1
|
Salmi O, Laudisa G, Rossi F, Masi M. Evaluation of Antioxidant Performance in Chromium Oxidation Prevention. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1858. [PMID: 40333522 PMCID: PMC12029012 DOI: 10.3390/ma18081858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025]
Abstract
The tanning of hides is a practice deeply rooted in ancient times, but in the early 20th century, transitioning to an industrial model of leather and hide production, chrome tanning expanded globally due to its practicality, quality, and versatility. However, in recent decades, there has been a growing attention paid to the potential oxidation of the free chromium present in tanned leather, which could transform from an unharmful trivalent status into its carcinogenic hexavalent status. This phenomenon occurs in a very small fraction of hides, which is yet sufficient to exhibit significant activity. Hence, there is an evident need to explore further alternatives that allow avoiding oxidation. In this work, the performance of a sequence of selected antioxidants is evaluated in different oxidation conditions: simple stirring, UV-Vis-IR irradiation, and heating up to 75 °C. The official diphenylcarbazide-UV tool norm was used to quantify the hexavalent chromium amount. The results underline the effectiveness of 2,6-di-tert-butylphenol, and that its greatest preventative method of addition during the tanning process is together with the tanning agent. This approach will pave the way for researching alternative concepts and exploring perspectives to inhibit chromium issues.
Collapse
Affiliation(s)
- Omar Salmi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (G.L.); (F.R.); (M.M.)
| | | | | | | |
Collapse
|
2
|
Zhou Y, Guo C, Deng Y, Jiang Y, Yin M, Chen K, Zhang S, Lu G, Dang Z. Birnessite enhanced Cr(III) oxidation during subsurface geochemical processes: Role of Mn(III)-induced nonphotochemical reactive oxygen species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125436. [PMID: 39638231 DOI: 10.1016/j.envpol.2024.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Cr(III) oxidation by birnessite was the dominant geologic source of Cr(VI), which increases the environmental mobility and toxicity of Cr, threatening ecological safety. Photochemically hydroxyl radical (•OH) generated by birnessite was widely accepted to be the dominant reactive oxygen species (ROS) oxidating Cr(III). However, birnessite and Cr mainly co-exist in dark subsurface soils, with contribution of nonphotochemical ROS remaining unclear. In this work, free-radical quenching experiments, electrochemistry method and density functional theory (DFT) calculations were performed to elucidate ROS generation mechanisms during Cr(III) oxidation in simulated light-deprived environment. The results indicated that •OH was completely suppressed and nonphotochemical O2•- still accelerated Cr(III) oxidation in dark aerobic conditions with the contribution of 15.3%-19.1%. Moreover, DFT calculations proved that O2•- was produced by O2 molecules adsorbed on oxygen vacancies in the structure, thus being generated spontaneously in the dark. The oxidation contribution of O2•- was undetectable after extracting Mn(III), indicating that electron transfer occurred between Mn(III) and O2 to generate O2•-. Additionally, intervention of Cd2+ (for occupying oxygen vacancies) did not reduce participation of •OH, but resulted in suppression of electron transport which greatly reduced the production of O2•-, thereby affecting Cr(III) oxidation process. The above findings provide new insights on Cr(III) oxidation by manganese oxides and is able to have profound significance for predicting the fate of Cr in subsurface environments.
Collapse
Affiliation(s)
- Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yanjun Jiang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meiling Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Kai Chen
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, China
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Wu T, Ren S, Akram W, Li T, Zhu X, Li X, Niu L, Fan H, Sun Z, Fang J. High-Performance Wearable Joule Heater Derived from Sea-Island Microfiber Nonwoven Fabric. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51565-51574. [PMID: 39276071 DOI: 10.1021/acsami.4c13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
A three-dimensional (3D) hierarchical microfiber bundle-based scaffold integrated with silver nanowires (AgNWs) and porous polyurethane (PU) was designed for the Joule heater via a facile dip-coating method. The interconnected micrometer-sized voids and unique hierarchical structure benefit uniform AgNWs anchored and the formation of a high-efficiency 3D conductive network. As expected, this composite exhibits a superior electrical conductivity of 1586.4 S/m and the best electrothermal conversion performance of 118.6 °C at 2.0 V compared to reported wearable Joule heaters to date. Moreover, the durable microfiber bundle-PU network provides strong mechanical properties, allowing for the stable and durable electrothermal performance of such a composite to resist twisting, bending, abrasion, and washing. Application studies show that this kind of Joule heater is suitable for a wide range of applications, such as seat heating, a heating jacket, personal thermal management, etc.
