1
|
Sun T, Delaplace P, Li G, James A, Pan J, Zhang J. Novel insights into the effect of arbuscular mycorrhizal fungi inoculation in soils under long-term biosolids application: Emphasis on antibiotic and metal resistance genes, and mobile genetic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125846. [PMID: 39952592 DOI: 10.1016/j.envpol.2025.125846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The application of biosolids can improve soil fertility and crop productivity but also accompanies risks of heavy metals and antibiotics introduction. In the presence of heavy metals contamination, using arbuscular mycorrhizal fungi (AMF) is a promising strategy to enhance soil microbial community stability and plant tolerance resistance to heavy metals, and to reduce the spread of antibiotic resistance genes (ARGs). The present study investigated the impacts of AMF inoculation on soil and plant heavy metal contents, and soil microbial communities by pot experiments. The results showed that AMF inoculation significantly enhanced plant biomass, and reduced soil and plant heavy metals contents. While AMF inoculation did not alter bacterial and fungal community compositions, it increased bacterial diversity at higher biosolids concentrations. Notably, AMF inoculation enhanced microbial network complexity and increased keystone taxa abundance. Furthermore, several beneficial microorganisms with high resistance to heavy metals were enriched in AMF-inoculated soils. Metagenomic analysis revealed a reduction in the mobile genetic element (MGE) gene IS91 in AMF-inoculated soils and an increase in heavy metal resistance genes compared to soils without AMF. The possibility of reduction in MGE-mediated spread of ARGs is one of the key findings of this study. As a caution, this study also detected enrichment of few ARGs in high biosolids-amended soils with AMF inoculation. Overall, AMF inoculation could be a valuable strategy in agriculture for mitigating the environmental risks associated with biosolids, heavy metals and antibiotic resistance, thereby promoting sustainable soil management and health.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Gembloux Agro Bio Tech, University of Liège, 5030, Belgium
| | | | - Guihua Li
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Anina James
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jianfeng Zhang
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
2
|
Luo S, Ouyang Y, Zeng W, Wu X. Remediation of antimony-contaminated soil using food waste organic fertilizer and rhizosphere microbial response mechanism. Front Microbiol 2025; 16:1521692. [PMID: 40078551 PMCID: PMC11897261 DOI: 10.3389/fmicb.2025.1521692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
Antimony pollution poses a significant threat to both the ecological environment and the health of people living in mining regions. Using organic fertilizers is an efficient approach for the remediation of heavy metal contamination in soil. This study aimed to explore how food waste organic fertilizer (FF) can remediate antimony-contaminated soil and the associated rhizosphere microbial response mechanism. The analysis of soil physicochemical properties revealed that the application of FF notably reduced bulk density (from 1.57 to 1.08 g cm-3), enhanced salinization levels, and increased the content of organic matter, available nitrogen, phosphorus, and potassium (p < 0.05). In the FF group, the plant height of Pteris vittate increased by 82.12% compared to the control group. The antimony valence state analysis revealed that after applying FF, the Sb(III) content in the rhizosphere and endosphere of P. vittate was significantly lower than that in other groups (p < 0.05), while the Sb(V) content in the endosphere was the highest. This indicated that FF can enhance the oxidation and detoxification of Sb(III) in the soil to produce Sb(V), which is then accumulated in the root of P. vittate. Microbial community analysis showed that the application of FF promoted the continuous enrichment of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes in the roots of P. vittate; this is particularly evident in the specific microbial groups with Sb(III) oxidation, nitrogen fixation, and phosphorus and potassium solubilization functions, including Acinetobacter, Sphingomonas, Comamonas, Bradyrhizobium, Alphaproteobacteria, Acidovorax, and Paenibacillaceae. These microbes help mitigate the adverse effects of poor soil conditions and heavy metals on the growth of P. vittate in mines. This study provides a new approach to resource utilization of food waste and the remediation of antimony-contaminated sites.
Collapse
Affiliation(s)
- Shenglian Luo
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, China
| | - Yingxuan Ouyang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, China
| |
Collapse
|
3
|
Yu H, Liu S, Zhang D, Hu R, Chen P, Liu H, Zhou Q, Tan W, Hu N, He Z, Ding D, Yan Q. Specific Enrichment of arsM-Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1647-1660. [PMID: 39810418 DOI: 10.1021/acs.est.4c10242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, arsM gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of Vetiveria zizanioides, a potential As hyperaccumulator. V. zizanioides was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment. Results showed that the content of dimethylarsinic acid in the rhizosphere was significantly positively correlated with the rate of N fixation and the activity of nitrite reductase. The As-methylating species (e.g., Flavisolibacter and Paraflavitalea) were significantly enriched in the root-associated compartments in the second generation of MS and AS. Notably, higher abundance of genes involved in N fixation (nifD, nifK) and dissimilatory nitrate reduction to ammonium (narG/H, nirB/D/K/S) was detected in the second generation of MS than in the first generation. The metabolic pathway analysis further demonstrated that N fixing-stimulative and DNRA-stimulative As-methylating species could provide ammonium to enhance the synthesis of S-adenosyl-l-methionine, serving as methyl donors for soil As methylation. This study highlights two important N conversion-stimulative As-methylating pathways and has important implications for enhancing phytoremediation in As-contaminated soils.
Collapse
Affiliation(s)
- Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Shengwei Liu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Dandan Zhang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pubo Chen
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Huanping Liu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Xiangxi Tujia and Miao Autonomous Prefecture 416000, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
4
|
Hu X, Liu X, Zhang S, Yu C. Nitrogen-cycling processes under long-term compound heavy metal(loids) pressure around a gold mine: Stimulation of nitrite reduction. J Environ Sci (China) 2025; 147:571-581. [PMID: 39003072 DOI: 10.1016/j.jes.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 07/15/2024]
Abstract
Mining and tailings deposition can cause serious heavy metal(loids) pollution to the surrounding soil environment. Soil microorganisms adapt their metabolism to such conditions, driving alterations in soil function. This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids) exposure. The results showed that the diversity and abundance of nitrogen-cycling microorganisms showed negative feedback to heavy metal(loids) concentrations. Denitrifying microorganisms were shown to be the dominant microorganisms with over 60% of relative abundance and a complex community structure including 27 phyla. Further, the key bacterial species in the denitrification process were calculated using a random forest model, where the top three key species (Pseudomonas stutzei, Sphingobium japonicum and Leifsonia rubra) were found to play a prominent role in nitrite reduction. Functional gene analysis and qPCR revealed that nirK, which is involved in nitrite reduction, significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%. The experimental results confirmed that the activity of nitrite reductase (Nir) encoded by nirK in the soil was increased at high concentrations of heavy metal(loids). Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids), the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species. The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).
Collapse
Affiliation(s)
- Xuesong Hu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaoxia Liu
- Beijing Cultivated Land Construction and Protection Center, Beijing 100020, China
| | - Shuo Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| |
Collapse
|
5
|
Ahmed N, Tu P, Deng L, Chachar S, Chachar Z, Deng L. Optimizing the dual role of biochar for phosphorus availability and arsenic immobilization in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177810. [PMID: 39616926 DOI: 10.1016/j.scitotenv.2024.177810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Soil Phosphorus (P) fixation and Arsenic (As) contamination pose significant challenges to agriculture and environmental health. Biochar has emerged as a promising soil amendment capable of enhancing P availability while immobilizing As. This review explored the mechanisms by which biochar influences P dynamics and As sequestration. Biochar enhances P availability by reducing fixation, stimulating P-solubilizing microorganisms, and gradually releasing the adsorbed P. Specific biochars, such as Mg-modified and La-modified types, demonstrate high P adsorption capacities, reaching up to 263 mg/g, while cerium and iron-modified biochars show As adsorption efficiencies up to 99 % under certain conditions. Biochar's surface functional groups are essential for P and As adsorption through mechanisms such as surface adsorption, ligand exchange, and inner-sphere complexation. The competitive adsorption between P and As is influenced by pH, biochar modification, and co-existing anions. Under acidic conditions, As shows a higher affinity for biochar, forming stable complexes with metal oxides like iron and aluminum. Biochars modified with calcium, magnesium, lanthanum, zinc, cerium, and iron demonstrate enhanced adsorption capacities. In neutral to alkaline conditions, calcium- and magnesium-modified biochars benefit P retention, while iron-modified biochar is preferable for As adsorption. Additionally, biochar promotes microbial activity and enzymatic processes that facilitate As transformation and P mineralization, enhancing overall soil health. These findings underscore biochar's dual role in increasing nutrient availability and reducing contaminant risks, making it a valuable tool for sustainable agriculture. Field-scale applications should be prioritized in future research to optimize biochar's impact on soil fertility and environmental remediation.
Collapse
Affiliation(s)
- Nazir Ahmed
- South China Agricultural University, Guangzhou 510642, China; College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lansheng Deng
- South China Agricultural University, Guangzhou 510642, China
| | - Sadaruddin Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lifang Deng
- South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Zhang H, Shui J, Li C, Ma J, He F, Zhao D. Diversity, composition, and assembly processes of bacterial communities within per- and polyfluoroalkyl substances (PFAS)-contained urban lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177625. [PMID: 39566639 DOI: 10.1016/j.scitotenv.2024.177625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread, highly persistent, and bio-accumulative compounds that are increasingly found in the sediments of aquatic systems. Given this accumulation and concerns regarding the environmental impacts of PFAS, their influence on sedimentary bacterial communities remains inadequately studied. Here, we investigated the concentrations of 17 PFAS in sediments from six urban lakes in Nanjing, China, and assessed their effects on the diversity, composition, potential interactions, and assembly mechanisms of sedimentary bacterial communities. Sediment concentrations of PFAS ranged from 4.70 to 5.28 ng·g-1 dry weight. The high concentrations of the short-chain perfluorobutanesulfonic acid (PFBS) suggested its substitution for the long-chain perfluorooctanesulfonic acid (PFOS). As alternatives to long-chain PFAS, short-chain PFAS had similar effects on bacterial communities. The short-chain perfluoropentanoic acid (PFPeA) and the long-chain perfluorotridecanoic acid (PFTrDA) were the most important PFAS related to the ecological patterns of the co-occurrence network and may alter the composition of the sedimentary bacterial communities in the urban lakes. The Anaerolineaceae family represented as keystone bacteria within the PFAS-affected bacterial co-occurrence network. Deterministic processes (65.9 %), particularly homogeneous selection (63.2 %), were the dominant process driving bacterial community assembly. PFAS promoted the phylogenetic clustering and influenced the community dispersal capabilities to shape bacterial community assembly. This study provides a comprehensive analysis of PFAS distribution in sediments across six urban lakes in Nanjing and provides novel insights into the effects of PFAS on sedimentary bacterial communities. Further research is required to elucidate the mechanisms underlying the impacts of PFAS on microbial communities and to evaluate their broader ecological consequences.
