1
|
Shakiba M, Faraji M, Jouybar S, Foroozandeh A, Bigham A, Abdouss M, Saidi M, Vatanpour V, Varma RS. Advanced nanofibers for water treatment: Unveiling the potential of electrospun polyacrylonitrile membranes. ENVIRONMENTAL RESEARCH 2025; 276:121403. [PMID: 40158874 DOI: 10.1016/j.envres.2025.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The challenges pertaining to the potable water scarcity and pollution motivates us to envision innovative strategies. Industrial wastewater containing hazardous heavy metals, synthetic dyes, and oil exacerbates the pursuit of clean drinking water. Among the array of available technologies, electrospun nanofiber membranes have garnered attention due to their efficiency, high surface-to-volume ratio, cost-effectiveness, scalability, and multifunctionality. These membranes possess distinct physical and chemical attributes that position them as ideal solutions to water purification challenges. Their versatility enables effective contaminant removal through filtration, adsorption, and chemical interactions. Polyacrylonitrile (PAN) emerges as a frontrunner among electrospun polymers due to its affordability, remarkable physical and chemical characteristics, and the ease of production. Research efforts have been dedicated to the study of electrospun PAN membranes, exploring modifications in terms of the functionalization of PAN molecular chain, incorporation of appropriate nanoparticles, and composition with other functional polymers. Parameters such as functional groups, hydrophilicity, mechanical properties, porosity, pore structure, reusability, sustainability, zeta potential, and operational conditions significantly influence the performance of electrospun PAN membranes in treating the contaminated water. Despite progress, challenges surrounding fouling, toxicity, scalability, selectivity, and production costs ought to be addressed strategically to enhance their practicality and real-world viability. This review comprehensively scrutinizes the current landscape of available electrospun PAN membranes in water treatment encompassing diverse range of synthesized entities and experimental outcomes. Additionally, the review delves into various approaches undertaken to optimize the performance of electrospun PAN membranes while proposing potential strategies to overcome the existing hindrances. By carefully analyzing the parameters that impact the performance of these membranes, this overview offers invaluable guidelines for researchers and engineers, thus empowering them to design tailored electrospun nanofiber membranes for specific water purification applications. As the innovative research continues and strategic efforts address the current challenges, these membranes can play a pivotal role in enhancing water quality, mitigating water scarcity, and contributing to environmental sustainability. The widespread application of electrospun nanofiber membranes in water treatment has the potential to create a lasting positive impact on global water resources and the environment. A dedicated effort towards their implementation will undoubtedly mark a crucial step towards a more sustainable and water-secure future.
Collapse
Affiliation(s)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Majid Saidi
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Vahid Vatanpour
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Li H, Gan S, Yue C, Yan Z, Xue Q, Zhang J, Yan T, Zeng H. Superhydrophilic membrane coupled with hydroxide ion-assisted bubbles for efficient separation of surfactant-stabilized oil/water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136397. [PMID: 39667147 DOI: 10.1016/j.jhazmat.2024.136397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 12/14/2024]
Abstract
Developing a feasible and efficient membrane for the purification of surfactant-stabilized emulsions is urgently needed but impeded by the issues of membrane fouling and the inherent trade-off between separation efficiency and permeation flux. A superhydrophilic conductive membrane was developed by coating MXene/carbon nanotubes layer and polydopamine-hydrogel molecular layer, which as cathode integrates feasible hydroxide ion-assisted bubbles on its surface by electrolysis of water. These bubbles are more effective than conventional ones in removing surfactant-stabilized oil droplets because the hydroxide ions significantly promote the aggregation of oil droplets and bubbles by reducing their Debye length. In this way, the oil droplets even the small-sized ones assisted by these bubbles are quickly detached from the membrane surface, avoiding the oil accumulation and penetration, significantly mitigating the membrane fouling and trade-off challenges. Therefore, the membrane has outstanding separation efficiency (99.57 %), permeation flux (2065 L m-1 h-1 bar-1), antifouling ability and durability in surfactant-stabilized oil/water emulsion separation. Besides, this membrane coupled with hydroxide ion-assisted bubbles is easily manageable and eco-friendly, which provides a promising solution and valuable insights for efficient emulsion separation and wastewater remediation.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, 1 Meicheng Rd., Huaian 223003, China; State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Qingdao 266580, Shandong, PR China
| | - Shaopeng Gan
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Qingdao 266580, Shandong, PR China
| | - Chuan Yue
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Qingdao 266580, Shandong, PR China
| | - Zechen Yan
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Qingdao 266580, Shandong, PR China
| | - Qingzhong Xue
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Qingdao 266580, Shandong, PR China
| | - Jianqiang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Qingdao 266580, Shandong, PR China.