Collapse
Affiliation(s)
- Tong Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Song Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Tingshan Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiangyu Zhu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xinran Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Li Niu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Haojun Fan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
4
|
Chen L, Yu H, Wang X, Zhu H. Re-yellowing of chromium-contaminated soil after reduction-based remediation: Effects and mechanisms of extreme natural conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171538. [PMID: 38453066 DOI: 10.1016/j.scitotenv.2024.171538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Chromium (VI) in soil poses a significant threat to the environment and human health. Despite efforts to remediate Cr contaminated soil (Cr-soil), instances of re-yellowing have been observed over time. To understand the causes of re-yellowing as well as the influence of overdosed chemical reductant in remediating Cr-soil, experiments on excess reducing agent interference and soil re-yellowing mechanisms under different extreme conditions were conducted. The results show that the USEPA method 3060A & 7196A combined with K2S2O8 oxidation is an effective approach to eliminate interference from excess FeSO4 reducing agents. The main causes of re-yellowing include the failure of reducing agents, disruption of soil lattice, and interactions between manganese oxides and microorganisms. Under various extreme conditions simulated across the four seasons, high temperature and drought significantly accelerated the failure of reducing agents, resulting in the poorest remediation effectiveness for Cr-soil (91.75 %). Dry-wet cycles promoted the formation of soil aggregates, negatively affecting Cr(VI) removal. While these extreme conditions caused relatively mild re-yellowing (9.46 %-16.79 %) due to minimal soil lattice damage, the potential risk of re-yellowing increases with the failure of reducing agents and the release of Cr(VI) within the lattice. Prolonged exposure to acid rain leaching and freeze-thaw cycles disrupted soil structure, leading to substantial leaching and reduction of insoluble Cr, resulting in optimal remediation effectiveness (94.37 %-97.73 %). As reducing agents gradually and the involvement of the water medium, significant re-yellowing occurred in the remediated soil (51.52 %). Mn(II) in soil enriched relevant microorganisms, and the Mn(IV)-mediated biological oxidation process was also one of the reasons for soil re-yellowing.
Collapse
Affiliation(s)
- Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Huilin Yu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Yu J, Yu J, Deng S, Huang Z, Wang Z, Zhu W, Zhou X, Liu L, Wu D, Zhang H. Oxidation of chromium(Ⅲ): A potential risk of using chemical oxidation processes for the remediation of 2-chlorophenol contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120973. [PMID: 38703644 DOI: 10.1016/j.jenvman.2024.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Chemical oxidation processes are widely used for the remediation of organically contaminated soils, but their potential impact on variable-valence and toxic metals such as chromium (Cr) is often overlooked. In this study, we investigated the risk of Cr(Ⅲ) oxidation in soils during the remediation of 2-chlorophenol (2-CP) contaminated soils using four different processes: Potassium permanganate (KMnO4), Modified Fenton (Fe2+/H2O2), Alkali-activated persulfate (S2O82-/OH-), and Fe2+-activated persulfate (S2O82-/Fe2+). Our results indicated that the KMnO4, Fe2+/H2O2, and S2O82-/Fe2+ processes progressively oxidized Cr(III) to Cr(Ⅵ) during the 2-CP degradation. The KMnO4 process likely involved direct electron transfer, while the Fe2+/H2O2 and S2O82-/Fe2+ processes primarily relied on HO• and/or SO4•- for the Cr(III) oxidation. Notably, after 4 h of 2-CP degradation, the Cr(VI) content in the KMnO4 process surpassed China's 3.0 mg kg-1 risk screening threshold for Class I construction sites, and further exceeded the 5.7 mg kg-1 limit for Class II construction sites after 8 h. Conversely, the S2O82-/OH- process exhibited negligible oxidation of Cr(III), maintaining a low oxidation ratio of 0.13%, as highly alkaline conditions induced Cr(III) precipitation, reducing its exposure to free radicals. Cr(III) oxidation ratio was directly proportional to oxidant dosage, whereas the Fe2+/H2O2 process showed a different trend, influenced by the concentration of reductants. This study provides insights into the selection and optimization of chemical oxidation processes for soil remediation, emphasizing the imperative for thorough risk evaluation of Cr(III) oxidation before their application.
Collapse
Affiliation(s)
- Jie Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China.
| | - Siwei Deng
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Zhi Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Ze Wang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China
| | - Weiwei Zhu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Xueling Zhou
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Longyu Liu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Donghai Wu
- School of Life Sciences, Chongqing University, Chongqing, 400044, PR China
| | - Hanyi Zhang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
6
|
Tan X, Qi F, Liu Q, Qie H, Duan G, Lin A, Liu M, Xiao Y. Is Cr(III) re-oxidation occurring in Cr-contaminated soils after remediation: Meta-analysis and machine learning prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133342. [PMID: 38150755 DOI: 10.1016/j.jhazmat.2023.133342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Whether Cr(III) in Cr(III)-containing sites formed after Cr(VI) reduction and stabilization remediation are re-oxidized and pose toxicity risks again has been a growing concern. In this study, 1030 data were collected to perform a meta-analysis to clarify the effects of various factors (oxidant type, soil and Cr(III) solid compound properties, aging conditions, and testing methods) on Cr(III) oxidation. We observed that the soil properties of clay, pH ≥ 8, the lower CEC capacity, easily reducible Mn content, and Cr(III) content, and the higher Eh value and Fe content can promote the re-oxidation of Cr(III). Publication bias and sensitivity analyses confirmed the stability and reliability of the meta-analysis. Subsequently, we used five machine learning algorithms to construct and optimize the models. The prediction results of the RF model (RMSE <1.36, R2 >0.71) with good algorithm performance showed that after ten years of remediation, the extractable Cr(VI) concentration in the soil was 0.0087 mg/L, indicating a negligible secondary pollution risk of Cr(III) re-oxidation. This study provides theoretical support for subsequent risk management and control after Cr(VI) soil remediation and provides a solution for the quantitative prediction of Cr(III) re-oxidation.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Qi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qi Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Yong Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
