [PMID: 37862888 DOI: 10.1016/j.jenvman.2023.119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Supercritical water gasification (SCWG) is an advanced and highly efficient method for treating oily sludge. However, it is crucial to consider the transformation characteristics of heavy metals (HMs) during the SCWG process to prevent potential secondary pollution. This work studied the transformation and distribution characteristics of Cu, Cr and Zn after SCWG of oily sludge in a batch reactor at temperatures ranging from 550 to 700 °C. Additionally, thermodynamic equilibrium analysis was conducted to assess the distribution of HMs based on the minimization of Gibbs free energy. Experimental results indicated that higher temperatures led to the conversion of HMs into more stable forms, effectively immobilizing them within solid products. Furthermore, the addition of Na2CO3 enhanced this process and contributed to a reduction in HMs pollution in the effluent. Thermodynamic equilibrium results were consistent with our experimental data, indicating that the molar fraction of stable HMs forms followed the order: Cr > Cu > Zn. Besides, it is worth noting that Na2CO3 had a limited impact on the distribution of Cu and Cr. However, it played a significant role in inhibiting the formation of silicate Zn at lower temperatures, promoting the decomposition of ZnO*Al2O3 into unstable Zn. This may explain the higher presence of unstable Zn when Na2CO3 was introduced. In summary, this study offers valuable insights into the transformation characteristics of heavy metals and strategies for pollution control during SCWG of oily sludge.
Collapse
Affiliation(s)
- Linhu Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xujun Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Suzhou Academy of Xi'an Jiaotong University, No.99 Ren'ai Road, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
7
|
Yan S, Xia D, Lai NC, Jiang B, Liu X. New insight into the synergistic reactions involved in the hydrothermal co-liquefaction of synthetic polymer wastes by molecular dynamics and DFT methods. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131032. [PMID: 36821896 DOI: 10.1016/j.jhazmat.2023.131032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Coliquefying synthetic aliphatic and aromatic polymer wastes using supercritical water has drawn considerable research attention. However, the mechanisms of chemical reactions between different types of polymers are ambiguous. Herein, depolymerization mechanisms for individual polymers and reaction mechanisms for binary polymer mixtures were investigated using molecular dynamics and density functional theory (DFT). The innovative approach showed that the production of oil from individual polymers during HTL was hindered by (1) volatile C1-C4 molecules emitted from aliphatic polymers and (2) polycyclic aromatic hydrocarbons (PAHs) produced from aromatic polymers. Interestingly, synergistic reactions among these byproducts from different polymers could promote oil production during coliquefaction. Specifically, the synergistic radical-related reactions included (1) the ring-opening of PAHs caused by C2H2 molecules emitted from aliphatic polymers and (2) the recombination of PHA branches and short-chain aliphatics. A considerable synergy between aromatic polymers with higher benzene ring contents and aliphatic polymers with lower H/C atomic ratios was observed near the critical temperature of 649 K. This work provides new insights into the synergistic reactions involved in the coliquefaction of synthetic polymers and gives useful guidance for realizing efficient oil production from mixed organic wastes.
Collapse
Affiliation(s)
- Shuo Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dehong Xia
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Binfan Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangjun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Li G, Yan L, Chen X, Lam SS, Rinklebe J, Yu Q, Yang Y, Peng W, Sonne C. Phytoremediation of cadmium from soil, air and water. CHEMOSPHERE 2023; 320:138058. [PMID: 36746249 DOI: 10.1016/j.chemosphere.2023.138058] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.