| | - Tao Yan
- Department of Hepatobiliary Surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Ni R, Zhang L, Ma J, Zhang J, Xu X, Shi H, Deng Q, Hu W, Hu J, Ke Q, Zhao Y. Versatile Keratin Fibrous Adsorbents with Rapid-Response Shape-Memory Features for Sustainable Water Remediation. NANO LETTERS 2024. [PMID: 39365030 DOI: 10.1021/acs.nanolett.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Biodegradable shape-memory polymers derived from protein substrates are attractive alternatives with strong potential for valorization, although their reconstruction remains a challenge due to the poor processability and inherent instability. Herein, based on Maillard reaction and immobilization, a feather keratin fibrous adsorbent featuring dual-response shape-memory is fabricated by co-spinning with pullulan, heating, and air-assisted spraying ZIF-8-NH2. Maillard reaction between the amino group of keratin and the carbonyl group of pullulan improves the mechanics and thermal performance of the adsorbent. ZIF-8-NH2 immobilization endows the adsorbent with outstanding multipollutant removal efficiency (over 90%), water stability, and photocatalytic degradation and sterilization performance. Furthermore, the adsorbent can be folded to 1/12 of its original size to save space for transportation and allow for rapid on-demand unfolding (12 s) upon exposure to water and ultraviolet irradiation to facilitate the adsorption and photocatalytic activity with a larger water contact area. This research provides new insight for further applications of keratin-based materials with rapid shape-memory features.
Collapse
Affiliation(s)
- Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Le Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiajia Ma
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiawen Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xiaoyun Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Huan Shi
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan 410208, China
| | - Qiong Deng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- School of Textiles and Fashion Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Makoś-Chełstowska P, Słupek E, Mielewczyk-Gryń A, Klimczuk T. Magnetic superhydrophobic melamine sponges for crude oil removal from water. CHEMOSPHERE 2024; 346:140533. [PMID: 38303396 DOI: 10.1016/j.chemosphere.2023.140533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 02/03/2024]
Abstract
This paper proposes the preparation of a new sorbent material based on melamine sponges (MS) with superhydrophobic, superoleophilic, and magnetic properties. This study involved impregnating the surface of commercially available MS with eco-friendly deep eutectic solvents (DES) and Fe3O4 nanoparticles. The DES selection was based on the screening of 105 eutectic mixtures using COSMO-RS modeling. Other parameters affecting the efficiency and selectivity of oil removal from water were optimized using the Box-Bhenken model. Menthol:Thymol (1:1)@Fe3O4-MS exhibited the highest sorption capacity for real crude oils (101.7-127.3 g/g). This new sponge demonstrated paramagnetic behavior (31.06 emu/g), superhydrophobicity (151°), superoleophobicity (0°), low density (15.6 mg/cm3), high porosity (99 %), and excellent mechanical stability. Furthermore, it allows multiple regeneration processes without losing its sorption capacity. Based on these benefits, Menthol:Thymol (1:1)@Fe3O4-MS shows promise as an efficient, cost-effective, and eco-friendly substitute for the existing sorbents.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Tomasz Klimczuk
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
5
|
