1
|
Zhao S, Ling Y, Zhang B, Wang D, Sun L. Integrated multi-omics analysis reveals the underlying molecular mechanism for the neurotoxicity of triclosan in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117537. [PMID: 39671762 DOI: 10.1016/j.ecoenv.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Triclosan (TCS) is a primary broad-spectrum antibacterial agent commonly present in the environment. As a new type of environmental endocrine disruptor, it causes range of toxicities, including hepatotoxicity and reproductive toxicity. However, few research has examined the toxicity of long-term TCS-induced exposure in zebrafish at ambient concentrations, in contrast to the early life stage investigations. In the present study, we investigated the behavioral effects of TCS at environmental concentrations (300 μg/L) during constant exposure in zebrafish adults;An integrated transcriptomic and metabolomic analysis was performed to analyze the molecular mechanism underlying behavioral effects of TCS. Our results show that TCS exposure significantly induces behavioral disruptions such as anxiety-like behavior, memory problems, and altered social preferences. Histopathological investigations and neural ultrastructural observations demonstrated that TCS could induce variable levels of pyknosis and vacuolation in the cytoplasm of neurons as well as torn mitochondrial membranes, shrinkage and broken or absent cristae. Transcriptomics indicated that immune- and metabolism-related gene expression patterns were severely disturbed by TCS. Metabolomic analysis revealed 82 distinct metabolites in adult zebrafish exposed to TCS. Lipid metabolism, especially glycerophospholipid metabolism, and amino acid regulation pathways were co-enriched by multi-omics combinatorial analysis. Hence, this study highlights a number of biomarkers for the risk assessment of TCS against non-target organisms, offering a reference dataset for the behavioral toxicity of TCS to zebrafish, and strengthening the early warning, management, and control of TCS pollution.
Collapse
Affiliation(s)
- Shasha Zhao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yuhang Ling
- First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China
| | - Baohua Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Danting Wang
- Department of Transfusion, The West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
Liu Y, Zhu Y, Wang X, Li Y, Yang S, Li H, Dong B, Wang Z, Song Y, Xu J, Xue C. Mechanisms by which Ganglioside GM1, a specific type of glycosphingolipid, ameliorates BMAA-induced neurotoxicity in early-life stage of zebrafish embryos. Food Res Int 2025; 200:115502. [PMID: 39779142 DOI: 10.1016/j.foodres.2024.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms. Exposure to BMAA (400 μM) resulted in increased malformation rate and heart rates in zebrafish embryos at 72 h post-fertilization, along with the decreased survival rates. Conversely, GM1 intervention rescued BMAA-induced movement disorders and brain cell apoptosis, and oxidative stress was alleviated. In addition, GM1 inhibited the neurotoxic effects of BMAA in zebrafish embryos, as indicated by the up-regulation of genes related to neuron development (gpx1a, bdnf, ngfb, and islet-1) and the down-regulations of neurodegeneration-related genes (cdk5, gfap, and nptxr). GM1 treatment restored 261 differentially expressed genes (DEGs) identified through RNA sequencing, with the most enriched DEGs related to the mitogen-activated protein kinase (MAPK) signaling pathway (P < 0.05, 47 genes). GM1 modulated MAPK-targeted gene expression at the mRNA level. These findings suggest that GM1 alleviates BMAA-induced neurotoxicity in the early-life stage of zebrafish embryos. The neuroprotective mechanism may involve the MAPK pathway, offering new insights into lipid signaling for the prevention of neurotoxic hazards to biological health.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuhe Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yiyang Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuaiqi Yang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Bo Dong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China
| |
Collapse
|
3
|
Wang Z, Han X, Su X, Yang X, Wang X, Yan J, Qian Q, Wang H. Analysis of key circRNA events in the AOP framework of TCS acting on zebrafish based on the data-driven. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116507. [PMID: 38838465 DOI: 10.1016/j.ecoenv.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS) is a broad-spectrum antibiotic widely used in various personal care products. Research has found that exposure to TCS can cause toxic effects on organisms including neurotoxicity, cardiotoxicity, disorders of lipid metabolism, and abnormal vascular development, and the corresponding toxic mechanisms are gradually delving into the level of abnormal expression of miRNA regulating gene expression. Although the downstream mechanism of TCS targeting miRNA abnormal expression to induce toxicity is gradually improving, its upstream mechanism is still in a fog. Starting from the abnormal expression data of circRNA in zebrafish larvae induced by TCS, this study conducted a hierarchical analysis of the expression levels of all circRNAs, differential circRNAs, and trend circRNAs, and identified 29 key circRNA events regulating miRNA abnormal expression. In combination with GO and KEGG, the effects of