Collapse
Affiliation(s)
- Hongjie Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China; Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Jian Shui
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China; Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Chaoran Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China
| | - Fei He
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China; Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| |
Collapse
|
7
|
Hassan MU, Xu H, Ghorbanpour M, Yongfang Y, Yang B, Zhou Q, Khan TA, Guoqin H. Integrative application of biochar and bacteria for mitigating antimony toxicity and bio-accessibility in sorghum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177497. [PMID: 39547371 DOI: 10.1016/j.scitotenv.2024.177497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Antimony (Sb) toxicity is a serious concern due to its harmful effects on humans and plants. Biochar (BC) has become a popular amendment for remediating soils polluted with metals and metalloids. However, the exact interaction mechanism between BC, and microbes to remediate Sb-polluted soils remains unclear. To address this, a study was performed to determine the impacts of maize straw BC and a bacterial strain (Pseudomonas frederiksbergensis: PF) in mitigating the harmful effects of Sb toxicity on sorghum productivity. A pot experiment was set up with the following treatments: control, soil contaminated with Sb (1000 mg kg-1), Sb-contaminated soil + BC (2 %), Sb-contaminated soil + PF, and Sb-contaminated soil + BC (2 %) + PF. Antimony toxicity significantly reduced sorghum biomass and grain yield while increasing hydrogen peroxide (H2O2: 32.63 %), malondialdehyde (MDA: 68.96 %) reducing chlorophyll a (95.65 %) and chlorophyll b synthesis (92 %), increasing Sb accumulation in plant parts and decreasing soil NPK (24.48 %, 8.01 % and 19.24 %) availability, soil organic carbon (SOC: 16.36 %), microbial biomass carbon (MBC: 10.80 %) and soil urease (76.31 %) and catalase (130.52 %) activity. The combined application of BC and bacteria enhanced the sorghum biomass and grain production by improving chlorophyll synthesis, antioxidant activity, osmolyte production, nutrient availability, SOC, MBC, soil enzymatic activities and reducing both H2O2 and MDA production. Co-application of BC and bacteria decreased soil Sb concentration by 38.84 % while they decreased Sb concentration in sorghum root, stem, leaves and grains by 54.58 %, 34.15 %, 30.96 % and 54.58 % respectively. The decrease of Sb concentration in soil and plant parts with BC and bacteria application was attributed to increase in soil pH, SOC, MBC, enzymes activities. Additionally, BC in combination with bacteria also reduced bio-accessible Sb concentration by 83.82 %, and bio-accessibility of Sb by 36.45 % indicating their appreciable potential to produce safer sorghum production in highly polluted Sb soils. Therefore, BC and PF can be used together to improve sorghum production and develop environmentally friendly approaches in Sb-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huifang Xu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Yu Yongfang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Binjuan Yang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Quan Zhou
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Tahir Abbas Khan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huang Guoqin
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
8
|
Jiang OY, Zhang SY, Zhao XD, Liu ZT, Kappler A, Xu JM, Tang XJ. Arsenic Reduces Methane Emissions from Paddy Soils: Insights from Continental Investigation and Laboratory Incubations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17685-17694. [PMID: 39314094 DOI: 10.1021/acs.est.4c06809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Arsenic (As) contamination and methane (CH4) emissions co-occur in rice paddies. However, how As impacts CH4 production, oxidation, and emission dynamics is unknown. Here, we investigated the abundances and activities of CH4-cycling microbes from 132 paddy soils with different As concentrations across continental China using metagenomics and the reverse transcription polymerase chain reaction. Our results revealed that As was a crucial factor affecting the abundance and distribution patterns of the mcrA gene, which is responsible for CH4 production and anaerobic CH4 oxidation. Laboratory incubation experiments showed that adding 30 mg kg-1 arsenate increased 13CO2 production by 10-fold, ultimately decreasing CH4 emissions by 68.5%. The inhibition of CH4 emissions by As was induced through three aspects: (1) the toxicity of As decreased the abundance and activity of the methanogens; (2) the adaptability and response of methanotrophs to As is beneficial for CH4 oxidation under As stress; and (3) the more robust arsenate reduction would anaerobically consume more CH4 in paddies. Additionally, significant positive correlations were observed between arsC and pmoA gene abundance in both the observational study and incubation experiment. These findings enhance our understanding of the mechanisms underlying the interactions between As and CH4 cycling in soils.
Collapse
Affiliation(s)
- Ou-Yuan Jiang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xin-Di Zhao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zi-Teng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Andreas Kappler
- Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jian-Ming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xian-Jin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Li P, Tian Y, Yang K, Tian M, Zhu Y, Chen X, Hu R, Qin T, Liu Y, Peng S, Yi Z, Liu Z, Ao H, Li J. Mechanism of microbial action of the inoculated nitrogen-fixing bacterium for growth promotion and yield enhancement in rice (Oryza sativa L.). ADVANCED BIOTECHNOLOGY 2024; 2:32. [PMID: 39883349 PMCID: PMC11709144 DOI: 10.1007/s44307-024-00038-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 01/31/2025]
Abstract
The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil. We investigated the effects of such inoculation on nutrient content in the rhizosphere soil, plant growth, and the nitrogen-fixing microbial communities within the rhizosphere and endorhizosphere. The findings showed that inoculation with the R3 strain considerably increased the amounts of nitrate nitrogen, ammonium nitrogen, and available phosphorus in the rhizosphere by 14.77%, 27.83%, and 22.67%, respectively, in comparison to the control (CK). Additionally, the theoretical yield of rice was enhanced by 8.81% due to this inoculation, primarily through a 10.24% increase in the effective number of rice panicles and a 4.14% increase in the seed setting rate. Further analysis revealed that the structure of the native nitrogen-fixing microbial communities within the rhizosphere and endorhizosphere were altered by inoculation with the R3 strain, significantly increasing the α-diversity of the communities. The relative abundance of key nitrogen-fixing genera such as Ralstonia, Azotobacter, Geobacter, Streptomyces, and Pseudomonas were increased, enhancing the quantity and community stability of the nitrogen-fixing community. Consequently, the nitrogen-fixing capacity and sustained activity of the microbial community in the rhizosphere soil were strengthened. Additionally, the expression levels of the nitrogen absorption and transport-related genes OsNRT1 and OsPTR9 in rice roots were upregulated by inoculation with the R3 strain, potentially contributing to the increased rice yield. Our study has revealed the potential microbial mechanisms through which inoculation with nitrogen-fixing bacteria enhances rice yield. This finding provides a scientific basis for subsequent agricultural practices and is of critical importance for increasing rice production and enhancing the ecosystem services of rice fields.
Collapse
Affiliation(s)
- Peng Li
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Kun Yang
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Meijie Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Zhu
- Hunan Tobacco Company Changde Branch, Changde, 415000, China
| | - Xinyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tian Qin
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Shuguang Peng
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Hu N, Xiao F, Zhang D, Hu R, Xiong R, Lv W, Yang Z, Tan W, Yu H, Ding D, Yan Q, He Z. Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134975. [PMID: 38908177 DOI: 10.1016/j.jhazmat.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Fangfang Xiao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dandan Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenpan Lv
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhaolan Yang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
11
|
Li Y, Wang K, Dötterl S, Xu J, Garland G, Liu X. The critical role of organic matter for cadmium-lead interactions in soil: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135123. [PMID: 38981228 DOI: 10.1016/j.jhazmat.2024.135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Understanding the interaction mechanisms between complex heavy metals and soil components is a prerequisite for effectively forecasting the mobility and availability of contaminants in soils. Soil organic matter (SOM), with its diverse functional groups, has long been a focal point of research interest. In this study, four soils with manipulated levels of SOM, cadmium (Cd) and lead (Pb) were subjected to a 90-day incubation experiment. The competitive interactions between Cd and Pb in soils were investigated using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray adsorption near-edge structure (XANES) analysis. Our results indicate that Pb competed with Cd for adsorption sites on the surface of SOM, particularly on carboxyl and hydroxyl functional groups. Approximately 22.6 % of Cd adsorption sites on humus were occupied by Pb. The use of sequentially extracted exchangeable heavy metals as indicators for environment risk assessments, considering variations in soil physico-chemical properties and synergistic or antagonistic effects between contaminants, provides a better estimation of metal bioavailability and its potential impacts. Integrating comprehensive contamination characterization of heavy metal interactions with the soil organic phase is an important advancement to assess the environmental risks of heavy metal dynamics in soil compared to individual contamination assessments.
Collapse
Affiliation(s)
- Yiren Li
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Kai Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Sebastian Dötterl
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Gina Garland
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland.
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Iqbal A, Hussain Q, Mo Z, Hua T, Mustafa AEZMA, Tang X. Vermicompost Supply Enhances Fragrant-Rice Yield by Improving Soil Fertility and Eukaryotic Microbial Community Composition under Environmental Stress Conditions. Microorganisms 2024; 12:1252. [PMID: 38930634 PMCID: PMC11206116 DOI: 10.3390/microorganisms12061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Heavy-metal contamination in agricultural soil, particularly of cadmium (Cd), poses serious threats to soil biodiversity, rice production, and food safety. Soil microbes improve soil fertility by regulating soil organic matter production, plant nutrient accumulation, and pollutant transformation. Addressing the impact of Cd toxicity on soil fungal community composition, soil health, and rice yield is urgently required for sustainable rice production. Vermicompost (VC) is an organic fertilizer that alleviates the toxic effects of Cd on soil microbial biodiversity and functionality and improves crop productivity sustainably. In the present study, we examined the effects of different doses of VC (i.e., 0, 3, and 6 tons ha-1) and levels of Cd stress (i.e., 0 and 25 mg Cd kg-1) on soil biochemical attributes, soil fungal community composition, and fragrant-rice grain yield. The results showed that the Cd toxicity significantly reduced soil fertility, eukaryotic microbial community composition and rice grain yield. However, the VC addition alleviated the Cd toxicity and significantly improved the soil fungal community; additionally, it enhanced the relative abundance of Ascomycota, Chlorophyta, Ciliophora, Basidiomycota, and Glomeromycta in Cd-contaminated soils. Moreover, the VC addition enhanced the soil's chemical attributes, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), and microbial biomass C and N, compared to non-VC treated soil under Cd toxicity conditions. Similarly, the VC application significantly increased rice grain yield and decreased the Cd uptake in rice. One possible explanation for the reduced Cd uptake in plants is that VC amendments influence the soil's biological properties, which ultimately reduces soil Cd bioavailability and subsequently influences the Cd uptake and accumulation in rice plants. RDA analysis determined that the leading fungal species were highly related to soil environmental attributes and microbial biomass C and N production. However, the relative abundance levels of Ascomycota, Basidiomycota, and Glomeromycta were strongly associated with soil environmental variables. Thus, the outcomes of this study reveal that the use of VC in Cd-contaminated soils could be useful for sustainable rice production and safe utilization of Cd-polluted soil.