7
|
Wang Z, He X, Li X, Chen L, Tang T, Cui G, Zhang Q, Liu Y. Long-term stability and toxicity effects of three-dimensional electrokinetic remediation on chromium-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122461. [PMID: 37689131 DOI: 10.1016/j.envpol.2023.122461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
The three-dimensional electrokinetic remediation (3D EKR) achieved efficient removal of chromium (Cr) from the soil through mechanisms including electromigration, electroosmosis, and redox reactions. In this study, the long-term stability, leaching toxicity, bioavailability, and phytotoxicity of Cr in remediated soils were systematically analyzed to comprehensively evaluate the effectiveness of the 3D EKR method. The results showed that the concentration of hexavalent chromium (Cr (VI)) in the leachate of the 3D EKR system with sulfidated nano-scale zerovalent iron (S-nZVI) was more than 40% lower than those of the other 3D electrode groups, and the time required to reach the level III standard of groundwater quality criterion in China (0.05 mg/L, GB/T 14848-2017) was significantly shortened. The stabilization of Cr(VI) in contaminated soil after 3D EKR was maintained for 300 pore volumes (PVs), indicating that the treated Cr(VI) had good long-term stability. The leaching toxicity and bioaccessibility of Cr were assessed by the synthetic precipitation leaching procedure (SPLP), the toxicity characteristic leaching procedure (TCLP), and the physiologically based extraction test (PBET). The concentration of Cr(VI) in the SPLP, TCLP, and PBET leachates of the S-nZVI group decreased by more than 25% compared to the other 3D electrode groups, corresponding to the decrease in leaching toxicity and bioavailability of the treated Cr during the 15-day remediation period. In addition, the germination rate of wheat seeds and the average biomass of wheat seedlings in the S-nZVI group under alkaline conditions (EE) were higher than those in the non-polluting group (Blank-OH), indicating that the remediated soil had no obvious toxicity to wheat. In summary, 3D EKR achieved a satisfactory and stable remediation effect on Cr-contaminated soil, especially when using S-nZVI as the 3D electrode.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| | - Xiao He
- China MCC5 Group Corp. Ltd., Chengdu, 610063, China
| | - Xin Li
- Ecological Environment Consulting Department, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| |
Collapse
|
8
|
Tian H, Wang X, Pan R, Qin J, Xu N, Huang X. Decreasing dissolved oxygen enhances in situ curtailment of intermediate Cr(VI) during photo-oxidative decomplexation of Cr(III)-EDTA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62733-62743. [PMID: 36949374 DOI: 10.1007/s11356-023-26594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Cr(III)-organic complexes are stably presented in tanning, electroplating, and other industrial wastewaters, and their safe and efficient removal remains a current challenge. Available oxidation processes can remove Cr(III) complexes but readily result in highly toxic Cr(VI) accumulation. Herein, negligible Cr(VI) accumulation was achieved during photo-oxidation of Cr(III) complexes using a simple strategy of decreasing dissolved oxygen (DO). At the DO concentration of 5.0 mg·L-1 or less, the in-process formation of intermediate Cr(VI) was totally abated by in situ formed reductive species, and total Cr was reduced from 9.0-11.0 mg·L-1 to below 1.0 mg·L-1. A complete curtailment of Cr(VI) was observed after 30-60 min at pH 6.0-9.0. Increasing Cr(III)-EDTA concentration and decreasing pH value facilitated the in situ reduction of intermediate Cr(VI). Based on the identification of intermediates and additional Cr(II) and quenching experiments, the possible key species involved in intermediate Cr(VI) reduction were the photogenerated Cr(II) and some C-centered radicals from Cr(III)-EDTA decomplexation, and the possible mechanisms of Cr(III)-EDTA decomplexation and intermediate Cr(VI) reduction were thus proposed. The process also showed efficient treatment on other Cr(III) complexes (citrate, oxalate, and tartrate) and realistic Cr(III) complexed wastewater. This study would provide an insignificant Cr(VI)-accumulated alternative for efficient and safe removal of Cr(III) complexes from contaminated water.
Collapse
Affiliation(s)
- Hailong Tian
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xuehui Wang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Rubin Pan
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jialu Qin
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Nuo Xu
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Cheng J, Zhang J, Xiao X, Yuan Y, Liao X, Shi B, Zhang S. Potassium assisted pyrolysis of Chinese Baijiu distillers' grains to prepare biochar as controlled-release K fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163814. [PMID: 37121329 DOI: 10.1016/j.scitotenv.2023.163814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
A novel K-loaded biochar as controlled-release K fertilizer was prepared through K assisted pyrolysis of distillers' grains (DGs, typical solid-byproducts of Chinese Baijiu) under different atmospheres (N2 and CO2) and temperatures (400 and 800 °C). The fabricated DGs-based biochar exhibited high K loading (200.20-232.33 mg/g), and the release kinetics and column leaching experiments suggested that K-loaded biochar exhibited excellent controlled release performance in a long term. Compared with other biochar, the K-loaded biochar prepared at CO2 and 400 °C has lower cumulative release ratio of 82.35 %, and could retain the durative K release at ~0.5 % for 25 d. The release kinetics suggested that the K release behavior was dominated by dissolution, electrostatic attraction, adsorption, confinement effect, and chemical interaction. Furthermore, pot experiments revealed that K-loaded biochar could promote the growth of Komatsuna, in which the fresh weight and chlorophyll relative content of Komatsuna cultivated with biochar prepared at CO2 and 400 °C reached 0.146 g and 41.95 after 25 d growth, respectively. The above results suggested that the K-loaded biochar exhibited excellent utilization potential as a controlled-release K fertilizer, facilitating the sustainable development and resource valorization of Baijiu industry.