Collapse
Affiliation(s)
- Guanyan Li
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangmeng Chen
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Qing Yu
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
9
|
Lu H, Xia C, Chinnathambi A, Nasif O, Narayanan M, Shanmugam S, Lan Chi NT, Pugazhendhi A, On-Uma R, Jutamas K, Anupong W. Evaluation of cadmium tolerance and remediated efficacy of wild and mutated Enterobacter species isolated from potassium nitrate (KNO₃) processing unit contaminated soil. CHEMOSPHERE 2023; 311:136899. [PMID: 36265702 DOI: 10.1016/j.chemosphere.2022.136899] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to find the most cadmium (Cd2+) tolerant and remediated bacteria isolate from KNO3 processing unit contaminated soil. One isolate out of 19 isolates possessed excellent Cd2+ tolerance than others, which was recognized as Enterobacter hormaechei SFC3 through molecular characterization (16S rRNA sequencing). The identified E. hormaechei SFC3 contained 55% and 45% of GC and AT content, respectively. The wild and acridine orange mutated E. hormaechei SFC3 exhibited excellent resistance to Cd2+ up to the concentration of 1500 μg mL-1. Furthermore, the wild E. hormaechei SFC3 and mutated E. hormaechei SFC3 showed 82.47% and 90.21% of Cd2+ remediation on 6th days of treatment respectively. Similarly, the Cd2+ tolerant wild and mutated E. hormaechei SFC3 showed considerable resistance to all the tested antibiotics. The findings indicate that E. hormaechei SFC3 isolated from KNO₃ processing unit contaminated soil is a promising candidate for microbial remediation of Cd2+ contamination.
Collapse
Affiliation(s)
- Haiying Lu
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Lifescience, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumchai Jutamas
- Department of Plant Science and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
10
|
Lu H, Xia C, Chinnathambi A, Nasif O, Narayanan M, Shanmugam S, Lan Chi NT, Pugazhendhi A, On-Uma R, Jutamas K, Anupong W. Optimistic influence of multi-metal tolerant Bacillus species on phytoremediation potential of Chrysopogon zizanioides on metal contaminated soil. CHEMOSPHERE 2023; 311:136889. [PMID: 36257390 DOI: 10.1016/j.chemosphere.2022.136889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The current study investigated the plant growth promoting (PGP) characteristics of multi-metal-tolerant Bacillus cereus and their positive effect on the physiology, biomolecule substance, and phytoremediation ability of Chrysopogon zizanioides in metal-contaminated soil. The test soil sample was detrimentally contaminated by metals including Cd (31 mg kg-1), Zn (7696 mg kg-1), Pb (326 mg kg-1), Mn (2519 mg kg-1) and Cr (302 mg kg-1) that exceeded Indian standards. The multi-metal-tolerant B. cereus seemed to have superb PGP activities including fabrication of hydrogen cyanide, siderophore, Indole Acetic Acid, N2 fixation, as well as P solubilisation. Such multi-metal-tolerant B. cereus attributes can dramatically reduce or decontaminate metals in contaminated soils, and their PGP attributes significantly improve plant growth in contaminated soils. Hence, without (study I) and with (study II) the blending of B. cereus, this strain vastly enhances the growth and phytoremediation potency of C. zizanioides on metal contaminated soil. The results revealed that the physiological data, biomolecule components, and phytoremediation efficiency of C. zizanioides (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) seem to have been greatly effective in study II due to the metal solubilizing and PGP characteristics of B. cereus. This is a one-of-a-kind report on the effect of B. cereus's multi-metal tolerance and PGP characteristics on the development and phytoextraction effectiveness of C. zizanioides in metal-polluted soil.