Collapse
Affiliation(s)
- Anas Iqbal
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.)
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Quaid Hussain
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.)
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Tian Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.)
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Abd El-Zaher M. A. Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia;
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.)
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
13
|
Chen P, Huang P, Yu H, Yu H, Xie W, Wang Y, Zhou Y, Chen L, Zhang M, Yao R. Strigolactones shape the assembly of root-associated microbiota in response to phosphorus availability. mSystems 2024; 9:e0112423. [PMID: 38780241 PMCID: PMC11237589 DOI: 10.1128/msystems.01124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Plants rely on strigolactones (SLs) to regulate their development and form symbiotic relationships with microbes as part of the adaptive phosphorus (P) efficiency strategies. However, the impact of SLs on root-associated microbial communities in response to P availability remains unknown. Here, root microbiota of SL biosynthesis (max3-11) and perception (d14-1) were compared to wild-type Col-0 plants under different P concentrations. Using high-throughput sequencing, the relationship between SLs, P concentrations, and the root-associated microbiota was investigated to reveal the variation in microbial diversity, composition, and interaction. Plant genotypes and P availability played important but different roles in shaping the root-associated microbial community. Importantly, SLs were found to attract Acinetobacter in low P conditions, which included an isolated CP-2 (Acinetobacter soli) that could promote plant growth in cocultivation experiments. Moreover, SLs could change the topologic structure within co-occurrence networks and increase the number of keystone taxa (e.g., Rhizobiaceae and Acidobacteriaceae) to enhance microbial community stability. This study reveals the key role of SLs in mediating root-associated microbiota interactions.IMPORTANCEStrigolactones (SLs) play a crucial role in plant development and their symbiotic relationships with microbes, particularly in adapting to phosphorus levels. Using high-throughput sequencing, we compared the root microbiota of plants with SL biosynthesis and perception mutants to wild-type plants under different phosphorus concentrations. These results found that SLs can attract beneficial microbes in low phosphorus conditions to enhance plant growth. Additionally, SLs affect microbial network structures, increasing the stability of microbial communities. This study highlights the key role of SLs in shaping root-associated microbial interactions, especially in response to phosphorus availability.
Collapse
Affiliation(s)
- Pubo Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Pingliang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Huang Yu
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang, China
| | - Weicheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Yuehua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Yu Zhou
- Hunan Institute of Microbiology, Changsha, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| |
Collapse
|
14
|
Lan X, Ning Z, Jia Y, Lin W, Xiao E, Cheng Q, Cai Q, Xiao T. The rhizosphere microbiome reduces the uptake of arsenic and tungsten by Blechnum orientale by increasing nutrient cycling in historical tungsten mining area soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171429. [PMID: 38442750 DOI: 10.1016/j.scitotenv.2024.171429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The growth of pioneer plants in metal mining area soil is closely related to their minimal uptake of toxic elements. Pioneer plants can inhibit the uptake of toxic elements by increasing nutrient uptake. However, few studies have focused on the mechanisms by which the rhizosphere microbiome affect nutrient cycling and their impact on the uptake of toxic elements by pioneer plants. In this study, we selected Blechnum orientale to investigate the potential roles of the rhizosphere microbiome in nutrient cycling and plant growth in a historical tungsten (W) mining area. Our results showed that while the arsenic (As) and W contents in the soil were relatively high, the enrichment levels of As and W in the B. orientale were relatively low. Furthermore, we found that the As and W contents in plants were significantly negatively correlated with soil nutrients (S, P and Mo), suggesting that elevated levels of these soil nutrients could inhibit As and W uptake by B. orientale. Importantly, we found that these nutrients were also identified as the most important factors shaping rhizosphere microbial attributes, including microbial diversity, ecological clusters, and keystone OTUs. Moreover, the genera, keystone taxa and microbial functional genes enriched in the rhizosphere soils from mining areas played a key role in nutrient (S, P and Mo) bioavailability, which could further increase the nutrient uptake by B. orientale. Taken together, our results suggest that rhizosphere microorganisms can improve pioneer plant growth by inhibiting toxic element accumulation via the increase in nutrient cycling in former W mining areas.
Collapse
Affiliation(s)
- Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qianyun Cheng
- School of Geography, Hanshan Normal University, Chaozhou 521041, China
| | - Qiaoxue Cai
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
15
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
16
|
Song B, Xue Y, Yu Z, He Y, Liu Z, Fang J, Wang Y, Adams JM, Hu Y, Razavi BS. Toxic metal contamination effects mediated by hotspot intensity of soil enzymes and microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133556. [PMID: 38262314 DOI: 10.1016/j.jhazmat.2024.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Metal contamination from mine waste is a widespread threat to soil health. Understanding of the effects of toxic metals from mine waste on the spatial patterning of rhizosphere enzymes and the rhizosphere microbiome remains elusive. Using zymography and high-throughput sequencing, we conducted a mesocosm experiment with mine-contaminated soil, to compare the effects of different concentrations of toxic metals on exoenzyme kinetics, microbial communities, and maize growth. The negative effects of toxic metals exerted their effects largely on enzymatic hotspots in the rhizosphere zone, affecting both resistance and the area of hotspots. This study thus revealed the key importance of such hotspots in overall changes in soil enzymatic activity under metal toxicity. Statistical and functional guild analysis suggested that these enzymatic changes and associated microbial community changes were involved in the inhibition of maize growth. Keystone species of bacteria displayed negative correlations with toxic metals and positive correlations with the activity of enzymatic hotspots, suggesting a potential role. This study contributes to an emerging paradigm, that changes both in the activity of soil enzymes and soil biota - whether due to substrate addition or in this case toxicity - are largely confined to enzymatic hotspot areas.
Collapse
Affiliation(s)
- Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | - Yue Xue
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China
| | - Yucheng He
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Zihao Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jie Fang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Yuchao Wang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China
| | - Jonathan M Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Youning Hu
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| |
Collapse
|
17
|
Hu L, Tan X, Lu L, Meng X, Li Y, Yao H. DNA-SIP delineates unique microbial communities in the rhizosphere of the hyperaccumulator Sedum alfredii which are beneficial to Cd phytoextraction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116016. [PMID: 38301580 DOI: 10.1016/j.ecoenv.2024.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Rhizo-microbe recruited by hyperaccumulating plants are crucial for the extraction of metals from contaminated soils. It is important, but difficult, to identify the specific rhizosphere microbes of hyperaccumulators shaped by root exudation. Continuous 13CO2 labeling, microbial DNA-based stable isotope probing (DNA-SIP), and high throughput sequencing were applied to identify those rhizosphere microorganisms using exudates from the Cd hyperaccumulator Sedum alfredii. In contrast to its non-hyperaccumulating ecotype (NAE), the hyperaccumulating ecotype (HAE) of S. alfredii strongly changed the rhizosphere environment and extracted a 5-fold higher concentration of Cd from contaminated soil. Although both HAE and NAE harbored Streptomyces, Massilia, Bacillus, and WPS-2 Uncultured Bacteria with relative abundance of more than 1% in the rhizosphere associated with plant growth and immunity, the HAE rhizosphere specifically recruited Rhodanobacter (2.66%), Nocardioides (1.16%), and Burkholderia (1.01%) through exudates to benefit the extraction of Cd from soil. Different from the bacterial network with weak cooperation in the NAE rhizosphere, a closed-loop bacterial network shaped by exudates was established in the HAE rhizosphere to synergistically resist Cd. This research reveals a specific rhizosphere bacterial community induced by exudates assisted in the extraction of Cd by S. alfredii and provides a new perspective for plant regulation of the rhizo-microbe community beneficial for optimizing phytoremediation.
Collapse
Affiliation(s)
- Lanfang Hu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingyan Tan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Lingli Lu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangtian Meng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
18
|
Zhang J, Na M, Wang Y, Ge W, Zhou J, Zhou S. Cadmium levels and soil pH drive structure and function differentiation of endophytic bacterial communities in Sedum plumbizincicola: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168828. [PMID: 38029975 DOI: 10.1016/j.scitotenv.2023.168828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Sedum plumbizincicola is a promising hyperaccumulator for heavy metal phytoremediation. It grows in heavy metal polluted soil and stores specific endophyte resources with heavy metal tolerance or growth promotion characteristics. In this study, the endophyte communities of S. plumbizincicola, growing naturally in the field (two former mining locations and one natural location) were investigated, and their structure and function were comparatively studied. The bioaccumulation and translocation characteristics of cadmium (Cd) and selenium (Se) in S. plumbizincicola were also evaluated. The results showed that the heavy metal pollution reduced the richness and diversity of endophyte communities. Soil pH and Cd concentration could be the key factors affecting the composition of the endophyte community. Co-occurrence network analysis identified that 22 keystone taxa belonging to Actinobacteriota, Firmicutes, Myxococcota and Proteobacteria were positively correlated with Cd bioaccumulation and translocation. The predicted endophyte metabolic pathways were enriched in physiological metabolism, immune system, and genetic Information processing. These findings may help to understand how endophytes assist host plants to enhance their adaptability to harsh environments, and provide a basis for further exploration of plant-endophyte interactions and improvement in phytoremediation efficiency.