Collapse
Affiliation(s)
- Jiali Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiaming Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuepin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co., Ltd., Luzhou 646000, China
| |
Collapse
|
10
|
Fatma M, Sehar Z, Iqbal N, Alvi AF, Abdi G, Proestos C, Khan NA. Sulfur supplementation enhances nitric oxide efficacy in reversal of chromium-inhibited Calvin cycle enzymes, photosynthetic activity, and carbohydrate metabolism in wheat. Sci Rep 2023; 13:6858. [PMID: 37100855 PMCID: PMC10133275 DOI: 10.1038/s41598-023-33885-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
The present study demonstrated that exogenously-sourced nitric oxide (as SNP, sodium nitroprusside; NO donor) and sulfur (S) protected photosynthesis against chromium (Cr) stress in wheat (Triticum aestivum L. cv. HD 2851). Plants grown with 100 µM Cr exhibited higher reactive oxygen species (ROS) production, resulting in photosynthetic damage. The individual application of 50 µM NO increased carbohydrate metabolism as well as photosynthetic parameters, antioxidant system with higher transcriptional gene levels that encode the key enzymes for the Calvin cycle under Cr stress. These effects were more prominent when NO was applied with 1.0 mM SO42-. An increase in the reduced glutathione (GSH) content obtained with NO was further enhanced by S and resulted in higher protection against Cr stress. The protective effect of NO with S against Cr toxicity on photosynthesis was reversed when buthionine sulfoximine (BSO; GSH biosynthetic inhibitor) was used. Application of BSO reversed the impact of NO plus S on photosynthesis under Cr stress, verifying that the ameliorating effect of NO was through S-assimilation and via GSH production. Thus, the availability of S to NO application can help reduce Cr toxicity and protect photosynthetic activity and expression of the Calvin cycle enzymes in leaves through the GSH involvement.
Collapse
Affiliation(s)
- Mehar Fatma
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Zebus Sehar
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Charalampos Proestos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
11
|
Zeng X, Jin Q, Wang P, Huang C. Distribution and Speciation of Heavy Metal(loid)s in Soils under Multiple Preservative-Treated Wooden Trestles. TOXICS 2023; 11:249. [PMID: 36977014 PMCID: PMC10056422 DOI: 10.3390/toxics11030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of wood preservatives, such as chromated copper arsenate (CCA), alkaline copper quaternary (ACQ), and copper azole (CA), may cause environmental pollution problems. Comparative studies on the effect of CCA-, ACQ-, and CA-treated wood on soil contamination are rarely reported, and the behavior of soil metal(loid) speciation affected by preservatives has been poorly understood. Soils under the CCA-, ACQ-, and CA-treated boardwalks were collected to investigate metal(loid) distribution and speciation at the Jiuzhaigou World Natural Heritage site. The results showed that the maximum mean concentrations of Cr, As, and Cu were found in soils under the CCA, CCA, and CCA plus CA treatments and reached 133.60, 314.90, and 266.35 mg/kg, respectively. The Cr, As, and Cu contamination in soils within a depth of above 10 cm was high for all types of boardwalks and limited in the horizontal direction, not exceeding 0.5 m. Cr, As, and Cu in soils were mainly present as residual fractions in all profiles and increased with depth. The proportion of non-residual As in soil profiles under CCA- and CCA plus CA-treatment and exchangeable Cu in CA- and CCA plus CA-treatment were significantly higher than those in the profiles under the other preservative treatments. The distribution and migration of Cr, As, and Cu within soils were influenced by the preservative treatment of trestles, in-service time of trestles, soil properties (e.g., organic matter content), geological disasters (e.g., debris flow), and elemental geochemical behavior. With the CCA treatment for trestles successively replaced by ACQ and CA treatments, the types of contaminants were reduced from a complex of Cr, As, and Cu to a single type of Cu, achieving a reduction in total metal content, toxicity, mobility, and biological effectiveness, thus reducing environmental risks.