Collapse
Affiliation(s)
- Haiying Lu
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Lifescience, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumchai Jutamas
- Department of Plant Science and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
Wu Y, Zhang Y, Nguyen MV, Chu TTH, Nguyen TB, Dragoi EN, Xia C. Latest insights on eco-friendly metal based-electrocatalyst for oxygen evolution reaction: Challenges, and future perspectives. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zhou X, Yan Z, Zhou X, Wang C, Liu H, Zhou H. RETRACTED: An assessment of volatile organic compounds pollutant emissions from wood materials: A review. CHEMOSPHERE 2022; 308:136460. [PMID: 36116618 DOI: 10.1016/j.chemosphere.2022.136460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhisong Yan
- Zhejiang Shiyou Timber Co., Ltd., 1111 Shiyuan West Road, Huzhou, Zhejiang, 313009, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen'an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Hailiang Liu
- Jiangsu Shenmao Plastic Products Co., Ltd., Wood Industrial District, Siyang, Jiangsu, 223798, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
13
|
Hou J, Pugazhendhi A, Phuong TN, Thanh NC, Brindhadevi K, Velu G, Lan Chi NT, Yuan D. Plant resistance to disease: Using biochar to inhibit harmful microbes and absorb nutrients. ENVIRONMENTAL RESEARCH 2022; 214:113883. [PMID: 35835163 DOI: 10.1016/j.envres.2022.113883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Phytosanitary concerns are part of today's agricultural environment. The use of chemicals to treat plant diseases is both a source of pollution and allows pathogens to become resistant. Additionally, it can improve the chemical, physical, and biological properties of soil. Therefore, the soil environment is more conducive to healthy plant growth. By improving the chemical, physical, and biological attributes of soil, biochar can enhance plant resistance. Agricultural success has been attributed to biochar's acidic pH, which promotes beneficial soil microorganisms and increases soil nutrients; it is also porous, which provides a home and protects soil microorganisms. By improving soil properties, biochar becomes even more effective at controlling pathogens. The article also discusses the benefits of biochar for managing pathogens in agricultural soils. In addition, we examine several research papers that discuss the use of biochar as a method of combating soil-related pathogens and plant diseases. Biochar can be used to combat soil-borne diseases and other conditions.
Collapse
Affiliation(s)
- Jinbo Hou
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Tran Nhat Phuong
- Faculty of Medicine, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 70000, Viet Nam
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gomathi Velu
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Deyi Yuan
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
14
|
Tan S, Narayanan M, Thu Huong DT, Ito N, Unpaprom Y, Pugazhendhi A, Lan Chi NT, Liu J. A perspective on the interaction between biochar and soil microbes: A way to regain soil eminence. ENVIRONMENTAL RESEARCH 2022; 214:113832. [PMID: 35810814 DOI: 10.1016/j.envres.2022.113832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Soil ecosystem imparts a fundamental role in the growth and survival of the living creatures. The interaction between living and non-living constituents of the environment is important for the regulation of life in the ecosystem. Biochar is a carbon rich product present in the soil that is responsible for various applications in diversified fields. In this review, we focused on the collaboration between the soil, biochar and microbial community present in the soil and consequences of it in the ecosystem. Herein, it primarily discusses on the different approaches of the production and characterization of biochar. Furthermore, this review also discusses about the optimistic interaction of biochar with soil microbes and their role in plant growth. Eventually, it reveals the various physio-chemical properties of biochar, including its specific surface area, porous nature, ion exchange capacity, and pH, which aid in the modification of the soil environment. Furthermore, it elaborately discloses the impact of the biochar addition in the soil focusing mainly on its interaction with microbial communities such as bacteria and fungi. The physicochemical properties of biochar significantly interact with microbes and improve the beneficial microbes growth and increase soil nutrients, which resulting reasonable plant growth. The main focus remains on the role of biochar-soil microbiota in remediation of pollutants, soil amendment and inhibition of pathogenicity among plants by promoting resistance potential. It highlights the fact that adding biochar to soil modulates the soil microbial community by increasing soil fertility, paving the way for its use in farming, and pollutant removal.