Collapse
Affiliation(s)
- Jinming Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Meng Na
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yukun Wang
- College of Resources & Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wen Ge
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jihai Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Shoubiao Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, Anhui 241002, China.
| |
Collapse
|
19
|
Wang W, Lei J, Li M, Zhang X, Xiang X, Wang H, Lu X, Ma L, Liu X, Tuovinen OH. Archaea are better adapted to antimony stress than their bacterial counterparts in Xikuangshan groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166999. [PMID: 37714340 DOI: 10.1016/j.scitotenv.2023.166999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Archaea are important ecological components of microbial communities in various environments, but are currently poorly investigated in antimony (Sb) contaminated groundwater particularly on their ecological differences in comparison with bacteria. To address this issue, groundwater samples were collected from Xikuangshan aquifer along an Sb gradient and subjected to 16S rRNA gene amplicon sequencing and bioinformatic analysis. The results demonstrated that bacterial communities were more susceptibly affected by elevated Sb concentration than their archaeal counterparts, and the positive stimulation of Sb concentration on bacterial diversity coincided with the intermediate disturbance hypothesis. Overall, the balance of environmental variables (Sb, pH, and EC), competitive interactions, and stochastic events jointly regulated bacterial and archaeal communities. Linear fitting analysis revealed that Sb significantly drove the deterministic process (heterogeneous selection) of bacterial communities, whereas stochastic process (dispersal limitation) contributed more to archaeal community assembly. In contract, the assembly of Sb-resistant bacteria and archaea was dominated by the stochastic process (undominated), which implied the important role of diversification and drift instead of selection. Compared with Sb-resistant microorganisms, bacterial and archaeal communities showed lower niche width, which may result from the constraints of Sb concentration and competitive interaction. Moreover, Sb-resistant archaea had a higher niche than that of Sb-resistant bacteria via investing on flexible metabolic pathways such as organic metabolism, ammonia oxidation; and carbon fixation to enhance their competitiveness. Our results offered new insights into the ecological adaptation mechanisms of bacteria and archaea in Sb-contaminated groundwater.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingwen Lei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Min Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xinyue Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; College of Life Science, Shangrao Normal University, Shangrao 334000, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
20
|
Wang A, He M, Liu H, Ouyang W, Liu X, Li Q, Lin C, Liu X. Distribution heterogeneity of sediment bacterial community in the river-lake system impacted by nonferrous metal mines: Diversity, composition and co-occurrence patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122715. [PMID: 37821043 DOI: 10.1016/j.envpol.2023.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Metal(loid) pollution caused by mining activities can affect microbial communities. However, knowledge of the diversity, composition, and co-occurrence patterns of bacterial communities in aquatic systems impacted by nonferrous metal mines. Here, the metal(loid) contents and bacterial communities in sediments from the Zijiang River (tributary to mainstream) to Dongting Lake were investigated by geochemical and molecular biology methods. The results indicated that the river sediments had lower pH and higher ecological risk of metal(loid)s than the lake sediment. The diversity and composition of bacterial communities in river sediments significantly (p < 0.05) differed from those in lake sediments, showing distributional heterogeneity. The biomarkers of tributary, mainstream, and lake sediments were mainly members of Deltaproteobacteria, Firmicutes, and Nitrospirae, respectively, reflecting species sorting in different habitats. Multivariate statistical analysis demonstrated that total and bioavailable Sb, As, and Zn were positively correlated with bacterial community richness. pH, TOC, TN, and Zn were crucial factors in shaping the distribution difference of bacterial communities. Environment-bacteria network analysis indicated that pH, SO42-, and total and bioavailable As and Sb greatly influenced the bacterial composition at the genus level. Bacteria-bacteria network analysis manifested that the co-occurrence network in mainstream sediments with a higher risk of metal(loid) pollution exhibited higher modularity and connectivity, which might be the survival mechanism for bacterial communities adapted to metal(loid) pollution. This study can provide a theoretical basis for understanding the ecological status of aquatic systems.
Collapse
Affiliation(s)
- Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| | - Xinyi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
21
|
Hussain S, Chen M, Liu Y, Mustafa G, Wang X, Liu J, Sheikh TMM, Bano H, Yasoob TB. Composition and assembly mechanisms of prokaryotic communities in wetlands, and their relationships with different vegetation and reclamation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166190. [PMID: 37567310 DOI: 10.1016/j.scitotenv.2023.166190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Coastal wetlands are undergoing substantial transformations globally as a result of increased human activities. However, compared to other ecosystems, diversity and functional characteristics of microbial communities in reclaimed coastal wetlands are not well studied compared to other ecosystems. This is important because it is known that microorganisms can play a crucial role in biogeochemical cycling within coastal wetland ecosystems. Hence, this study utilized the high-throughput sequencing technique to investigate the structure and assembly processes of microbial communities in reclaimed coastal wetlands. The results revealed a substantial change in soil properties following coastal wetland reclamation. Remarkably, the reclaimed soil exhibited significantly lower pH, soil organic carbon (SOC), and total salinity (TS) values (p < 0.05). The dominant phyla included Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, and Planctomycetes among study sites. However, the relative abundance of Proteobacteria increased from un-reclaimed coastal wetlands to reclaimed ones. The Proteobacteria, Chloroflexi, and Acidobacteria showed higher relative abundance in vegetated soil compared to bare soil, while Bacteroidetes and Planctomycetes exhibited the opposite trend. Notably, vegetation types exerted the strongest influence on microbial diversity, surpassing the effects of soil types and depth (F = 34.49, p < 0.001; F = 25.49, p < 0.001; F = 3.173, p < 0.078, respectively). Stochastic assembly processes dominated in un-reclaimed soil, whereas deterministic processes governed the assembly in artificial sea embankment wetlands (SEW). The presence of Spartina alterniflora in all soil types (except SEW soils) indicated stochastic assembly, while Phragmites australis in reclaimed soils pointed toward deterministic microbial assembly. Furthermore, environmental factors such as pH, soil water content (SWC), SOC, total carbon (TC), total nitrogen (TN), total phosphorus (TP), NH4+-N, vegetation types, soil depth, and geographic distance exhibited significant effects on microbial beta diversity indices. Co-occurrence network analysis revealed a stronger association between taxa in SEW compared to land reclaimed from wetlands (LRW) and natural coastal wetlands (NCW). The bottom soil layer exhibited more complex network interactions than the topsoil layer. Besides soil parameters, reclamation and varieties of vegetation were also substantial factors influencing the composition, diversity, and assembly processes of microbial communities in coastal wetlands.
Collapse
Affiliation(s)
- Sarfraz Hussain
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Min Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Ghulam Mustafa
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiayuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Taha Majid Mahmood Sheikh
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Institute of Plant Protection, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Hamida Bano
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of animal sciences, Faculty of agricultural Sciences, Ghazi university, Dera Ghazi Khan, Pakistan
| | - Talat Bilal Yasoob
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Zoology, University of Education, Lahore, Pakistan
| |
Collapse
|
22
|
Li Y, Shi X, Tan W, Ling Q, Pei F, Luo S, Qin P, Yuan H, Huang L, Yu F. Metagenomics combined with metabolomics reveals the effect of Enterobacter sp. inoculation on the rhizosphere microenvironment of Bidens pilosa L. in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132033. [PMID: 37453352 DOI: 10.1016/j.jhazmat.2023.132033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Metagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Weilan Tan
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fengmei Pei
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shiyu Luo
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Huijian Yuan
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Liuan Huang
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China.
| |
Collapse
|
23
|
Luo Y, Xing R, Wan Z, Chen Y. Vertical distribution of nutrients, enzyme activities, microbial properties, and heavy metals in zinc smelting slag site revegetated with two herb species: Implications for direct revegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163206. [PMID: 37011682 DOI: 10.1016/j.scitotenv.2023.163206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Direct revegetation is an important measure to immobilize heavy metals and improve the microecological properties of metal smelting slag sites. However, the vertical distribution of nutrients, microecological properties, and heavy metals at a directly revegetated metal smelting slag site remains unclear. Here, the distribution characteristics of nutrients, enzyme activities, microbial properties, and heavy metals in the vertical profile at a zinc smelting slag site directly revegetated with two herb species (Lolium perenne and Trifolium repens) for 5 years were investigated. The results showed that the nutrient contents, enzyme activities, and microbial properties decreased with increasing slag depth after revegetation with the two herb species. The nutrient contents, enzyme activities, and microbial properties of the surface slag revegetated with Trifolium repens were better than those in the surface slag revegetated with Lolium perenne. The higher root activity in the surface slag (0-30 cm) resulted in relatively higher contents of pseudo-total and available heavy metals in the surface slag. Moreover, the contents of pseudo-total heavy metals (except for Zn) and available heavy metals in the slag revegetated with Trifolium repens were lower than those in the slag revegetated with Lolium perenne at most slag depths. Overall, the greater phytoremediation efficiency of the two herb species occurred mainly in the surface slag (0-30 cm), and the phytoremediation efficiency of Trifolium repens was higher than that of Lolium perenne. The findings are beneficial for understanding the phytoremediation efficiency of direct revegetation strategies for metal smelting slag sites.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.
| | - Rongrong Xing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yulu Chen
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
24
|
Qin J, Jiang X, Yan Z, Zhao H, Zhao P, Yao Y, Chen X. Heavy metal content and microbial characteristics of soil plant system in Dabaoshan mining area, Guangdong Province. PLoS One 2023; 18:e0285425. [PMID: 37294818 PMCID: PMC10256142 DOI: 10.1371/journal.pone.0285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/21/2023] [Indexed: 06/11/2023] Open
Abstract
The disordered mining of Dabaoshan lead-zinc mineral resources in Shaoguan has brought serious harm to the regional ecological environment. In order to investigate the heavy metal pollution status and microbial characteristics of soil plant system in mining area, The distribution of heavy metals in the soil, the activity of soil microorganisms and the accumulation characteristics of heavy metals in the dominant plant Miscanthus floridulus were studied. The results indicated that metal element contents of Miscanthus floridulus in sequence were: Zn>Pb>Cu> Cd. This study demonstrated that the elemental content of the Miscanthus floridulus plant showed Zn>Pb>Cu>Cd, with Zn being the most significantly correlated with soil elements, followed by Pb. Compared with the control group, the Miscanthus floridulus-soil system possessed obviously different soil microbial features: intensiver in microbial basal respiration strength, and higher microbial eco-physiological parameters Cmic/Corg and qCO2, but lower in soil microbial biomass. The results showed the soil enzymatic activities decreased significantly with increase of contamination of heavy metals, especially dehydrogenase and urease activities. With the increase of the content of heavy metals in the mining area soil, the intensity of soil biochemical action in the mining area (Q1, Q2) soil decreased significantly, and the biochemical action showed a significant negative correlation with the content of heavy metals in the soil. Compared with the non mining area (Q8) soil, the intensity of soil ammonification, nitrification, N fixation and cellulose decomposition decreased by 43.2%~71.1%, 70.1%~92.1%, 58.7%~87.8% and 55.3%~79.8% respectively. The decrease of soil microbial activity weakened the circulation rate and energy flow of C and N nutrients in the soil of the mining area.