Collapse
Affiliation(s)
- Xiu Zeng
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qian Jin
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Panpan Wang
- Jiuzhaigou Administration Bureau, Jiuzhaigou 623402, China
| | - Chengmin Huang
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Sun X, Mao M, Zheng Z, Wang J, Wu Z, Li X, Lin Z, Liu W. Solar irradiation accelerates the oxidation of Cr(III) by δ-manganese dioxide. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130150. [PMID: 36257107 DOI: 10.1016/j.jhazmat.2022.130150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) has been observed to be released from Cr(III)-bearing natural sources or residues when they are found alongside manganese and manganese oxides. However, relevant mechanism studies normally ignore the effect of simulated solar irradiation on this oxidation reaction. Therefore, we investigated the photochemical reaction between Cr(OH)3 and δ-MnO2, the common species of chromium and manganese oxide found in the environment. At pH 11, the oxidation of Cr(OH)3 by δ-MnO2 was accelerated under simulated solar irradiation, which had an oxidation rate 2.7-fold greater than that in the dark condition. Further investigation revealed that δ-MnO2, an n-type semiconductor with a 2.7 eV band gap, can be excited by light with wavelengths < 459 nm and produce photogenic electrons and holes. These photo-induced carriers reacted with surrounding molecules to form free radicals and participate the redox reactions. Free-radical quenching experiments indicated that hydroxyl radicals (•OH) are the main oxidants of Cr(III) under simulated solar irradiation. This work provides new mechanistic insight into the oxidation of Cr(III) to Cr(VI), which may help clarifying the environmental fate of Cr and the potential solar-triggered release of Cr(VI).
Collapse
Affiliation(s)
- Xing Sun
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China
| | - Minlin Mao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China
| | - Zhengqiang Zheng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China
| | - Jiaxin Wang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zhen Wu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xiaoqin Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China.
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
13
|
Banti A, Grammenos O, Kokkinos Ε, Touni A, Sotiropoulos S, Zouboulis A. Electrochemical conversion of chromium from tannery effluents for potential reuse in industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8722-8731. [PMID: 35381928 DOI: 10.1007/s11356-022-19985-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical oxidation of trivalent chromium from leather tanning mud waste leachates (containing ca 6 g.L-1 Cr(III)) to its hexavalent form was carried out using a PbOx/Pb anode electrode in a prototype small (0.4 L) cylindrical batch electrochemical reactor. The PbOx/Pb anode was prepared by electrochemical anodization at constant current (75 mA cm-2 for 30 min) in a sulfuric acid solution and characterized by the cyclic voltammetry technique to investigate the effect of pH on the process. It was found that at pH = 3, Cr(III) oxidation prevails over the competing water oxidation-oxygen evolution reaction (OER), hence increasing the efficiency of the process. A detailed study of pH (0-3), current density (12-24 mA cm-2), and cell type (divided-undivided) effects on bulk electrolysis of Cr(III) leachates in the batch prototype reactor resulted in process optimization. At pH = 3, 12 mA cm-2 and a cathode inserted in a porous diaphragm envelope, nearly 70% conversion was achieved at a nearly 60% current efficiency, among the highest in the previously reported literature. The method (further optimized with an ion-selective membrane separator) could offer an attractive route for tannery Cr(III) conversion to Cr(VI) for reuse as an etchant or electroplating agent.
Collapse
Affiliation(s)
- Angeliki Banti
- Physical Chemistry Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Orestis Grammenos
- Physical Chemistry Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Εvgenios Kokkinos
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Aikaterini Touni
- Physical Chemistry Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Sotiris Sotiropoulos
- Physical Chemistry Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasios Zouboulis
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
14
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Sensitivity of Zea mays and Soil Microorganisms to the Toxic Effect of Chromium (VI). Int J Mol Sci 2022; 24:178. [PMID: 36613625 PMCID: PMC9820705 DOI: 10.3390/ijms24010178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Chromium is used in many settings, and hence, it can easily enter the natural environment. It exists in several oxidation states. In soil, depending on its oxidation-reduction potential, it can occur in bivalent, trivalent or hexavalent forms. Hexavalent chromium compounds are cancerogenic to humans. The aim of this study was to determine the effect of Cr(VI) on the structure of bacteria and fungi in soil, to find out how this effect is modified by humic acids and to determine the response of Zea mays to this form of chromium. A pot experiment was conducted to answer the above questions. Zea mays was sown in natural soil and soil polluted with Cr(VI) in an amount of 60 mg kg-1 d.m. Both soils were treated with humic acids in the form of HumiAgra preparation. The ecophysiological and genetic diversity of bacteria and fungi was assayed in soil under maize (not sown with Zea mays). In addition, the following were determined: yield of maize, greenness index, index of tolerance to chromium, translocation index and accumulation of chromium in the plant. It has been determined that Cr(VI) significantly distorts the growth and development of Zea mays, while humic acids completely neutralize its toxic effect on the plant. This element had an adverse effect on the development of bacteria of the genera Cellulosimicrobium, Kaistobacter, Rhodanobacter, Rhodoplanes and Nocardioides and fungi of the genera Chaetomium and Humicola. Soil contamination with Cr(VI) significantly diminished the genetic diversity and richness of bacteria and the ecophysiological diversity of fungi. The negative impact of Cr(VI) on the diversity of bacteria and fungi was mollified by Zea mays and the application of humic acids.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | | | | | | |
Collapse
|
15
|
Sounderarajan S, Puchalapalli DSR, Ayothiraman S. Effect of synthetic fatty liquor and neatsfoot oil as co-contaminants on the reduction of hexavalent chromium using Fusarium oxysporum and its kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86427-86438. [PMID: 35639327 DOI: 10.1007/s11356-022-21080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The hexavalent chromium is one of the major carcinogenic components released during the tanning process and lots of work have been carried out on the reduction of hexavalent chromium via chemical and biological routes. Different fatty oils are also employed in the tanning process and have also been released as an effluent along with chromium. However, it is difficult to find a study on the reduction of chromium in the presence of other contaminant which would help to mimic the real-time complication of treating the tannery effluent. It is the first attempt on the reduction of hexavalent chromium in the presence of synthetic fatty liquor and neatsfoot oil using Fusarium oxysporum. The maximum percentage of chromium reduction was 73.62% and 60.28% in neatsfoot oil and synthetic fatty oil, respectively, for the initial chromium concentration of 25 mg/L. The biomass productivity was better with both neatsfoot oil and synthetic fatty oil, whereas the same has decreased with the presence of chromium. The reduction of chromium was found to follow the uncompetitive substrate inhibition kinetics than the general Michaelis-Menten kinetics. The kinetic parameters were calculated using particle swarm optimization algorithm, which were compared with the already reported data. The uncompetitive substrate inhibition kinetics was represented the experimental data in both the cases and the value of substrate inhibition constant was low in the case of neatsfoot oil compared with the synthetic fatty liquor.