Collapse
Affiliation(s)
- Shimeng Tan
- College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Dinh Thi Thu Huong
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Nobutaka Ito
- School of Renewable Energy, Maejo University, Chiang Mai, Thailand
| | - Yuwalee Unpaprom
- Program in Biotechnology, Faculty of Science, Maejo University, Chiangmai, Thailand
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Junang Liu
- College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
15
|
Lin J, Cui C, Sun S, Ma R, Yang W, Chen Y. Synergistic optimization of syngas quality and heavy metal immobilization during continuous microwave pyrolysis of sludge: Competitive relationships, reaction mechanisms, and energy efficiency assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129451. [PMID: 35777144 DOI: 10.1016/j.jhazmat.2022.129451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
To realize the efficient resource utilization of sewage sludge, this work explored the competitive relationship and reaction mechanisms between syngas quality optimization and heavy metals (HMs) immobilization. The results showed that continuous microwave pyrolysis (CMP) technology with an instantaneous temperature increase could shorten the pyrolysis time, and the biogas yield and syngas concentration reached 51.68 wt% and 83.6 vol%, respectively. Although a higher pyrolysis (750 °C) temperature could optimize the syngas quality, the HMs immobilization efficiency was reduced due to the deep pyrolysis of the biochar. The moderate pyrolysis temperature (650 °C) facilitated the rapid formation of biochar with abundant surface functional groups and pore structure, thus enhancing HMs immobilization. Furthermore, the HMs could also form more stable crystalline compounds with inorganic components (SiO2, Al2O3, inorganic sulfur). By optimizing the process parameters, the risk factor of HMs in the sludge decreased from 117.36 to 62.5 while obtaining high-quality syngas. The energy utilization efficiency of microwave pyrolysis also increased significantly from 11.20% to 82.01%. This work provided new insight into the efficient resource utilization and environmentally friendly treatment of sludge, and demonstrated that CMP technology has significant potential for future industrial applications as an alternative to traditional pyrolysis.
Collapse
Affiliation(s)
- Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chongwei Cui
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Water Science and Environmental Engineering, Shenzhen University, 518055, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Weichen Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Ren D, Jiang S, Fu L, Wang Z, Zhang S, Zhang X, Gong X, Chen W. Laccase immobilized on amino-functionalized magnetic Fe 3O 4-SiO 2 core-shell material for 2,4-dichlorophenol removal. ENVIRONMENTAL TECHNOLOGY 2022; 43:2697-2711. [PMID: 33621162 DOI: 10.1080/09593330.2021.1895323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
In this study, an amino-functionalized magnetic silica microsphere material (Fe3O4-SiO2-NH2) was prepared. Using glutaraldehyde as a cross-linking agent, Trametes versicolor laccase was adsorbed-covalently bonded and immobilized on the material to prepare Laccase @ Fe3O4-SiO2. In addition, the materials were characterized and analysed by SEM, TEM, XRD, FT-IR and VSM. Finally, the thermal inactivation dynamics of immobilized laccase in polar/non-polar/toxic systems and the adsorption and degradation of 2,4-DCP were studied. The results showed that Laccase @ Fe3O4-SiO2 under the optimal conditions (pH 6, temperature 65°C, initial concentration of 2,4-DCP 10 mg/L), the removal rate was as high as 81.6%. Moreover, compared with free laccase, immobilized laccase had good tolerance under low pH and high-temperature conditions, and storage stability was also greatly improved. After repeated use for 7 times, Laccase @ Fe3O4-SiO2 can still maintain 59% removal rate of 2,4-DCP, which gives it the potential for industrial applications.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Linjun Fu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangyi Gong
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Chai Y, Bai M, Chen A, Peng L, Shao J, Shang C, Peng C, Zhang J, Zhou Y. Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153426. [PMID: 35090917 DOI: 10.1016/j.scitotenv.2022.153426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
With the rapid depletion of fossil energy and increasingly severe environmental pollution, the development of biomass resources for biorefineries has become a new research focus. However, heavy metals may be released during the thermochemical treatment when the biomass materials used in biomass conversion are contaminated by heavy metals. This can cause secondary environmental pollution or transference to the target products, reducing product quality. Therefore, having a systematic understanding of the fate of heavy metals in biomass conversion is necessary for alleviating potential risks. This study presents the current status of contaminated biomass and conversion products involving thermochemical processes, the migration, transformation, and impact of heavy metals in biomass conversion was investigated, and the utilization of heavy metals in contaminated biomass was briefly outlined. This review aims to link biomass conversion to the fate of heavy metals, avoid existing risks as much as possible to produce cleaner products efficiently, and promote the sustainable development of heavy metal contaminated biomass resources.