TCS exposure were analyzed from the function and signaling pathway of the corresponding circRNA host gene. Furthermore, based on existing literature evidence about the biological toxicity induced by TCS targeting miRNA as data support, a competing endogenous RNAs (ceRNA) network characterizing the regulatory relationship between circRNA and miRNA was constructed and optimized. Finally, a comprehensive Adverse Outcome Pathway (AOP) framework of multiple levels of events including circRNA, miRNA, mRNA, pathway, and toxicity endpoints was established to systematically elucidate the toxic mechanism of TCS. Moreover, the rationality of the AOP framework was verified from the expression level of miRNA and adverse outcomes such as neurotoxicity, cardiotoxicity, oxidative stress, and inflammatory response by knockdown of circRNA48. This paper not only provides the key circRNA events for exploring the upstream mechanism of miRNA regulating gene expression but also provides an AOP framework for comprehensively demonstrating the toxicity mechanism of TCS on zebrafish, which is a theoretical basis for subsequent hazard assessment and prevention and control of TCS.
Collapse
Affiliation(s)
- Zejun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaowen Han
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xincong Su
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Yang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Zhao B, Deng J, Ma M, Li N, Zhou J, Li X, Luan T. Environmentally relevant concentrations of 2,3,7,8-TCDD induced inhibition of multicellular alternative splicing and transcriptional dysregulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170892. [PMID: 38346650 DOI: 10.1016/j.scitotenv.2024.170892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Alternative splicing (AS), found in approximately 95 % of human genes, significantly amplifies protein diversity and is implicated in disease pathogenesis when dysregulated. However, the precise involvement of AS in the toxic mechanisms induced by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains incompletely elucidated. This study conducted a thorough global AS analysis in six human cell lines following TCDD exposure. Our findings revealed that environmentally relevant concentration (0.1 nM) of TCDD significantly suppressed AS events in all cell types, notably inhibiting diverse splicing events and reducing transcript diversity, potentially attributed to modifications in the splicing patterns of the inhibitory factor family, particularly hnRNP. And we identified 151 genes with substantial AS alterations shared among these cell types, particularly enriched in immune and metabolic pathways. Moreover, TCDD induced cell-specific changes in splicing patterns and transcript levels, with increased sensitivity notably in THP-1 monocyte, potentially linked to aberrant expression of pivotal genes within the spliceosome pathway (DDX5, EFTUD2, PUF60, RBM25, SRSF1, and CRNKL1). This study extends our understanding of disrupted alternative splicing and its relation to the multisystem toxicity of TCDD. It sheds light on how environmental toxins affect post-transcriptional regulatory processes, offering a fresh perspective for toxicology and disease etiology investigations.
Collapse
Affiliation(s)
- Bilin Zhao
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Na Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junlin Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Qian Q, Pu Q, Li X, Liu X, Ni A, Han X, Wang Z, Wang X, Yan J, Wang H. Acute/chronic triclosan exposure induces downregulation of m 6A-RNA methylation modification via mettl3 suppression and elicits developmental and immune toxicity to zebrafish. CHEMOSPHERE 2024; 352:141395. [PMID: 38342143 DOI: 10.1016/j.chemosphere.2024.141395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Triclosan (TCS), a prevalent contaminant in aquatic ecosystems, has been identified as a potential threat to both aquatic biota and human health. Despite its widespread presence, research into the immunotoxic effects of TCS on aquatic organisms is limited, and the underlying mechanisms driving these effects remain largely unexplored. Herein, we investigated the developmental and immune toxicities of environmentally relevant concentrations of TCS in zebrafish, characterized by morphological anomalies, histopathological impairments, and fluctuations in cytological differentiation and biomarkers following both acute (from 6 to 72/120 hpf) and chronic exposure periods (from 30 to 100 dpf). Specifically, acute exposure to TCS resulted in a significant increase in innate immune cells, contrasted by a marked decrease in T cells. Furthermore, we observed that TCS exposure elicited oxidative stress and a reduction in global m6A levels, alongside abnormal expressions within the m6A modification enzyme system in zebrafish larvae. Molecular docking studies suggested that mettl3 might be a target molecule for TCS interaction. Intriguingly, the knock-down of mettl3 mirrored the effects of TCS exposure, adversely impacting the growth and development of zebrafish, as well as the differentiation of innate immune cells. These results provide insights into the molecular basis of TCS-induced immunotoxicity through m6A-RNA epigenetic modification and aid in assessing its ecological risks, informing strategies for disease prevention linked to environmental contaminants.