Collapse
Affiliation(s)
- Sathieesh Sounderarajan
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Dinesh Sankar Reddy Puchalapalli
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India.
| |
Collapse
|
16
|
Xu Y, Fan Z, Huang Q, Lou Z, Xu X, Xu Y, Shen Y. Cr Migration Potential and Species Properties in the Soil Profile from a Chromate Production Site in the Groundwater Depression Cone Area. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:600-608. [PMID: 35113218 DOI: 10.1007/s00128-022-03469-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The relationship between the migration process and speciation distribution of Cr is important for the risk assessment in the underground environment. In this work, soil columns were collected from the chromate production site, with a 40-year operation, in the groundwater depression cone area of North China plain. The relationship between chromium pollution features and the geochemical properties of soil was established, and the migration risk of Cr(VI) was assessed based on the Nemerow composite index and Hydrus-1D model. The maximum total Cr concentration in the chromium slag dumping site reached 907 mg/kg, and that in the chromate production workshop was more than 200 mg/kg across the depth. The migration of Cr might be accelerated in the soil with abundant Mn (236-1461 mg/kg) but scarce organic matters (< 0.45%). The Hydrus simulation indicated that Cr(VI) would reach a cumulative flux of 300-729 mg/cm2 after 50 years.
Collapse
Affiliation(s)
- Yukang Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zikai Fan
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Qiujie Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Xu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, China
| | - Yilong Shen
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, China
| |
Collapse
|
17
|
Kurniasari F, Tazaki A, Hashimoto K, Yuan T, Al Hossain MMA, Akhand AA, Ahsan N, Ohnuma S, Kato M. Redistribution of potentially toxic elements in the hydrosphere after the relocation of a group of tanneries. CHEMOSPHERE 2022; 303:135098. [PMID: 35643165 DOI: 10.1016/j.chemosphere.2022.135098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous relocation of a group of pollutant sources in a heavily polluted area is a rare event. Such a relocation has been implemented in Hazaribagh, a tannery built-up area with heavy pollution, in Bangladesh. This provides a valuable opportunity to compare the changes in environmental conditions associated with the relocation of multiple putative sources. Our environmental monitoring for a period of 6 years at the stationary areas centered on Hazaribagh geographically revealed trivalent [Cr(III)], hexavalent [Cr(VI)] chromium, lead, iron, and manganese as tannery-related elements after the legal deadline for tannery relocation. The median Cr(III) level in canal water, into which wastewater from tanneries was directly discharged, after the relocation was 97% lower of that before the relocation, indicating a beneficial effect of the relocation. In contrast, the median Cr(VI) level in water samples just after the relocation and 2 years after the relocation were approximately 5-fold and 30-fold higher, respectively, than those before the relocation. These results indicate not only a harmful effect of the relocation but also the possibility of conversion from Cr(III) to Cr(VI) in nature. Although the health hazard indexes considering all of the tannery-related elements in all of the canal water samples before the relocation exceeded the safety thresholds, the percentages of samples in which the indexes exceeded their safety thresholds after the relocation decreased by 32.5%-45.0%. Treatment with our patented hydrotalcite-like compound consisting of magnesium and iron (MF-HT) resulted in decreases in the health hazard indexes in all of the water samples in which the indexes exceeded their safety thresholds to levels lower than their thresholds. Thus, this study shows the double-edged effects associated with the relocation and a potential solution.