Collapse
Affiliation(s)
- Youzheng Chai
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Ma Bai
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Cheng Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass. ENERGIES 2022. [DOI: 10.3390/en15072683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made.
Collapse
|
19
|
Yang L, Wang J, Yang Y, Li S, Wang T, Oleksak P, Chrienova Z, Wu Q, Nepovimova E, Zhang X, Kuca K. Phytoremediation of heavy metal pollution: Hotspots and future prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113403. [PMID: 35286961 DOI: 10.1016/j.ecoenv.2022.113403] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 03/07/2022] [Indexed: 05/15/2023]
Abstract
To clarify the global status and research hotspots of heavy metal pollution phytoremediation, we used Web of Science, Cite Space software, and VOS viewer to analyse 1123 publications from the period of 2000-2020. Literature categories, research hotpots, and the most prolific publications by country, institution, and author were analysed separately. Around 34% of the articles are contributed from five countries: China (29.37%), India (11.00%), Spain (6.29%), Italy (6.20%), and Pakistan (5.67%). The hot research topic keywords were "diversity", "translocation", and "enhanced phytoremediation". Cadmium was the most highly concerned heavy metal in the phytoremediation. Twenty-three articles were highly cited, and they mainly focused on 1) enhancing the remediation ability of plants in heavy metal contaminated soil by microbial and chemical additives; 2) the molecular effect and mechanism of heavy metals on plant growth and development; 3) discovering novel heavy metal hyper-enriched plants which can remediate mixed heavy metal pollution. From the above analysis, we concluded that the future research directions should be 1) strengthening the plant remediation ability by biochemical means; 2) studying the molecular mechanism underlying heavy metal damage to plants; 3) studying the enrichment principle of plants for heavy metals. The present study provides a further understanding of the trends in phytoremediation of heavy metal pollution, and the data analysed can be used as a guide for future research directions.
Collapse
Affiliation(s)
- Le Yang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Tongxin Wang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Qinghua Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
20
|
Jiang SJ, Sun J, Tong G, Ding H, Ouyang J, Zhou Q, Fu Y, Zhong ME. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review. CHEMOSPHERE 2022; 290:133266. [PMID: 34914959 DOI: 10.1016/j.chemosphere.2021.133266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phytoextraction is an effective approach for remediation of heavy metal (HM) contaminated soil. After the enhancement of phytoextraction efficiency has been systematically investigated and illustrated, the harmless disposal and value-added use of harmful phytoextraction biomass (HPB) become the major issue to be addressed. Therefore, in recent years, a large number of studies have focused on the disposal technologies for HPB, such as composting, enzyme hydrolysis, hydrothermal conversion, phyto-mining, and pyrolysis. The present review introduces their operation process, reaction parameters, economic/ecological advantages, and especially the migration and transformation behavior of HMs/biomass. Since plenty of plants possess comparable extraction abilities for HMs but with discrepancy constitution of biomass, the phytoextraction process should be combined with the disposal of HPB after harvested in the future, and thus a grading handling strategy for HPB is also presented. Hence, this review is significative for disposing of HPB and popularizing phytoextraction technologies.