Collapse
Affiliation(s)
- Jianqiao Qin
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | | | - Huarong Zhao
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Peng Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, 510655, China
| | - Yibo Yao
- Guangdong Provincial Academy of Environmental Scienc, Guangzhou, 510045, China
| | - Xi Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
25
|
Liu S, Zeng J, Yu H, Wang C, Yang Y, Wang J, He Z, Yan Q. Antimony efflux underpins phosphorus cycling and resistance of phosphate-solubilizing bacteria in mining soils. THE ISME JOURNAL 2023:10.1038/s41396-023-01445-6. [PMID: 37270585 DOI: 10.1038/s41396-023-01445-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Microorganisms play crucial roles in phosphorus (P) turnover and P bioavailability increases in heavy metal-contaminated soils. However, microbially driven P-cycling processes and mechanisms of their resistance to heavy metal contaminants remain poorly understood. Here, we examined the possible survival strategies of P-cycling microorganisms in horizontal and vertical soil samples from the world's largest antimony (Sb) mining site, which is located in Xikuangshan, China. We found that total soil Sb and pH were the primary factors affecting bacterial community diversity, structure and P-cycling traits. Bacteria with the gcd gene, encoding an enzyme responsible for gluconic acid production, largely correlated with inorganic phosphate (Pi) solubilization and significantly enhanced soil P bioavailability. Among the 106 nearly complete bacterial metagenome-assembled genomes (MAGs) recovered, 60.4% carried the gcd gene. Pi transportation systems encoded by pit or pstSCAB were widely present in gcd-harboring bacteria, and 43.8% of the gcd-harboring bacteria also carried the acr3 gene encoding an Sb efflux pump. Phylogenetic and potential horizontal gene transfer (HGT) analyses of acr3 indicated that Sb efflux could be a dominant resistance mechanism, and two gcd-harboring MAGs appeared to acquire acr3 through HGT. The results indicated that Sb efflux could enhance P cycling and heavy metal resistance in Pi-solubilizing bacteria in mining soils. This study provides novel strategies for managing and remediating heavy metal-contaminated ecosystems.
Collapse
Affiliation(s)
- Shengwei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaxiong Zeng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Mi Y, Xu C, Li X, Zhou M, Cao K, Dong C, Li X, Ji N, Wang F, Su H, Liu X, Wei Y. Arbuscular mycorrhizal fungi community analysis revealed the significant impact of arsenic in antimony- and arsenic-contaminated soil in three Guizhou regions. Front Microbiol 2023; 14:1189400. [PMID: 37275177 PMCID: PMC10232906 DOI: 10.3389/fmicb.2023.1189400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction The lack of systematic investigations of arbuscular mycorrhizal fungi (AMF) community composition is an obstacle to AMF biotechnological applications in antimony (Sb)- and arsenic (As)-polluted soil. Methods Morphological and molecular identification were applied to study the AMF community composition in Sb- and As-contaminated areas, and the main influencing factors of AMF community composition in Sb- and As-contaminated areas were explored. Results (1) A total of 513,546 sequences were obtained, and the majority belonged to Glomeraceae [88.27%, 193 operational taxonomic units (OTUs)], followed by Diversisporaceae, Paraglomeraceae, Acaulosporaceae, Gigasporaceae, and Archaeosporaceae; (2) the affinity between AMF and plants was mainly related to plant species (F = 3.488, p = 0.022 < 0.050), which was not significantly correlated with the total Sb (TSb) and total As (TAs) in soil; (3) the AMF spore density was mainly related to the available nitrogen, available potassium, and total organic carbon; (4) The effect of soil nutrients on AMF community composition (total explanation: 15.36%) was greater than that of soil Sb and As content (total explanation: 5.80%); (5) the effect of TAs on AMF community composition (λ = -0.96) was more drastic than that of TSb (λ = -0.21), and the effect of As on AMF community composition was exacerbated by the interaction between As and phosphorus in the soil; and (6) Diversisporaceae was positively correlated with the TSb and TAs. Discussion The potential impact of As on the effective application of mycorrhizal technology should be further considered when applied to the ecological restoration of Sb- and As-contaminated areas.
Collapse
Affiliation(s)
- Yidong Mi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Environment, Hohai University, Nanjing, China
| | - Chao Xu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xinru Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Environment, Hohai University, Nanjing, China
| | - Ke Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Cuimin Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xuemei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ningning Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
27
|
Wang A, Liu S, Xie J, Ouyang W, He M, Lin C, Liu X. Response of soil microbial activities and ammonia oxidation potential to environmental factors in a typical antimony mining area. J Environ Sci (China) 2023; 127:767-779. [PMID: 36522104 DOI: 10.1016/j.jes.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Mining, smelting and tailing deposition activities can cause metal(loid) contamination in surrounding soils, threatening ecosystems and human health. Microbial indicators are sensitive to environmental factors and have a crucial role in soil ecological risk assessment. Xikuangshan, the largest active antimony (Sb) mine in the world, was taken as the research area. The soil properties, metal(loid) contents and microbial characteristics were investigated and their internal response relationships were explored by multivariate statistical analysis. The assessment of the single pollution index and Nemerow synthetic pollution index (PN) showed that the soils were mainly polluted by Sb, followed by Cd and As, in which sampling site S1 had a slight metal(loid) pollution and the other sampling sites suffered from severe synthetic metal(loid) pollution. The microbial characteristics were dissimilar among sampling points at different locations from the mining area according to hierarchical cluster analysis. The correlation analysis indicated that fluorescein diacetate hydrolase, acid phosphatase, soil basal respiration and microbial biomass carbon were negatively correlated with PN, indicating their sensitivity to combined metal(loid) contamination; that dehydrogenase was positively correlated with pH; and that urease, potential ammonia oxidation and abundance of ammonia-oxidizing bacteria and archaea were correlated with N (nitrogen) contents. However, β-glucosidase activity had no significant correlations with physicochemical properties and metal(loid) contents. Principal components analysis suggested bioavailable Sb and pH were the dominant factors of soil environment in Xikuangshan Sb mining area. Our results can provide a theoretical basis for ecological risk assessment of contaminated soil.
Collapse
Affiliation(s)
- Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 10875, China
| | - Shujun Liu
- Lengshuijiang Branch of Loudi Ecology and Environment Bureau, Lengshuijiang 417099, China
| | - Jun Xie
- Lengshuijiang Branch of Loudi Ecology and Environment Bureau, Lengshuijiang 417099, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 10875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 10875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 10875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 10875, China
| |
Collapse
|
28
|
Gong Y, Yang S, Chen S, Zhao S, Ai Y, Huang D, Yang K, Cheng H. Soil microbial responses to simultaneous contamination of antimony and arsenic in the surrounding area of an abandoned antimony smelter in Southwest China. ENVIRONMENT INTERNATIONAL 2023; 174:107897. [PMID: 37001217 DOI: 10.1016/j.envint.2023.107897] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Soil contamination with heavy metal(loid)s may influence microbial activities in the soil, and consequently jeopardize soil health. Microbial responses to soil contamination play an important role in ecological risk assessment. This study investigated the effect of heavy metal(loid)s contamination on microbial community structure and abundance in the surrounding soil of an abandoned antimony (Sb) smelter in Qinglong county, Guizhou province, Southwest China. A total of 46 soil samples were collected from ten sampling sites (labelled as A-I, and CK) across the study area at depths of 0-2, 2-10, 10-20, 20-30, 30-40, and 40-50 cm. The soil samples were analyzed for total and bioavailable heavy metal(loid) concentrations, bacterial, fungal, and archaeal community structures, diversities, and functions, together with soil basic physicochemical properties. Much greater ecological risk of Sb and arsenic (As) was present in the surface soil (0-2 cm) compared to that in the subsoils. The activities of dominant microorganisms tended to be associated with soil pH and heavy metal(loid)s (i.e., Sb, As, lead (Pb), cadmium (Cd), and chromium (Cr)). Bacteria associated with IMCC26256, Rhizobiales, Burkholderiales, and Gaiellales, and archaea associated with Methanocellales were estimated to be tolerant to high concentrations of Sb and As in the soil. In addition, the magnitude of soil microbial responses to Sb and As contamination was in the order of archaea > bacteria > fungi. In contrast to the negligible response of fungi and negative response of bacteria to Sb and As contamination, there was a strongly positive correlation between archaeal activity and total Sb and As concentrations in the soil. Our findings provide a theoretical basis for the remediation of Sb smelter-affected soil.
Collapse
Affiliation(s)
- Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuwen Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shaoyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shoudao Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yadi Ai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Di Huang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
29
|
Wang W, Cheng X, Song Y, Wang H, Wu M, Ma L, Lu X, Liu X, Tuovinen OH. Elevated antimony concentration stimulates rare taxa of potential autotrophic bacteria in the Xikuangshan groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161105. [PMID: 36566853 DOI: 10.1016/j.scitotenv.2022.161105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microbial communities composed of few abundant and many rare species are widely involved in the biogeochemical cycles of elements. Yet little is known about the ecological roles of rare taxa in antimony (Sb) contaminated groundwater. Groundwater samples were collected along an Sb concentration gradient in the Xikuangshan antimony mine area and subjected to high through-put sequencing of 16S rRNA genes to investigate the bacterial communities. Results suggested that both abundant and rare sub-communities were dominated by Betaproteobacteria, Gammaproteobacteria, and Alphaproteobacteria, whereas rare sub-communities showed higher alpha-diversities. Multivariate analysis showed that both the abundant and rare taxa were under the stress of Sb, but the impact on rare taxa was greater. Nitrate explained a large part for the variation of the abundant sub-communities, indicating the critical role of nitrate for their activities under anoxic conditions. In contrast, bicarbonate significantly impacted rare sub-communities, suggesting their potential autotrophic characteristics. To further explore the role of rare taxa in the communities and the mechanism of affecting the community composition, a network was constructed to display the co-occurrence pattern of bacterial communities. The rare taxa contributed most of the network nodes and served as keystone species to maintain the stability of community. Abiotic factors (mainly Sb and pH) and bacterial interspecific interactions (interactions between keystone species and other bacterial groups) jointly affect the community dynamics. Functional prediction was performed to further reveal the ecological function of rare taxa in the Sb-disturbed groundwater environment. The results indicated that the rare taxa harbored much more diverse functions than their abundant counterparts. Notably, elevated Sb concentration promoted some potential autotrophic functions in rare taxa such as the oxidation of S-, N-, and Fe(II)-compounds. These results offer new insights into the roles of rare species in elemental cycles in the Sb-impacted groundwater.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaolu Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
30
|
Differences in Physiological Metabolism and Antioxidant System of Different Ecotypes of Miscanthus floridulus under Cu Stress. Processes (Basel) 2022. [DOI: 10.3390/pr10122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To reveal the similarities and differences in the resistance mechanisms of different ecotypes to Cu stress, a pot experiment was used to systematically compare the physiological responses of non-mining ecotype Miscanthus floridulus (collected from Boluo County, Huizhou City) and mining ecotype Miscanthus floridulus (collected from Dabaoshan mining area) under different Cu concentrations. The results showed that chlorophyll a, chlorophyll b and total chlorophyll in the leaves of the two ecotypes of M. floridulus were negatively correlated with Cu stress concentration (p < 0.01), but the extent of decrease for the ecotypes in the mining area was lower than that for the ecotypes in the non-mining area. The values of chlorophyll a/b for both ecotypes increased with increasing Cu treatment concentration, indicating that Cu is more harmful to chlorophyll b than to chlorophyll a for M. floridulus. Cu stress can lead to the accumulation of malondialdehyde (MDA) in the leaves of M. floridulus with the amount of MDA accumulation observed being greater in the non-mining ecotype than in the mining ecotype (p < 0.05). The content of antioxidant substances (ascorbic acid and reduced glutathione) in the mining ecotype M. floridulus was significantly higher than that in the non-mining ecotype. The activity of SOD in the leaves of non-mining ecotypes was inhibited by Cu stress and the activity of POD was increased by Cu stress. However, the increase in POD in the mining ecotypes was greater than that in the non-mining ecotypes and the activities of the two enzymes in the mining ecotypes were significantly higher than those in the non-mining ecotypes at the highest concentration of Cu. Cu had different effects on PPO activity in the leaves of the two ecotypes of M. floridulus. The plant leaves of the non-mining ecotype at 400 and 800 mg·kg−1 were significantly fewer than those of the control group (p < 0.05), which were 87.1% and 65.2% of the control group, respectively. The PPO activity in the plant leaves of the mining ecotype was higher than that in the leaves of the non-mining ecotype and was significantly higher at 400 and 800 mg·kg−1 than that of the control group (p < 0.05), at 226.5% and 268.1% of the control group, respectively. These results indicate that the mining ecotype M. floridulus is more resistant to copper stress, that resistant ecotypes have been formed, and that small-molecule antioxidant substances play an important role in increasing resistance levels.