Collapse
Affiliation(s)
- Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Pu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - XingCheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaowen Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Chen X, Mou L, Qu J, Wu L, Liu C. Adverse effects of triclosan exposure on health and potential molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163068. [PMID: 36965724 PMCID: PMC10035793 DOI: 10.1016/j.scitotenv.2023.163068] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
With the COVID-19 pandemic, the use of disinfectants has grown significantly around the world. Triclosan (TCS), namely 5-chloro-2-(2,4-dichlorophenoxy) phenol or 2,4,4'-trichloro-2'-hydroxydiphenyl ether, is a broad-spectrum, lipophilic, antibacterial agent that is extensively used in multifarious consumer products. Due to the widespread use and bioaccumulation, TCS is frequently detected in the environment and human biological samples. Accumulating evidence suggests that TCS is considered as a novel endocrine disruptor and may have potential unfavorable effects on human health, but studies on the toxic effect mediated by TCS exposure as well as its underlying mechanisms of action are relatively sparse. Therefore, in this review, we attempted to summarize the potential detrimental effects of TCS exposure on human reproductive health, liver function, intestinal homeostasis, kidney function, thyroid endocrine, and other tissue health, and further explore its mechanisms of action, thereby contributing to the better understanding of TCS characteristics and safety. Moreover, our work suggested the need to further investigate the biological effects of TCS exposure at the metabolic level in vivo.
Collapse
Affiliation(s)
- Xuhui Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Li Mou
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Jiayuan Qu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Liling Wu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China.
| |
Collapse
|
8
|
Wang W, Li X, Qian Q, Yan J, Huang H, Wang X, Wang H. Mechanistic exploration on neurodevelopmental toxicity induced by upregulation of alkbh5 targeted by triclosan exposure to larval zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131831. [PMID: 37320907 DOI: 10.1016/j.jhazmat.2023.131831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Because triclosan (TCS) has been confirmed to cause severe neurotoxicity, it is urgent to disclose the underlying toxicity mechanisms at varying levels. TCS exposure resulted in a series of malformations in larval zebrafish, including reduced neurons, blood-vessel ablation and abnormal neurobehavior. Apoptosis staining and the upregulated expression of proapoptotic genes demonstrated that TCS induced neuronal apoptosis and neurotransmitter disorders. By integrating RT-qPCR analysis with the effects of pathway inhibitors and agonists, we found that TCS triggered abnormal regulation of neuron development-related functional genes, and suppressed the BDNF/TrkB signaling pathway. TCS inhibited total m6A-RNA modification level by activating the demethylase ALKBH5, and induced neurodevelopmental toxicity based on the knockdown experiments of alkbh5 and molecular docking. The main novelties of this study lies in: (1) based on specific staining and transgenic lines, the differential neurotoxicity effects of TCS were unravelled at individual, physiological, biochemical and molecular levels in vivo; (2) from a epigenetics viewpoint, the decreasing m6A methylation level was confirmed to be mediated by alkbh5 upregulation; and (3) both homology modeling and molecular docking evidenced the targeting action of TCS on ALKBH5 enzyme. These findings open a novel avene for TCS's risk assessment and early intervention of the contaminant-sourcing diseases.