Collapse
Affiliation(s)
- Si-Jie Jiang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jingchun Sun
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Gongsong Tong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiewei Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yunxiang Fu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
21
|
Chen J, Meng T, Leng E, E J. Review on metal dissolution characteristics and harmful metals recovery from electronic wastes by supercritical water. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127693. [PMID: 34799178 DOI: 10.1016/j.jhazmat.2021.127693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Supercritical water (SCW) technology can be applied as an efficient and environment-friendly method to recover toxic or complex chemical wastes. Separation and chemical reactions under supercritical conditions may be realized by changing the temperature, pressure, and other operating parameters to adjust the physical and chemical properties of water. However, salt deposition and corrosion are often encountered during the treatment of inorganic substances, which will hinder the commercial applications of SCW technology. The solubility of salt in high pressure/temperature water forms the theoretical basis for studying the recovery of metal salts in supercritical water and understanding salt deposition. Therefore, this work systematically and objectively reviews different research methods used to analyze salt solubility in high pressure/temperature water, including the experimental method, prediction theoretical modeling, and computer simulation method; the research status and existing data of this parameter are also analyzed. The purpose of this review is to provide ideas and references for follow-up research by providing a comprehensive overview of salt solubility research methods and the current situation. Suggestions for more efficient metal recovery through technology integration are also provided.
Collapse
Affiliation(s)
- Jingwei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China; Institute of New Energy and Energy-Saving & Emission-Reduction Technology, Hunan University, Changsha 410082, China.
| | - Tian Meng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Erwei Leng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jiaqiang E
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China; Institute of New Energy and Energy-Saving & Emission-Reduction Technology, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Yan L, Chen W, Wang C, Liu S, Liu C, Yu L, Zheng Y, Jiang J, Zhang Y, Xia C, Lam SS. Tetracycline removal in granulation: Influence of extracellular polymers substances, structure, and metabolic function of microbial community. CHEMOSPHERE 2022; 288:132510. [PMID: 34627823 DOI: 10.1016/j.chemosphere.2021.132510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Tetracycline is a potentially hazardous residual antibiotic detected in various sewages. High concentration (mg/L) of tetracycline is found in pharmaceutical/hospital wastewater and wastewater derived from livestock and poultry. So far, only antibiotics in μg/L level have been reported in granulation of aerobic sludge during wastewater treatment, but its effects in high concentration are rarely reported. In this study, the influence of tetracycline in high concentration (∼2 mg/L) on the formation of granular sludge, structure, and metabolic function of the microbial community during the granulation of aerobic sludge was investigated to improve the understanding of the aerobic granular sludge formation under high-level of tetracycline. The role of extracellular polymers substances (EPSs) derived from granular sludge in the granulation and tetracycline removal process was also investigated, showing that tetracycline improved the relative hydrophobicity, flocculability and protein/polysaccharide ratio of EPSs, accelerating the granulation of sludge. Succession of microbial communities occurred during the domestication of functional bacteria present in the sludge and was accompanied with regulation of metabolic function. The addition of tetracycline lead to an increase of tetracycline-degrading bacteria or antibiotic resistance genus. Those findings provide new perspectives of the influence of tetracycline on aerobic sludge granulation and the removal mechanism of tetracycline.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Wanting Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Caixu Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liangbin Yu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoli Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Su Shiung Lam
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
23
|
Li H, Cao M, Zhang Y, Liu Z. Hydrothermal liquefaction accelerates the toxicity and solubility of arsenic in biowaste. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126341. [PMID: 34126382 DOI: 10.1016/j.jhazmat.2021.126341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is one of notorious metalloids due to its high toxicity to human beings and ecological system. Understanding its fate and speciation transformation mechanism during hydrothermal liquefaction (HTL) of microalgae is of crucial importance for the application of its HTL products. 80.0-96.7% of As in raw microalgae was migrated into the liquid phase (aqueous phase and biocrude oil) with the increase of reaction severity from 0.108 to 0.517. HPLC-ICPMS reveals that 67% of the As in microalgae accounted for As(V) with a concentration of 68.4 mg/kg. The other fractions in microalgae were primarily As(III) with a concentration of 36.3 mg/kg. Model compounds experiments illustrate that over 30% of the As(V) in feedstocks was unexpectedly converted into more soluble and toxic As (III). Hydrochar containing O-containing groups (e.g., aliphatic C-OH) was probably contribute to the reduction transformation of As(V) to higher toxic As(III). Meantime, the aqueous phase facilitated the reduction reaction via providing a reducing environment and serving as hydrogen donator. This study firstly revealed the speciation transformation of As(V) to As(III) during HTL of wastewater cultivated microalgae.