Collapse
|
31
|
Yang R, Sun W, Guo L, Li B, Wang Q, Huang D, Gao W, Xu R, Li Y. Response of soil protists to antimony and arsenic contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120387. [PMID: 36223853 DOI: 10.1016/j.envpol.2022.120387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms can mediate antimony (Sb) and arsenic (As) transformation and thus change their mobility and toxicity. Having similar geochemical behavior, Sb and As are generally considered to exert similar environmental pressure on microbiome. However, it needs further validation, especially for protists. In this study, the responses of protistan communities to Sb and As were investigated by collecting soils from Xikuangshan Sb mine and Shimen As mine in China. Antimony and As contamination taxonomically and functionally (consumer and phototroph) changed the alpha and beta diversities of protistan communities, but exerted different impacts on the parasitic community. Based on multiple statistical tools, As contamination had a greater impact on protistan communities than Sb. The ecological networks of highly contaminated sites were less complex but highly positively connected compared to less contaminated sites. High As contamination raised the ratio of consumers and decreased the ratio of phototrophs in ecological networks, while the opposite tendency was observed in Sb contaminated soils. High Sb and As contamination enriched different keystone taxa resistant to Sb and As. These results demonstrate that protistan community respond differently to Sb and As.
Collapse
Affiliation(s)
- Rui Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Lifang Guo
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Qi Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Duanyi Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Wenlong Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, PR China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Yongbin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
32
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
33
|
The Difference of Lead Accumulation and Transport in Different Ecotypes of Miscanthus floridulus. Processes (Basel) 2022. [DOI: 10.3390/pr10112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Miscanthus floridulus is a plant with a high biomass and heavy metal tolerance, which is a good candidate for phytoremediation. Pot experiments were conducted to compare the growth response, Pb enrichment ability, and the effect on Pb speciation of two ecotypes of M. floridulus from the Dabaoshan Mining Area and the non-mining area of Boluo County, Huizhou, in soils with different Pb contents. The results showed that two ecotypes of M. floridulus had different growth responses to Pb concentrations in soil. Under a low concentration of Pb (100 mg·kg−1) treatment, the aboveground biomass of the non-mining area plant ecotype was significantly affected, while the plants with the mining area ecotype were not significantly affected. When the concentration of Pb increased, the aboveground biomass of the non-mining ecotype was 30.2–41.1% of the control, while that of the mining ecotype was 57.8–65.0% of the control. The root biomass of the non-mining ecotype decreased with the increase of treatment concentration, accounting for 57.8–64.2% of the control, while that of the mining ecotype increased significantly, accounting for 119.5–138.6% of the control. The Pb content in the shoots and roots of the mining ecotype M. floridulus increased rapidly with the increase of the Pb treatment concentration in the soil, and the increase in speed was obviously faster than that of the non-mining ecotype. The total amount of Pb accumulated in the roots of the ecotype from the mining area was much greater than that of the ecotype from the non-mining area, and increased significantly with the increase of Pb concentration in the soil (p < 0.05). With the aggravation of Pb stress, the transfer coefficient and tolerance index of the two ecotypes decreased by different degrees. The transfer coefficient and tolerance index of the mining ecotype were significantly higher than those of the non-mining ecotype. Pearson correlation analysis showed that root biomass was positively correlated with shoot biomass, and shoot biomass was negatively correlated with Pb content in both root and shoot, indicating that Pb accumulation in root and shoot was toxic to plants and inhibited the growth of M. floridulus. The mining ecotypes showed stronger tolerance to and enrichment of Pb.
Collapse
|
34
|
Guo Y, Cheng S, Fang H, Yang Y, Li Y, Zhou Y. Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157119. [PMID: 35798114 DOI: 10.1016/j.scitotenv.2022.157119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Excess heavy metals, especially copper (Cu) and cadmium (Cd), are common in paddy soils in the red soil hilly areas of southern China. Microorganisms are regulators of soil organic matter accumulation and pollutant transformation. Clarifying the effects of Cu and Cd accumulation on microbial community composition and function is a prerequisite for bioremediation of paddy soil contamination. However, it remains unclear how Cu and Cd contamination affects soil fungal taxonomic attributes and microbial-mediated biogeochemical processes in paddy soils. Here, soil heavy metals, fungal community composition, and soil enzyme activities were determined in paddy fields downstream of a typical mining area in southern China, and the effects of Cu and Cd co-contamination on fungal community diversity and co-occurrence networks, as well as the associations between them were assessed. The concentrations of Cu and Cd in paddy soils decreased from upstream to downstream of the river, and were positively correlated with the Shannon index of fungal communities. Soil Cu and Cd concentrations exhibited a greater impact on the structure and assembly of fungal communities than soil general properties. Increases in soil Cu and Cd concentrations were correlated with drastic changes in the cumulative relative abundance of ecological clusters in fungal co-occurrence networks. Soil Cu and Cd concentrations were positively correlated with the relative abundances of Eurotiomycetes, Pezizomycetes, Ustilaginomycetes, and Kickxellomycetes, respectively, whereas negatively correlated with hydrolase activities related to carbon, nitrogen, and phosphorus cycles. These results confirmed in the field that long-term Cu and Cd enrichment significantly altered the structure and diversity of fungal communities in the subtropical paddy soils, thereby affecting soil nutrient transformation and organic matter accumulation. This can also provide a basis for the bioremediation of heavy metal pollution in paddy soils.
Collapse
Affiliation(s)
- Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulan Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an 343000, China; Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China.
| | - Yan Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Rhizosphere Microbial Communities and Geochemical Constraining Mechanism of Antimony Mine Waste-Adapted Plants in Southwestern China. Microorganisms 2022; 10:microorganisms10081507. [PMID: 35893564 PMCID: PMC9330434 DOI: 10.3390/microorganisms10081507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Antimony (Sb) and arsenic (As) are two hazardous metalloid elements, and the biogeochemical cycle of Sb and As can be better understood by studying plant rhizosphere microorganisms associated with Sb mine waste. In the current study, samples of three types of mine waste—Sb mine tailing, waste rocks, and smelting slag—and associated rhizosphere microorganisms of adapted plants were collected from Qinglong Sb mine, southwest China. 16S rRNA was sequenced and used to study the composition of the mine waste microbial community. The most abundant phylum in all samples was Proteobacteria, followed by Bacteroidota, Acidobacteriota, and Actinobacteriota. The community composition varied among different mine waste types. Gammaproteobacteria was the most abundant microorganism in tailings, Actinobacteria was mainly distributed in waste rock, and Saccharimonadia, Acidobacteriae, and Ktedonobacteria were mainly present in slag. At the family level, the vast majority of Hydrogenophilaceae were found in tailings, Ktedonobacteraceae, Chthoniobacteraceae, and Acidobacteriaceae (Subgroup 1) were mostly found in slag, and Pseudomonadaceae and Micrococcaceae were mainly found in waste rock. Actinobacteriota and Arthrobacter are important taxa for reducing heavy metal(loid) mobility, vegetation restoration, and self-sustaining ecosystem construction on antimony mine waste. The high concentrations of Sb and As reduce microbial diversity.
Collapse
|
36
|
Wang W, Xiao S, Amanze C, Anaman R, Zeng W. Microbial community structures and their driving factors in a typical gathering area of antimony mining and smelting in South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50070-50084. [PMID: 35226270 DOI: 10.1007/s11356-022-19394-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study investigated soil microbial community in a typical gathering area of antimony mining and smelting in South China. The physical and chemical properties of different soils (mining waste dumps, flotation tailings, and smelting slag) and depths (0-20 cm, 40-60 cm, and 80-100 cm) were compared. The results showed that antimony (Sb) and arsenic (As) were the main pollutants, and their concentrations were 5524.7 mg/kg and 3433.7 mg/kg, respectively. Xanthates were found in the flotation tailings and smelting slag, and the highest concentration was 585.1 mg/kg. The microbial communities were analyzed by high-throughput sequencing, and it was shown that Proteobacteria, Acidobacteria, Chlorobacterium, Bacteroides, and Actinomycetes were the dominant taxa at the phylum level. There were obvious differences in microbial community structure in different sites. The dominant microorganism in the mining site was Chujaibacter. Subgroup_2_unclassified and Gemmatimonadaceae_unclassified were the prevalent microorganisms in the flotation and smelting sites, respectively. As, Sb, and xanthates were the main factors affecting the diversity and composition of bacteria in the flotation tailings and smelting slag areas. Therefore, this study provides experimental guidance and a theoretical basis for soil antimony pollution quality assessment, biological treatment, and environmental remediation.