Collapse
Affiliation(s)
- Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
9
|
Cui Z, He F, Li X, Li Y, Huo C, Wang H, Qi Y, Tian G, Zong W, Liu R. Response pathways of superoxide dismutase and catalase under the regulation of triclocarban-triggered oxidative stress in Eisenia foetida: Comprehensive mechanism analysis based on cytotoxicity and binding model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158821. [PMID: 36116645 DOI: 10.1016/j.scitotenv.2022.158821] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC) is an emerging environmental contaminant, posing potential ecological risks. Displaying a high accumulation effect and 120-day half-life in the soil environment, the toxic effects of TCC to soil organisms have been widely reported. Previous studies have confirmed that TCC can induce the oxidative stress and changes in superoxide dismutase (SOD) and catalase (CAT) activities in earthworms, but the underlying mechanisms of oxidative stress and disorder in antioxidant enzyme activities induced by TCC have not yet been elucidated. Here, we explored the multiple response mechanisms of SOD and CAT under the regulation of oxidative stress induced by TCC. Results indicated that higher-dose (0-2.0 mg/L) TCC exposure triggered the overproduction of ROS in Eisenia foetida coelomocytes, causing oxidative damage and a decrease in cell viability that was response to ROS accumulation. The TCC-induced inhibition of intracellular SOD/CAT activity was found under the regulation of oxidative stress (SOD: 29.2 %; CAT: 18.5 %), and this effect was blunted by antioxidant melatonin. At the same time, the interaction between antioxidative enzymes and TCC driven by various forces (SOD: electrostatic interactions; CAT: van der Waals forces and hydrogen bonding) led to inhibited SOD activity (9.84 %) and enhanced CAT activity (17.5 %). Then, to elucidate the binding mode of TCC, we explored the changes in SOD and CAT structure (protein backbone and secondary structure), the microenvironment of aromatic amino acids, and aggregation behavior through multispectral techniques. Molecular docking results showed that TCC inhibited SOD activity in a substrate competitive manner and enhanced CAT activity by the stabilizing effects of TCC on the heme groups. Collectively, this study reveals the response mechanisms of SOD/CAT under the regulation of TCC-triggered oxidative stress and shed a new light on revealing the toxic pathways of exogenous pollutants on antioxidant-related proteins function.
Collapse
Affiliation(s)
- Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
10
|
Barraza SJ, Bhattacharyya A, Trotta CR, Woll MG. Targeting strategies for modulating pre-mRNA splicing with small molecules: Recent advances. Drug Discov Today 2023; 28:103431. [PMID: 36356786 DOI: 10.1016/j.drudis.2022.103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The concept of using small molecules to therapeutically modulate pre-mRNA splicing was validated with the US Food and Drug Administration (FDA) approval of Evrysdi® (risdiplam) in 2020. Since then, efforts have continued unabated toward the discovery of new splicing-modulating drugs. However, the drug development world has evolved in the 10 years since risdiplam precursors were first identified in high-throughput screening (HTS). Now, new mechanistic insights into RNA-processing pathways and regulatory networks afford increasingly feasible targeted approaches. In this review, organized into classes of biological target, we compile and summarize small molecules discovered, devised, and developed since 2020 to alter pre-mRNA splicing.
Collapse
Affiliation(s)
- Scott J Barraza
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, USA.
| | | | | | - Matthew G Woll
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, USA
| |
Collapse
|
11
|
Wang W, Wang D, Li X, Ai W, Wang X, Wang H. Toxicity mechanisms regulating bone differentiation and development defects following abnormal expressions of miR-30c targeted by triclosan in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158040. [PMID: 35973548 DOI: 10.1016/j.scitotenv.2022.158040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
As a ubiquitous environmental estrogen-disrupting chemical, triclosan (TCS) can induce severe osteotoxicity; however, the underlying molecular mechanisms remain uncertain. Herein, we evaluated the toxic effects of TCS on the development of cartilage and osteogenesis in 5-dpf zebrafish. Under TCS exposure from 62.5 to 250 μg/L, several osteodevelopmental malformations were observed, such as defect of craniofacial cartilage, pharyngeal arch cartilage dysplasia, and impairments on skeletal mineralization. Further, the morphology of mature chondrocytes became swollen and deformed, their number decreased, nucleus displacement occurred, and most immature chondrocytes were crowded at both ends of ceratobranchial. SEM observation of larval caudal fin revealed that, the layer of collagen fibers and the mineralized calcium nodules were significantly decreased, with the collagen fibers becoming shorter upon TCS exposure. The activity of bone-derived alkaline phosphatase significantly reduced, and marker functional genes related to cartilage and osteoblast development were abnormally expressed. RNA-seq and bioinformatics analysis indicated, that changes in marker genes intimately related to the negative regulation of miR-30c-5p overexpression targeted by TCS, and the up-regulation of miR-30c induced bone developmental defects by inhibiting the bone morphogenetic protein (BMP) signaling pathway. These findings were confirmed by artificially intervening the expression of miR-30c and using BMP pathway agonists in vivo. In sum, TCS induced osteototoxicity by targeting miR-30c up-regulation and interfering in the BMP signaling pathway. These findings enhance mechanistic understanding of TCS-induced spontaneous bone disorders and bone metastatic diseases. Further research is necessary to monitor chronic TCS-exposure levels in surrounding environments and develop relevant safety precautions based on TCS environmental risk.