Dou B, Lin S, Wang Y, Yang L, Yao A, Liao H, Tian S, Shang J, Lan J. Versatile CO 2-responsive Sponges Decorated with ZIF-8 for Bidirectional Separation of Oil/Water and Controllable Removal of Dyes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37867-37883. [PMID: 37522905 DOI: 10.1021/acsami.3c03415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The complex wastewater containing water-soluble dyes and water-insoluble oils has given rise to significant environmental concerns that demand urgent remediation. Herein, a novel "smart" multifunctional sponge (ZIF-8@PMS) stepwise decorated with ZIF-8 nanoparticles and CO2-responsive copolymer (poly(2-(diethylamino) ethyl methacrylate-co-3-(trimethoxysilyl)propyl acrylate-co-stearyl methacrylate) was successfully prepared for CO2 controllable oil/water separation and dyes removal. The results revealed that the sponge coated with CO2-responsive copolymer for three cycles (ZIF-8@PMS-3) exhibited optimal comprehensive properties. The ZIF-8@PMS-3 had excellent compressive-resilient characteristics and chemical stability. As expected, it displayed tunable wettability and charged state under the regulation of CO2. Based on these features, ZIF-8@PMS-3 presented highly efficient removal of oil and dyes, even for the dye-containing oil/water emulsions, via a synergistic combination of adsorption and separation methods. The adsorption capacity for oil and various organic solvents ranged from 21.3 to 50 g g-1. The maximum adsorption capacities toward anionic dyes: methyl orange with 1205.89 mg g-1 and methyl blue with 880.00 mg g-1 in the presence of CO2 through electrostatic interaction. In the absence of CO2, it achieved maximum adsorption capacities for cationic dyes, including malachite green with 1246.15 mg g-1 and rhodamine B with 203 mg g-1, primarily driven by π-π interactions. According to distinct adsorption mechanisms, ZIF-8@PMS-3 could selectively adsorb either anionic or cationic dyes by exploiting CO2 as a trigger. Furthermore, the separation efficiencies for both types of oil/water emulsions surpassed 99.9%, with respective fluxes of 1566.99 L m-2 h-1 (water-in-oil emulsion) and 310.37 L m-2 h-1 (oil-in-water emulsion). Additionally, the as-prepared sponges exhibited remarkable antibacterial properties and exceptional recyclability. Therefore, the ZIF-8@PMS-3 holds substantial promise for potential applications in practical industrial wastewater treatment.
Collapse
Affiliation(s)
- Baojie Dou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Yafang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Anrong Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongjiang Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Siyao Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiaojiao Shang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Tian Q, Jiang Y, Li Z, Zhao B, Qiu F, Zhang T. Structured electroplating sludge derived membrane for one-step removal of oil, metal ions, and anions from oil/water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131284. [PMID: 36989779 DOI: 10.1016/j.jhazmat.2023.131284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The effective simultaneous treatment of hazardous waste sludge and complex oil/water emulsions in one way is urgently desired but still a challenging issue. Herein, this work for the first time presents a green and efficient strategy to fabricate an electroplating sludge (ES) derived multifunctional self-supporting membrane for the one-step removal of emulsified oils, soluble metal ions, and anions in complex oily wastewater. Due to low cost of ES and sustainability of the solvent selected in fabrication process, the large-scale application of the membrane is easily to promote. The assembled hierarchical nanostructure endowed robust underwater superoleophobicity of the membrane even under various corrosive aqueous environments, as well as excellent ultra-low oil adhesion and anti-oil-fouling performance, without chemical modification. Significantly, the multifunctional membrane possessed desirable simultaneous separation efficiency for five typical oil-in-water emulsions (>99.4%, high oil/water selective wettability), including crude oil-in-water emulsion with high viscosity (>99.6%), Cu2+ (>96.1%, surface complexation and ionic exchange), and Cl- (>92.7%, electrostatic attraction). Therefore, this green, low-cost, and multifunctional membrane not only allows the large-scale resource utilization of hazardous waste sludge, but also effectively solves the problems of complex oily wastewater purification.