Collapse
Affiliation(s)
- Weinong Wang
- School of Minerals Processing and Bioengineering Central South University, Changsha, 410083, China
| | - Shanshan Xiao
- School of Minerals Processing and Bioengineering Central South University, Changsha, 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering Central South University, Changsha, 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
37
|
Yu H, He Z, He Z, Yan Q, Shu L. Soil Amoebae Affect Iron and Chromium Reduction through Preferential Predation between Two Metal-Reducing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9052-9062. [PMID: 35544746 DOI: 10.1021/acs.est.1c08069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil protists are essential but often overlooked in soil and could impact microbially driven element cycling in natural ecosystems. However, how protists influence heavy metal cycling in soil remains poorly understood. In this study, we used a model protist, Dictyostelium discoideum, to explore the effect of interactions between soil amoeba and metal-reducing bacteria on the reduction of soil Fe(III) and Cr(VI). We found that D. discoideum could preferentially prey on the Fe(III)-reducing bacterium Shewanella decolorationis S12 and significantly decrease its biomass. Surprisingly, this predation pressure also stimulated the activity of a single S. decolorationis S12 bacterium to reduce Fe(III) by enhancing the content of electron-transfer protein cyt c, intracellular ATP synthesis, and reactive oxygen species (e.g., H2O2). We also found that D. discoideum could not prey on the Cr(VI)-reducing bacterium Brevibacillus laterosporus. In contrast, B. laterosporus became edible to amoebae in the presence of S. decolorationis S12, and their Cr(VI) reduction ability decreased under amoeba predation pressure. This study provides direct evidence that protists can affect the Cr and Fe cycling via the elective predation pressure on the metal-reducing bacteria, broadening our horizons of predation of protists on soil metal cycling.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
38
|
Xiao F, Zhu W, Yu Y, Huang J, Li J, He Z, Wang J, Yin H, Yu H, Liu S, Chen P, Huang Z, He J, Wang C, Shu L, Yan Q. Interactions and Stability of Gut Microbiota in Zebrafish Increase with Host Development. Microbiol Spectr 2022; 10:e0169621. [PMID: 35311546 PMCID: PMC9045336 DOI: 10.1128/spectrum.01696-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding interactions within the gut microbiome and its stability are of critical importance for deciphering ecological issues within the gut ecosystem. Recent studies indicate that long-term instability of gut microbiota is associated with human diseases, and recovery of stability is helpful in the return to health. However, much less is known about such topics in fish, which encompass nearly half of all vertebrate diversity. Here, we examined the assembly and succession of gut microbiota in more than 550 zebrafish, and evaluated the variations of microbial interactions and stability across fish development from larva to adult using molecular ecological network analysis. We found that microbial interactions and stability in the fish gut ecosystem generally increased with host development. This could be attributed to the development of the zebrafish immune system, the increasing amount of space available for microbial colonization within the gut, and the greater stability of nutrients available for the colonized microbiota in adult zebrafish. Moreover, the potential keystone taxa, even those with relatively low abundances, played important roles in affecting the microbial interactions and stability. These findings indicate that regulating rare keystone taxa in adult fish may have great potential in gut microbial management to maintain gut ecosystem stability, which could also provide references for managing gut microbiota in humans and other animals. IMPORTANCE Understanding gut microbial stability and the underlying mechanisms is an important but largely ignored ecological issue in vertebrate fish. Here, using a zebrafish model and network analysis of the gut microbiota we found that microbial interactions and stability in the gut ecosystem increase with fish development. This finding has important implications for microbial management to maintain gut homeostasis and provide better gut ecosystem services for the host. First, future studies should always consider using fish of different age groups to gain a full understanding of gut microbial networks. Second, management of the keystone taxa, even those that are only present at a low abundance, during the adult stage may be a viable pathway to maintain gut ecosystem stability. This study greatly expands our current knowledge regarding gut ecosystem stability in terms of ecological networks affected by fish development, and also highlights potential directions for gut microbial management in humans and other animals.
Collapse
Affiliation(s)
- Fanshu Xiao
- Center for Precision Medicine, Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Wengen Zhu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Juan Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jianjun Wang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Shengwei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Zhijian Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Wang W, Wang H, Cheng X, Wu M, Song Y, Liu X, Loni PC, Tuovinen OH. Different responses of bacteria and fungi to environmental variables and corresponding community assembly in Sb-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118812. [PMID: 35031403 DOI: 10.1016/j.envpol.2022.118812] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Bacterial communities in antimony (Sb) polluted soils have been well addressed, whereas the important players fungal communities are far less studied to date. Here, we report different responses of bacterial and fungal communities to Sb contamination and the ecological processes controlling their community assembly. Soil samples in the Xikuangshan mining area were collected and subjected to high through-put sequencing of 16S rRNA and ITS1 to investigate bacterial and fungal communities, respectively, along an Sb gradient. Sb speciation in the soil samples and other physicochemical parameters were analyzed as well. Bacterial communities were dominated by Deltaproteobacteria in the soil with highest Sb concentration, whereas Chloroflexi were dominant in the soil with lowest Sb concentration. Fungal communities in high-Sb soils were predominated by unclassified Fungi, whilst Leotiomycetes were dominant in low-Sb soil samples. Multivariate analysis indicated that Sb, pH and soil texture were the main drivers to strongly impact microbial communities. We further identified Sb-resistant microbial groups via correlation analysis. In total, 18 bacterial amplicon sequence variants (ASVs) were found to potentially involve in biogeochemical cycles such as Sb oxidation, sulfur oxidation or nitrate reduction, whereas 12 fungal ASVs were singled out for potential heavy metal resistance and plant growth promotion. Community assembly analysis revealed that variable selection contributed 100% to bacterial community assembly under acidic or high Sb concentration conditions, whereas homogeneous selection dominated fungal community assembly with a contribution over 78.9%. The community assembly of Sb-resistant microorganisms was mainly controlled by stochastic process. The results offer new insights into microbial ecology in Sb-contaminated soils, especially on the different responses of microbial communities under identical environmental stress and the different ecological processes underlining bacterial and fungal community assembly.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Prakash C Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
40
|
Lin G, Huang J, Luo K, Lin X, Su M, Lu J. Bacterial, archaeal, and fungal community structure and interrelationships of deep-sea shrimp intestine and the surrounding sediment. ENVIRONMENTAL RESEARCH 2022; 205:112461. [PMID: 34863691 DOI: 10.1016/j.envres.2021.112461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Invertebrate shrimp are one of the dominant benthic macrofaunae in the deep-sea environment. The microbiota of shrimp intestine can contribute to the adaptation of their host. The impact of surrounding sediment on intestinal microbiota has been observed in cultured shrimp species, but needs to be further investigated in deep-sea shrimp. The characterization of bacterial, archaeal, and fungal community structure and their interrelationships is also limited. In this study, wild-type deep-sea shrimp and the surrounding sediment were sampled. Shrimp individuals incubated in a sediment-absent environment were also used in this study. Microbial community structure of the shrimp intestine and sediment was investigated through amplicon sequencing targeting bacterial 16S rRNA genes, archaeal 16S rRNA genes, and fungal ITS genes. The results demonstrate distinct differences in community structure between shrimp intestine and the surrounding sediment and between surface and deep (5 mbsf) sediment. The composition of the intestinal microbiota in shrimp living without sediment was different from that of wild-type shrimp, indicating that the presence or absence of sediment could influence the shrimp intestinal microbiota. Carbohydrate metabolism, energy metabolism (carbon fixation, methane metabolism, nitrogen metabolism, and sulfur metabolism), amino acid metabolism, and xenobiotic biodegradation were the most commonly predicted microbial functionalities and they interacted closely with one another. Overall, this study provided comprehensive insights into bacterial, archaeal, and fungal community structure of deep-sea shrimp intestine as well as potential ecological interactions with the surrounding sediment. This study could update our understanding of the microbiota characteristics in shrimp and sediment in deep-sea ecosystems.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, Guangdong, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Kunwen Luo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Xianbiao Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, Guangdong, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
41
|
Yu H, Yan X, Weng W, Xu S, Xu G, Gu T, Guan X, Liu S, Chen P, Wu Y, Xiao F, Wang C, Shu L, Wu B, Qiu D, He Z, Yan Q. Extracellular proteins of Desulfovibrio vulgaris as adsorbents and redox shuttles promote biomineralization of antimony. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127795. [PMID: 34801311 DOI: 10.1016/j.jhazmat.2021.127795] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Biomineralization is the key process governing the biogeochemical cycling of multivalent metals in the environment. Although some sulfate-reducing bacteria (SRB) are recently recognized to respire metal ions, the role of their extracellular proteins in the immobilization and redox transformation of antimony (Sb) remains elusive. Here, a model strain Desulfovibrio vulgaris Hildenborough (DvH) was used to study microbial extracellular proteins of functions and possible mechanisms in Sb(V) biomineralization. We found that the functional groups (N-H, CO, O-CO, NH2-R and RCOH/RCNH2) of extracellular proteins could adsorb and fix Sb(V) through electrostatic attraction and chelation. DvH could rapidly reduce Sb(V) adsorbed on the cell surface and form amorphous nanometer-sized stibnite and/or antimony trioxide, respectively with sulfur and oxygen. Proteomic analysis indicated that some extracellular proteins involved in electron transfer increased significantly (p < 0.05) at 1.8 mM Sb(V). The upregulated flavoproteins could serve as a redox shuttle to transfer electrons from c-type cytochrome networks to reduce Sb(V). Also, the upregulated extracellular proteins involved in sulfur reduction, amino acid transport and protein synthesis processes, and the downregulated flagellar proteins would contribute to a better adaption under 1.8 mM Sb(V). This study advances our understanding of how microbial extracellular proteins promote Sb biomineralization in DvH.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xizhe Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Wanlin Weng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Sihan Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Guizhi Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyuan Gu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Shengwei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, PR China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
42
|
Wu B, Luo S, Luo H, Huang H, Xu F, Feng S, Xu H. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151995. [PMID: 34856269 DOI: 10.1016/j.scitotenv.2021.151995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Miscanthus floridulus is a plant with high biomass and heavy metal tolerance, which is a good candidate for phytoremediation. It is essential to explore how to improve its remediation ability, especially the rhizosphere ecological characteristics which are significant for phytoremediation efficiency. Therefore, the heavy metals accumulation of M. floridulus, rhizosphere soil physicochemical properties, enzyme activities, and bacterial community of different distances from the tailing were measured, focusing on the relationship between phytoremediation ability and rhizosphere ecological characteristics. The results show that the stronger the phytoremediation ability is, the better is the soil environment, and the higher the coverage with plants. Soil rhizosphere environment and the phytoremediation ability are shaped by heavy metals. Rhizosphere microecology may regulate phytoremediation by improving soil nutrients and enzyme activities, alleviating heavy metal toxicity, changing rhizosphere microbial community structure, increasing beneficial microbial abundance, promoting heavy metals accumulation by plants. This study not only clarified the relationship between rhizosphere ecological factors, but also elucidated the phytoremediation regulatory mechanism. Some of microbial taxa might developed as biological bioinoculants, providing the possibility to promote the growth of plants with ecological restoration ability and improve the phytoremediation efficiency.