Collapse
Affiliation(s)
- Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Danting Wang
- Department of Transfusion, The West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu 610041, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
12
|
Wu Q, Yang T, Chen L, Dai Y, Wei H, Jia F, Hao Y, Li L, Zhang J, Wu L, Ke X, Yi M, Hong Q, Chen J, Fang S, Wang Y, Wang Q, Jin C, Hu R, Chen J, Li T. Early life exposure to triclosan from antimicrobial daily necessities may increase the potential risk of autism spectrum disorder: A multicenter study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114197. [PMID: 36274318 DOI: 10.1016/j.ecoenv.2022.114197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders with unclear etiologies. Our recent work indicated that maternal exposure to triclosan (TCS) significantly increased the autistic-like behavior in rats, possibly through disrupting neuronal retinoic acid signaling. Although environmental endocrine disruptors (EEDs) have been associated with autism in humans, the relationship between TCS, one of the EEDs found in antibacterial daily necessities, and autism has received little attention. OBJECTIVE The aims of this multicenter study were to evaluate TCS concentrations in typically developing (TD) children and ASD children, and to determine the relationship between TCS levels and the core symptoms of ASD children. METHODS A total of 1345 children with ASD and 1183 TD children were enrolled from 13 cities in China. Ages ranged between 2 and 7 years. A questionnaire was used to investigate the maternal use of antibacterial daily necessities (UADN) during pregnancy. The core symptoms of ASD were evaluated using the Autism Behavior Checklist (ABC), Childhood Autism Rating Scale (CARS), Social Response Scale (SRS), and the Children Neuropsychological and Behavior Scale-Revision 2016 (CNBS-R2016). The TCS concentration was measured using LC-MS/MS. RESULTS Maternal UADN during pregnancy may be an unrecognized potential environmental risk factor for ASD (OR=1.267, P = 0.023). Maternal UADN during pregnancy strongly correlated with TCS levels in the offspring (Adjusted β = 0.277, P < 0.001). TCS concentration was higher in ASD children (P = 0.005), and positively correlated with ABC (Sensory subscales: P = 0.03; Social self-help subscales: P = 0.011) and SRS scale scores (Social awareness subscales: P = 0.045; Social communication subscales: P = 0.001; Autism behavior mannerisms subscales: P = 0.006; SRS total score: P = 0.003) in ASD children. This association was more pronounced in boys than in girls. CONCLUSION To our knowledge, this is the first case-control study to examine the correlation between TCS and ASD. Our results suggest that maternal UADN during pregnancy may be a potential risk of ASD in offspring. Further detection of TCS levels showed that maternal UADN during pregnancy may be associated with excessive TCS exposure. In addition, the level of TCS in children with ASD is higher than TD children. The higher levels of TCS in children with ASD may be significantly associated with more pronounced core symptoms, and this association was more significant in male children with ASD.