Collapse
Affiliation(s)
- Fitri Kurniasari
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Tian Yuan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - M M Aeorangajeb Al Hossain
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; Directorate General of Health Services, Ministry of Health and Family Welfare, Government of the People's Republic of Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Anwarul Azim Akhand
- Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Ahsan
- Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shoko Ohnuma
- Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan.
| |
Collapse
|
18
|
Liu Y, Ding J, Zhu H, Wu X, Dai L, Chen R, Jin Y, Van der Bruggen B. Retrieval of trivalent chromium by converting it to its dichromate state from soil using a bipolar membrane electrodialysis system combined with H2O2 oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Xu T, Jiang X, Tang Y, Zeng Y, Zhang W, Shi B. Effects of tannic acid on the transport behavior of trivalent chromium in soils and its mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119328. [PMID: 35447257 DOI: 10.1016/j.envpol.2022.119328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Trivalent chromium [Cr(III)] and tannins serve as necessary substances in leather processing and coexist in tannery site, which lead to the chromium contamination in site soil when disposed improperly. However, coexisting tannins are very likely to complex with Cr(III) and affect its properties, ultimately changing the mobility of chromium in soil. In this study, tannic acid (TA) was selected to investigate the complexation with Cr(III) and the influence on the solubility and sorption of Cr(III) in soils. Then, the transport behavior and mechanism of Cr(III)-TA complexes in soil was clarified. Dialysis results showed that the increase of TA concentration and solution pH promoted the formation of complexed Cr(III). The results of UV-Vis absorption spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations indicated that the adjacent ionized phenolic hydroxyls in TA functioned as the binding sites with Cr(III) to form the Cr-O bonds and the degree of complexation increased with pH. The Cr(III)-TA complexes had higher solubility than free Cr(III) at pH ≥ 6.0. Batch sorption experiments demonstrated that the sorption capacity of Cr(III)-TA to soils with different pH was always lower than that of free Cr(III). These reasons led to the stronger mobility of Cr(III)-TA in soil columns than Cr(III). Our research reveals that the enhanced mobility of Cr(III) in soils coexisting with TA.
Collapse
Affiliation(s)
- Teng Xu
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China; College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xiaofeng Jiang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yuling Tang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yunhang Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Wenhua Zhang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Bi Shi
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Shi X, He C, Wang Y, Lu J, Guo H, Zhang B. Concurrent anaerobic chromate bio-reduction and pentachlorophenol bio-degradation in a synthetic aquifer. WATER RESEARCH 2022; 216:118326. [PMID: 35364351 DOI: 10.1016/j.watres.2022.118326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Chromate [Cr(VI)] and pentachlorophenol (PCP) coexist widely in the environment and are highly toxic to public health. However, whether Cr(VI) bio-reduction is accompanied by PCP bio-degradation and how microbial communities can keep long-term stability to mediate these bioprocesses in aquifer remain elusive. Herein, we conducted a 365-day continuous column experiment, during which the concurrent removals of Cr(VI) and PCP were realized under anaerobic condition. This process allowed for complete Cr(VI) bio-reduction and PCP bio-degradation at an efficiency of 92.8 ± 4.2% using ethanol as a co-metabolic substrate. More specifically, Cr(VI) was reduced to insoluble chromium (III) and PCP was efficiently dechlorinated with chloride ion release. Collectively, Acinetobacter and Spirochaeta regulated Cr(VI) bio-reduction heterotrophically, while Pseudomonas mediated not only Cr(VI) bio-reduction but also PCP bio-dechlorination. The bio-dechlorinated products were further mineralized by Azospira and Longilinea. Genes encoding proteins for Cr(VI) bio-reduction (chrA and yieF) and PCP bio-degradation (pceA) were upregulated. Cytochrome c and intracellular nicotinamide adenine dinucleotide were involved in Cr(VI) and PCP detoxification by promoting electron transfer. Taken together, our findings provide a promising bioremediation strategy for concurrent removal of Cr(VI) and PCP in aquifers through bio-stimulation with supplementation of appropriate substrates.
Collapse
Affiliation(s)
- Xinyue Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ya'nan Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jianping Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
21
|
Ling J, Wei G, Li J. A highly sensitive and selective molecularly imprinted sensor for direct determination of ultra‐trace Cr(III) in environmental samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Ling
- College of Environmental Science and Engineering Guilin University of Technology Guilin 541004 China
| | - Ge Wei
- GRG Metrology & Test (Nanning) Co., Ltd. Nanning 530000 China
| | - Jianping Li
- College of Environmental Science and Engineering Guilin University of Technology Guilin 541004 China
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|
22
|
Guo SS, Tian YQ, Wu H, Jin XD, Gan LZ, Li Y, Yang JY. Spatial distribution and morphological transformation of chromium with coexisting substances in tannery landfill. CHEMOSPHERE 2021; 285:131503. [PMID: 34265720 DOI: 10.1016/j.chemosphere.2021.131503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The prosperity and development of tannery industry have brought about rapid economic growth. However, the tannery landfill without anti-seepage measures in the early stage has generated masses of environmental hazards owing to the lack of awareness in environmental protection. Therefore, it is imperative to pay much attention to the understanding of environmental hazards from tannery waste. In this study, solid samples and groundwater samples were collected from a tannery landfill to study the effect of the characteristic pollutants produced by tanning on chromium distribution with other coexisting substances. The results showed that significant correlations were demonstrated between multiple coexisting substances (total organic carbon, total petroleum hydrocarbons, total nitrogen, Cr, F, Ca, Cu and Pb), indicating the possible same source or they coming from the same tannery production stage. The weights of positive effects and negative effects of coexisting substances on total Cr distribution in the profile decreased in the order: total nitrogen > Cu > Ca > Pb > total organic carbon > F > SO42-> Cd, and Ni > Cl > Hg, respectively. Moreover, the simulation of Visual MINTEQ showed that the cations were mainly bound to Cr as CrO42-, while the anions were bound to Cr3+. This study provided a new perspective on the selection of remediation strategies for Cr-contaminated sites to avoid secondary environmental pollution caused by the release of coexisting heavy metals.