Collapse
Affiliation(s)
- Hugang Li
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Maojiong Cao
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
24
|
Leong YK, Chen WH, Lee DJ, Chang JS. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126278. [PMID: 34098259 DOI: 10.1016/j.jhazmat.2021.126278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/16/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Phycoremediation is an emerging technology, where algae-based processes were used to effectively remove nutrients, organic wastes, and toxic heavy metals from the polluted environment. The waste algal biomass obtained after phycoremediation, which may contain residual hazardous materials, could still be used as feedstock to produce biofuels/bioenergy preferably through thermochemical conversion technology. This review proposes a synergistic approach by utilizing the phycoremediation-derived algal biomass (PCDA) as feedstock for efficient hazardous waste treatment and clean energy generation via supercritical water gasification (SCWG). The review provides an in-depth study of catalytic, non-catalytic, and continuous SCWG of algal biomass, aiming to lay out the foundations for future study. In addition, the concepts of heat integration as well as water, nutrient, and CO2 recycling were introduced for a sustainable algae-to-biofuel process, which significantly enhances the overall energy and material efficiency of SCWG. The production of biofuel from algal biomass via other advanced gasification technologies, such as integration with other thermochemical conversion techniques, co-gasification, chemical looping gasification (CLG), and integrated gasification and combined cycle (IGCC) were also discussed. Furthermore, the discussion of kinetics and thermodynamics models, as well as life cycle and techno-economic assessments, appear to provide insights for future commercial applications.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
25
|
Su W, Li X, Zhang H, Xing Y, Liu P, Cai C. Migration and transformation of heavy metals in hyperaccumulators during the thermal treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47838-47855. [PMID: 34302242 DOI: 10.1007/s11356-021-15346-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The pollution of heavy metals (HMs) in the soil has become one of the important factors affecting the national environment and human health. Phytoremediation, as a technology to deal with HM pollution in soil, has been extensively studied and applied due to its sustainability and environmental friendliness. However, hyperaccumulators polluted by HMs need to be properly treated to avoid secondary pollution to the environment. This paper reviews the migration and transformation of HMs during the incineration, pyrolysis, gasification, and hydrothermal treatment of hyperaccumulators; comprehensively evaluates the advantages and disadvantages of each technology in the treatment of HM-enriched hyperaccumulators; and analyzes the current development status and unsolved problems in detail for each technology. Generally speaking, thermal treatment technology can fix most of the HMs of exchangeable fraction in biochar, reducing its bioavailability and biotoxicity. In addition, the application direction and research focus of the target product are discussed, and it is clarified that in the future, it is necessary to further optimize the reaction conditions and explore the mechanism of HM immobilization to maximize the immobilization of HMs and improve the quality and output of the target product.