Collapse
Affiliation(s)
- Bohan Wu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shihua Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Su Feng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
43
|
Liu H, Hu W, Li X, Hu F, Liu Y, Xie T, Liu B, Xi Y, Su Z, Zhang C. Effects of perfluoroalkyl substances on root and rhizosphere bacteria: Phytotoxicity, phyto-microbial remediation, risk assessment. CHEMOSPHERE 2022; 289:133137. [PMID: 34864015 DOI: 10.1016/j.chemosphere.2021.133137] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) is easily sink into soil, affecting plants growth and microenvironment. However, the impacts of PFAS-related risk assessment on root and rhizosphere microbiomes are still poorly understood. OBJECTIVE Researched on Arabidopsis thaliana and Nicotiana benthamiana growing in contaminated with perfluorooctanoic acid (PFOA), hexafluoropropylene oxide-dimer acid (HFPO-DA) and their mixtures. RESULTS (i) Bioaccumulation of PFAS in roots was positively correlated with carbon chain length, contamination levels and exposure time, the phytotoxicity was as follows: HFPO-DA < (PFOA + HFPO-DA) < PFOA; (ii) Both short-term and long-term accumulation of PFAS would affect the changes in root antioxidant system and physiological metabolism; (iii) Single or mixed contamination of PFAS had unique influences on rhizosphere microbial diversity, community composition and interspecies interaction, and mixture was more complex. More importantly, the performance of Sphingomonadaceae and Rhizobiaceae microbial communities could contribute to the practice of phyto-microbial soil remediation. FUTURE DIRECTION Pay more attention on novel pollution pathway in cultivation, exposure levels for different plants (especially crops), as well as more exact and scientific risk assessments. Establish a new PFAS grouping strategy and ecotoxicity life cycle assessment framework.
Collapse
Affiliation(s)
- Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenli Hu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Fangwen Hu
- Zhangjiajie College, Jishou University, Zhangjiajie, 427000, China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Bo Liu
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yanni Xi
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
44
|
Zhang S, Fang Y, Luo Y, Li Y, Ge T, Wang Y, Wang H, Yu B, Song X, Chen J, Zhou J, Li Y, Chang SX. Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149717. [PMID: 34425443 DOI: 10.1016/j.scitotenv.2021.149717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Despite fresh and pyrogenic organic matter have been widely used as amendments to improve soil organic carbon (SOC) storage, mineralization that links to C quality and soil temperature, microbial community composition and enzyme activity remain poorly understood. This study aims to explore the effects of amendments (bamboo leaves and its biochar) and incubation temperature on mineralization, and disentangle the relationships of SOC mineralization with chemical composition of SOC, labile organic C, microbial community composition, and activities of enzymes in a subtropical bamboo forest soil. Results showed that cumulative soil CO2 emissions ranked as bamboo leaf (Leaf) > bamboo leaf biochar (Biochar) > Control, regardless of the incubation temperature. Compared to the control, the Leaf treatment markedly increased, whereas the Biochar treatment decreased, the temperature sensitivity of SOC mineralization (P < 0.05). The cumulative soil CO2 emission was positively correlated (P < 0.05) with water-soluble organic C (WSOC), microbial biomass C (MBC), O-alkyl C and alkyl C contents, and activities of β-glucosidase and dehydrogenase, but negatively correlated (P < 0.01) with aromatic C content, regardless of the incubation temperature. This indicated that the lower SOC mineralization rate and lower temperature sensitivity in the Biochar (cf. Leaf) treatment were intimately associated with the lower WSOC, MBC, O-alkyl C content, and β-glucosidase and dehydrogenase activities, and higher aromatic C content in the Biochar. The high relative abundance of bacteria relating SOC mineralization included Rhizobiales, Sphingobacteriales and JG30-KF-AS9, whereas that of fungi included Eurotiales, Sordariales, Agaricales and Helotiales. Our results revealed that the application of pyrogenic organic matter, as compared to the application of fresh organic matter, can reduce SOC mineralization and its temperature sensitivity in a subtropical forest soil by limiting the availability of C and microbial activity, and thus has a great potential for maintaining soil carbon stock in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Shaobo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunying Fang
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Yu Luo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yongchun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yixiang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Bing Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiashu Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
45
|
Effect of Municipal Solid Waste Compost on Antimony Mobility, Phytotoxicity and Bioavailability in Polluted Soils. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of a municipal solid waste compost (MSWC), added at 1 and 2% rates, on the mobility, phytotoxicity, and bioavailability of antimony (Sb) was investigated in two soils (SA: acidic soil; SB: alkaline soil), spiked with two Sb concentrations (100 and 1000 mg kg−1). The impact of MSWC on microbial activity and biochemical functioning within the Sb-polluted soils was also considered. MSWC addition reduced water-soluble Sb and favored an increase in residual Sb (e.g., by 1.45- and 1.14-fold in SA-100 and SA-1000 treated with 2% MSWC, respectively). Significant increases in dehydrogenase activity were recorded in both the amended soils, as well as a clear positive effect of MSWC on the metabolic activity and catabolic diversity of respective microbial communities. MSWC alleviated Sb phytotoxicity in triticale plants and decreased Sb uptake by roots. However, increased Sb translocation from roots to shoots was recorded in the amended soils, according to the compost rate. Overall, the results obtained indicated that MSWC, particularly at a 2% rate, can be used for the recovery of Sb-polluted soils. It also emerged that using MSWC in combination with triticale plants can be an option for the remediation of Sb-polluted soils, by means of assisted phytoextraction.
Collapse
|
46
|
He L, Ren Y, Zeng W, Wu X, Shen L, Yu R, Liu Y, Li J. Deciphering the Endophytic and Rhizospheric Microbial Communities of a Metallophyte Commelina communis in Different Cu-Polluted Soils. Microorganisms 2021; 9:microorganisms9081689. [PMID: 34442769 PMCID: PMC8399850 DOI: 10.3390/microorganisms9081689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Metallophytes microbiota play a key role in plant growth and resistance to heavy metal stress. Comparing to the well-studied single or some specific plant growth-promoting (PGP) bacterial strains, our current understanding of the structural and functional variations of microbiome of metallophytes is still limited. Here, we systematically investigated the endophytic and rhizosphere bacterial community profiles of a metallophyte Commelina communis growing in different Cu-polluted soils by high-throughput sequencing technology. The results showed that the rhizosphere communities of C. communis exhibited a much higher level of diversity and richness than the endosphere communities. Meanwhile, shifts in the bacterial community composition were observed between the rhizosphere and endosphere of C. communis, indicating plant compartment was a strong driver for the divergence between rhizosphere and endosphere community. Among the environmental factors, soil Cu content, followed by OM, TP and TN, played major roles in shaping the bacterial community structure of C. communis. At the highly Cu-contaminated site, Pseudomonas and Sphingomonas were the predominant genera in the endophytic and rhizospheric bacterial communities, respectively, which might enhance copper tolerance as PGP bacteria. In summary, our findings will be useful to better understand metallophyte–microbe interactions and select suitable bacterial taxa when facilitating phytoremediation.
Collapse
Affiliation(s)
- Li He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University (CSU), Changsha 410083, China
| | - Yanzhen Ren
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University (CSU), Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University (CSU), Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University (CSU), Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University (CSU), Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University (CSU), Changsha 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University (CSU), Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (L.H.); (Y.R.); (W.Z.); (X.W.); (L.S.); (R.Y.); (Y.L.)
- Correspondence:
| |
Collapse
|
47
|
Zhang W, Liu W, He S, Chen Q, Han J, Zhang Q. Mixed plantations of Metasequoia glyptostroboides and Bischofia polycarpa change soil fungal and archaeal communities and enhance soil phosphorus availability in Shanghai, China. Ecol Evol 2021; 11:7239-7249. [PMID: 34188809 PMCID: PMC8216939 DOI: 10.1002/ece3.7532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Soil degradation has been found in urban forests in Shanghai, especially in the pure plantations. Mixed plantations are considered to improve soil quality because they can stimulate organic matter cycling and increase soil carbon and nutrient content. Although soil microbes play crucial roles in regulating soil biogeochemical processes, little is known about how mixed plantations affect soil microbial communities, including bacteria, archaea, and fungi. Here, we evaluated soil chemical properties, abundances and compositions of soil bacterial, archaeal, and fungal communities, and enzyme activities in pure and mixed Metasequoia glyptostroboides and Bischofia polycarpa plantations, located in Shanghai, China. The results showed that soil available phosphorus content in the mixed plantation of M. glyptostroboides and B. polycarpa was significantly higher than that in pure plantations, while no significant difference was observed in the content of soil organic carbon, total and available nitrogen, total and available potassium among the three studied plantations. We found higher fungal abundance in the mixed plantation, when compared to both pure plantations. Moreover, fungal abundance was positively correlated with the content of soil available phosphorus. No significant difference was found in the abundance and diversity of bacterial and archaeal community among the three studied plantations. A similarity analysis (ANOSIM) showed that mixed plantation significantly altered the community composition of archaea and fungi, accompanied with an increase of alkaline phosphatase activity. However, ANOSIM analysis of bacterial communities showed that there was no significant group separation among different plantations. Overall, results from this study indicated that fungal and archaeal communities were more sensitive to aboveground tree species than bacterial community. Moreover, mixed plantations significantly increased the activity of alkaline phosphatase and the content of soil available phosphorus, suggesting that afforestation with M. glyptostroboides and B. polycarpa is an effective way to alleviate phosphorus deficiency in urban forests in Shanghai, China.
Collapse
Affiliation(s)
- Weiwei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban SitesShanghai Academy of Landscape Architecture Science and PlanningShanghaiChina
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghaiChina
| | - Wen Liu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban SitesShanghai Academy of Landscape Architecture Science and PlanningShanghaiChina
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghaiChina
| | - Shanwen He
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban SitesShanghai Academy of Landscape Architecture Science and PlanningShanghaiChina
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghaiChina
| | - Qingchu Chen
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban SitesShanghai Academy of Landscape Architecture Science and PlanningShanghaiChina
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghaiChina
| | - Jigang Han
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban SitesShanghai Academy of Landscape Architecture Science and PlanningShanghaiChina
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghaiChina
| | | |
Collapse
|