Collapse
Affiliation(s)
- Qionghui Wu
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Li Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ying Dai
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Hua Wei
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, China
| | - Yan Hao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Li
- Department of Children Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Jie Zhang
- Children Health Care Center, Xi'an Children's Hospital, Xi'an, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Xiaoyan Ke
- Child Mental Health Research Center of Nanjing Brain Hospital, Nanjing, China
| | - Mingji Yi
- Department of Child Health Care, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Jinjin Chen
- Department of Child Healthcare, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuanfeng Fang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yichao Wang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Qi Wang
- Deyang Maternity & Child Healthcare Hospital, Deyang, Sichuan, China
| | - Chunhua Jin
- Department of Children Health Care, Capital Institute of Pediatrics, Beijing, China
| | - Ronggui Hu
- University of Chinese Academy of Sciences; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| |
Collapse
|
13
|
Wang Y, Song J, Wang X, Qian Q, Wang H. Study on the toxic-mechanism of triclosan chronic exposure to zebrafish (Danio rerio) based on gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156936. [PMID: 35772538 DOI: 10.1016/j.scitotenv.2022.156936] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS), as a broad-spectrum bactericide, is extensively used in the fine chemical and textile industries. It is recognized as a new type of environmental endocrine disruptor with frequent detection and environmental pollution. However, the toxicity mechanism regarding neurodevelopment and neurobehavior remains unclear. This study is intended to explore the underlying toxic mechanism of TCS based on gut-brain axis. TCS-chronic exposure affected the development of zebrafish, induced feminization, obesity physical signs and abnormal organ index and caused neurobehavioral abnormalities by inhibiting both neurotransmitter acetylcholinesterase and dopamine activity, promoting brain neuron apoptosis and accelerating diencephalic lesions. Meanwhile, TCS-chronic exposure led to gut microbiota dysbiosis and decreased diversity, such as increased pathogenic bacteria and decreased probiotics in adult zebrafish gut, which caused many pathological damages, including partial shedding and ablation of intestinal villi, inflammatory infiltration, thinning of intestinal wall, and increased goblet cell in villus. Based on the communication between intestinal peripheral nerves and CNS, the above histopathological injuries and disorders were well underpinned and illustrated by the changes of biomarkers and the expression of related marker genes in the gut-brain axis. Additionally, short-chain fatty acids (SCFA), as the regulators of intestinal sympathetic nerve activation, are also secreting products of intestinal microflora and play a crucial role in regulating the balance of intestinal flora and protecting intestinal homeostasis. SCFA in low doses can effectively alleviate and rescue the toxic effects under TCS exposure, which evidenced that TCS exerted systemic toxic effects on the gut-brain axis by influencing the composition and diversity of gut flora in zebrafish, and fully demonstrated the interaction effect between intestine and brain. Hence, these findings contribute to the understanding, prevention, and diagnosis of endocrine disrupting diseases caused by environmental pollutants from the perspective of the gut-brain axis, and strengthening the early warning, management and control of TCS pollution.
Collapse
Affiliation(s)
- Yang Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
14
|
Shi K, Zhang H, Xu H, Liu Z, Kan G, Yu K, Jiang J. Adsorption behaviors of triclosan by non-biodegradable and biodegradable microplastics: Kinetics and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156832. [PMID: 35760165 DOI: 10.1016/j.scitotenv.2022.156832] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) pollution has been becoming serious and widespread in the global environment. Although MPs have been identified as vectors for contaminants, adsorption and desorption behaviors of chemicals with non-biodegradable and biodegradable MPs during the aging process is limited. In this work, the adsorption behaviors of triclosan (TCS) by non-biodegradable polyethylene (PE) and polypropylene (PP), and biodegradable polylactic acid (PLA) were investigated. The differences in morphology, chemical structures, crystallization, and hydrophilicity were investigated after the ultraviolet aging process and compared with the virgin MPs. The results show that the water contact angles of the aged MPs were slightly reduced compared with the virgin MPs. The aged MPs exhibited a stronger adsorption capacity for TCS because of the physical and chemical changes in MPs. The virgin biodegradable PLA had a larger adsorption capacity than the non-biodegradable PE and PP. The adsorption capacity presented the opposite trend after aging. The main adsorption mechanism of MPs relied on hydrophobicity interaction, hydrogen bonding, and electrostatic interaction. The work provides new insights into TCS as hazardous environmental contaminants, which will enhance the vector potential of non-biodegradable and biodegradable MPs.