Collapse
Affiliation(s)
- Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinyan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongshuo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Ping Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changqing Cai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
26
|
Hu P, Du Y, Yang Y, Li Z, Luo Y, Wu L. Dispose waste liquor of fresh biomass of a hyperaccumulator Sedum plumbizincicola in phytoextraction process. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1-11. [PMID: 34004122 DOI: 10.1080/15226514.2021.1917509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sedum plumbizincicola has been widely employed to remove cadmium (Cd) and zinc (Zn) from contaminated soils and harvested biomass is used to recover valuable metals. While chopping and compacting are efficient methods to rapidly reduce the volume and moisture of fresh biomass, the resulting waste liquor containing metals needs treatment. Two types of contaminated soils were cropped with S. plumbizincicola and top-dressed with this liquor to study metals migration in soil profile and their uptake by plants. There were three treatments: planting and adding liquor (PL), planting without liquor (P) and adding liquor without planting (L). The results showed that Cd and Zn from liquor were mainly retained at top soil 0-10 cm under L treatment. Compared with L treatment, soil Cd and Zn under PL treatment decreased significantly in soil profile due to the extraction of S. plumbizincicola. Moreover, the amount of Cd and Zn extracted by plants was greater than that applied in soils. The metal removal rate by S. plumbizincicola in acid clay loam soil was higher than that in neutral sandy soil. To sum up, metal retaining in soil and uptake by S. plumbizincicola can be used to treat waste liquor from its fresh biomass. Novelty StatementRapid and efficient treatment of harvested fresh biomass is still a challenge although phytoextraction using hyperaccumulator Sedum plumbizincicola has been widely employed. Chopping and compacting fresh biomass are efficient methods for rapid dehydration, however, a large amount of waste liquor that contains of Cd and Zn is produced and needs treatment. In the present study, a simple and low-cost method was tested to dispose the liquor, i. e. irrigating it onto the surface of contaminated soils where grown S. plumbizincicola. It was found that Cd and Zn applied in soils from liquor were mainly retained at top 0-10 cm soil depth where S. plumbizincicola root system was widespread, and the amount of Cd and Zn extracted by plants was greater than that applied in soils. Therefore, it is technically feasible to dispose the waste liquor dewatering from fresh biomass of S. plumbizincicola in its phytoextraction process. This study is helpful for the rapid, efficient and low-cost treatment of harvested fresh biomass in the large-scale application of phytoremediation.
Collapse
Affiliation(s)
- Pengjie Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yanpei Du
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuying Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhenxuan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
27
|
Yang R, Dong X, Chen G, Lin F, Huang Z, Manzo M, Mao H. Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose. Polymers (Basel) 2020; 13:polym13010006. [PMID: 33375052 PMCID: PMC7792770 DOI: 10.3390/polym13010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 11/25/2022] Open
Abstract
Crystallinity is an essential indicator for evaluating the quality of fiber materials. Terahertz spectroscopy technology has excellent penetrability, no harmful substances, and commendable detection capability of absorption characteristics. The terahertz spectroscopy technology has great application potential in the field of fiber material research, especially for the characterization of the crystallinity of cellulose. In this work, the absorption peak of wood cellulose, microcrystalline cellulose, wood nano cellulose, and cotton nano cellulose were probed in the terahertz band to calculate the crystallinity, and the result compared with XRD and FT-IR analysis. The vibration model of cellulose molecular motion was obtained by density functional theory. The results showed that the average length of wood cellulose (WC) single fiber was 300 μm. The microcrystalline cellulose (MCC) was bar-like, and the average length was 20 μm. The cotton cellulose nanofiber (C-CNF) was a single fibrous substance with a length of 50 μm, while the wood cellulose nanofiber (W-CNF) was with a length of 250 μm. The crystallinity of cellulose samples in THz was calculated as follows: 73% for WC, 78% for MCC, 85% for W-CNF, and 90% for C-CNF. The crystallinity values were obtained by the three methods which were different to some extent. The absorption peak of the terahertz spectra was most obvious when the samples thickness was 1 mm and mixed mass ratio of the polyethylene and cellulose was 1:1. The degree of crystallinity was proportional to the terahertz absorption coefficients of cellulose, the five-movement models of cellulose molecules corresponded to the five absorption peak positions of cellulose.
Collapse
Affiliation(s)
- Rui Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Y.); (X.D.); (G.C.)
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, China
| | - Xianyin Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Y.); (X.D.); (G.C.)
| | - Gang Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Y.); (X.D.); (G.C.)
| | - Feng Lin
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA; (Z.H.); (M.M.)
| | - Maurizio Manzo
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA; (Z.H.); (M.M.)
| | - Haiyan Mao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Y.); (X.D.); (G.C.)
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Jiangsu Chenguang Coating Co., Ltd., Changzhou 213164, China
- Correspondence:
| |
Collapse
|