Collapse
Affiliation(s)
- Shan-Shan Guo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yong-Qiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Wu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Xiao-Dan Jin
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Long-Zhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Li
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Yu Y, Huang M, Lv J, Zeng Y, Sun Q, Shi B. Evaluation and improvement of the oxidative stability of leather fatliquors. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00070-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractFatliquor oxidation may give leather unpleasant odor, and excessive amounts of Cr(VI) and volatile organic compounds. The accurate evaluation and improvement of the oxidative stability of fatliquors are of great significance to high-quality leather manufacturing. We proposed a set of practical methods for evaluating the oxidative stability of fatliquors on the basis of oxidation induction time, change in iodine value (∆ IV), and change in acid value (∆ AV) under accelerated oxidation conditions (at 100 °C with 10 L/h of air). Oxidation induction time is a highly sensitive marker for quantifying the oxidative stability of fatliquors, and ∆ IV and ∆ AV that are low cost and easy to operate are useful in evaluating the oxidative stability of fatliquors when the oxidation induction time is less than 22 h. The number of double bonds in fatliquors is an important factor affecting oxidative stability. The sulfation modification of fatliquors that greatly reduces double bonds and the addition of antioxidants, especially butylated hydroxyanisole and butylated hydroxytoluene, markedly improve oxidative stability of fatliquors.
Collapse
|
24
|
Min X, Li Q, Zhang X, Liu L, Xie Y, Guo L, Liao Q, Yang Z, Yang W. Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117830. [PMID: 34325095 DOI: 10.1016/j.envpol.2021.117830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient, green and low-cost natural mineral-based reductive materials is promising to remediation of hexavalent chromium(Cr(VI))-contaminated soil. Considering the synergetic effect between pyrite and zerovalent iron (ZVI), an activated pyrite supported ZVI(ZVI/FeS2) with high reducing activity was developed by ball milling activation of natural pyrite and sulfidation of ZVI. The remediation property of ZVI/FeS2 for Cr(VI)-contaminated soil was evaluated with different ZVI/FeS2 dosage, soil-water ratio, initial pH, time and temperature, as well as the stability of Cr. The results showed that ZVI/FeS2 possessed high reduction activity with soil Cr(VI) removal rate up to 99 % even under alkaline condition, and soil with different pH values eventually converged to neutral after 90 days, indicating that ZVI/FeS2 has a good self-regulating alkaline ability. The reduction process conformed to Langmuir-Hinshelwood first-order kinetics and was a spontaneous and endothermic process. The lower activation energy of 17.97 kJ mol-1 (usually 60-250 kJ mol-1) indicated that the reduction reaction of Cr(VI) was particularly easy to occur. The speciation change of Cr in soil within 30 days demonstrated that the Cr in the soil was converted from a readily migratable state to a more stable state, where the Fe-Mn oxide bound fraction reached 85.03 % due to the generation of Cr(III)/Fe(III) co-precipitation. The results of long-term stability experiments showed that the leaching concentrations of Cr(VI) and total Cr decreased significantly after the ZVI/FeS2 treatment and remained stable at very low levels for 180 days. This study provided a sustainable way to fully utilize natural pyrite minerals to obtain iron-bearing reductive materials for feasible, effective and long-term stable immobilization of Cr(VI) in soil.
Collapse
Affiliation(s)
- Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiaoming Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Lu Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Yan Xie
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Lili Guo
- BCEG Environmental Remediation Co., LTD., Beijing, 100015, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
25
|
Zheng Y, Li H, Yu Q, Yu L, Jiao B, Li D. Application of UV radiation for in-situ Cr(VI) reduction from contaminated soil with electrokinetic remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125806. [PMID: 33873035 DOI: 10.1016/j.jhazmat.2021.125806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Restoring hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) from contaminated soil is a cost-effective alternative for attenuating Cr(VI) toxicity to the ecosystem. A new electrokinetic remediation (EKR) system with UV light was explored to overcome an energy barrier to catalyze Cr(VI) reduction from the surface soil near the anodic reservoir. Natural organic matters and minerals from the contaminated soil acted as electron donors and catalysts for Cr(VI) photo-reduction and no additional chemical reagent. There was almost no residual Cr(VI) in anolyte after UV/EKR compared with the conventional EKR. The reduction improved the efficiency of EKR in the soil near the anodic reservoir by dropped the Cr(VI) negative mass flux caused by electroosmosis advection and concentration diffusion. The pathways of Cr(VI) photo-reduction are possibly dominated by ligand-to-metal charge transfer, i.e., photocatalytic cyclic reduction by Fe(III)/Fe(II) complexes on the surface of the minerals and in soil pore fluid and the photo-induced decomposition of chromate ester. It is concluded that UV/EKR is a clean, efficient, and low-cost method for remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Huilin Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiu Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Lin Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|