Collapse
Affiliation(s)
- Ke Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China.
| | - HaoMing Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Zhe Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
15
|
Hao Y, Meng L, Zhang Y, Chen A, Zhao Y, Lian K, Guo X, Wang X, Du Y, Wang X, Li X, Song L, Shi Y, Yin X, Gong M, Shi H. Effects of chronic triclosan exposure on social behaviors in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127562. [PMID: 34736200 DOI: 10.1016/j.jhazmat.2021.127562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), a newly identified environmental endocrine disruptor (EED) in household products, has been reported to have toxic effects on animals and humans. The effects of TCS exposure on individual social behaviors and the potential underlying mechanisms are still unknown. This study investigated the behavioral effects of 42-day exposure to TCS (0, 50, 100 mg/kg) in drinking water using the open field test (OFT), social dominance test (SDT), social interaction test (SIT), and novel object recognition task (NOR). Using 16S rRNA sequencing analysis and transmission electron microscopy (TEM), we observed the effects of TCS exposure on the gut microbiota and ultrastructure of hippocampal neurons and synapses. Behavioral results showed that chronic TCS exposure reduced the social dominance of male and female mice. TCS exposure also reduced social interaction in male mice and impaired memory formation in female mice. Analysis of the gut microbiota showed that TCS exposure increased the relative abundance of the Proteobacteria and Actinobacteria phyla in female mice. Ultrastructural analysis revealed that TCS exposure induced ultrastructural damage to hippocampal neurons and synapses. These findings suggest that TCS exposure may affect social behaviors, which may be caused by altered gut microbiota and impaired plasticity of hippocampal neurons and synapses.
Collapse
Affiliation(s)
- Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Aixin Chen
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Kaoqi Lian
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangfei Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xinhao Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xuzi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China.
| |
Collapse
|
16
|
Iannetta A, Caioni G, Di Vito V, Benedetti E, Perugini M, Merola C. Developmental toxicity induced by triclosan exposure in zebrafish embryos. Birth Defects Res 2022; 114:175-183. [DOI: 10.1002/bdr2.1982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Annamaria Iannetta
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences University of L'Aquila L'Aquila Italy
| | - Viviana Di Vito
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences University of L'Aquila L'Aquila Italy
| | - Monia Perugini
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| | - Carmine Merola
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| |
Collapse
|
17
|
Liu J, Feng R, Wang D, Huo T, Jiang H. Triclosan-induced glycolysis drives inflammatory activation in microglia via the Akt/mTOR/HIF 1α signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112664. [PMID: 34416638 DOI: 10.1016/j.ecoenv.2021.112664] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Exposure to triclosan (TCS) has been implicated in neurotoxicity including autism spectrum disorders in vivo and oxidative stress and cell apoptosis in vitro. Thus, the molecular mechanisms underlying TCS-induced neurotoxicity warrants further research. In this study, we try to address the mode of action that TCS induced the expression of inflammatory cytokines by shifting metabolism to glycolysis. BV-2 cells were treated with 20 μM TCS for 24 h, and the conditional medium from TCS-induced activated microglia reduced the viability of the murine hippocampal neurons cell line HT22. Protein expression levels in the nuclear factor kappa B (NF-κB) signaling pathway were measured through Western blotting, and the expression levels of inflammatory cytokine were measured using quantitative real-time PCR. The results showed that exposure to TCS enhanced NF-κB activation, increased inflammatory cytokine expression including interleukin (IL) 1β, IL-6, and tumor necrosis factor (TNF) α in the BV-2 cells. The glucose consumption and lactate production in BV2 cell increased sharply after exposure to TCS for 24 h. Based on our qPCR and Western blotting results, the expression of the key glycolysis enzymes-namely hexokinase 1, pyruvate kinase M2, and lactate dehydrogenase A-increased after treatment with 20 μM TCS. Furthermore, inhibiting glycolysis by 2-deoxy-D-glucose reduced the activation of NF-κB and the mRNA expression of the inflammatory cytokines in the TCS-activated BV-2 microglia. The expression of the proteins of the Akt/mTOR/HIF1α pathway examined through Western blotting, which regulates glycolysis, also increased in the BV2 cells exposed to TCS. Moreover, Akt and mTOR inhibition by using LY294002 and rapamycin, respectively, blocked inflammatory cytokine overexpression induced by TCS. In conclusion, TCS can induce glycolysis and directly drive inflammatory activation in microglia; with the mediation of the Akt/mTOR/HIF1α pathway.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Rui Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Dan Wang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| |
Collapse
|