Collapse
Affiliation(s)
- Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhui Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bencheng Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Yu J, Cao C, Pan Y. A solar-driven degradation-evaporation strategy for membrane self-cleaning in the efficient separation of viscous crude oil/water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131826. [PMID: 37320904 DOI: 10.1016/j.jhazmat.2023.131826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Membrane separation techniques are promising methods for effectively treating hazardous emulsified oily wastewater, but membrane fouling remains a serious challenge because the high viscosity and complex composition of crude oil make it easy to adhere to membranes and difficult to be removed by conventional physical or chemical cleaning means. Herein, a two-stage solar-driven (photo-Fenton degradation/evaporation) strategy was proposed to realize the self-cleaning of membranes fouled by viscous crude oil (>60,000 mPa s), wherein the photo-Fenton process helped to degrade the heavy components into light components, and all light components removed during the solar-driven evaporation process. A 1D/2D heterostructure membrane with photo-Fenton activity and anti-crude-oil-fouling performance was prepared via a facile self-assembly vacuum-assist method. The addition of rod-like g-C3N4 (RCN) increased the interlayer distance of α-FeOOH/porous g-C3N4 (FPCN) nanosheets, resulting in a high permeation flux. The FPCN-RCN membrane exhibited both high permeation flux of 779 ± 19 L m-2h-1bar-1 and a separation efficiency of 99.4% for highly viscous crude oil-in-water emulsion. Importantly, the viscous crude oil fouled on the membrane was completely removed by the photo-Fenton degradation/solar-driven evaporation strategy, and the flux recovery rate of the membrane was ∼100%. Therefore, the FPCN-RCN membrane combined with the novel self-cleaning strategy exhibits great potential for practical emulsified oily wastewater treatment.
Collapse
Affiliation(s)
- Jiacheng Yu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China.
| | - Changqian Cao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China.
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Chau TP, Rajkumar R, S Aloufi A, Krishnan R, Tharifkhan SA. Textile effluents decolourization potential of metal tolerant Aspergillus species and optimization of biomass concentration and temperature. ENVIRONMENTAL RESEARCH 2023:116294. [PMID: 37268209 DOI: 10.1016/j.envres.2023.116294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This research was performed to assess the physicochemical properties of textile effluents collected from different sampling points (industrial park, Hosur, Tamil Nadu, India) and also evaluate the multiple metal tolerance efficiency of pre-isolated Aspergillus flavus. Moreover, their textile effluent decolourization potential was investigated and quantity and temperature required for effective bioremediation was optimized. About 5 textile effluent samples (S0, S1, S2, S3, and S4) were collected from various sampling points and noted that certain physicochemical properties (pH: 9.64 ± 0.38, Turbidity: 18.39 ± 1.4 NTU, Cl-: 3185.38 ± 15.8 mg L-1, BOD: 82.52 ± 6.9 mg L-1, COD: 342.28 ± 8.9 mg L-1, Ni: 74.21 ± 4.31 mg L-1, Cr: 48.52 ± 18.34 mg L-1, Cd: 34.85 ± 1.2 mg L-1, Zn: 25.52 ± 2.4 mg L-1, Pb: 11.25 ± 1.5 mg L-1, Hg: 1.8 ± 0.05 mg L-1, and As: 7.1 ± 0.41 mg L-1) were beyond the permissible limits. The A. flavus, showed remarkable metal tolerance to Pb, As, Cr, Ni, Cu, Cd, Hg, and Zn on PDA plates with elevated dosage up to 1000 μg mL-1. The optimal dosage required for effective decolourization was found as 3 g (48.2%) and compare to dead biomass (42.1%) of A. flavus, the viable biomass showed remarkable decolourization activity on textile effluents in a short duration of treatment process. The optimal temperature for effective decolourization by viable biomass was found at 32 ᵒC. The toxic effects of S4 samples treated at 32 ᵒC on O. sativa as well as brine shrimp larvae were significantly reduced. These findings show that pre-isolated A. flavus viable biomass can be used to decolorize metal-enriched textile effluent. Furthermore, the effectiveness of their metals remediation should be investigated using ex-situ and ex-vivo approaches.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - R Rajkumar
- Department of Livestock Products Technology, (Meat Science) Veterinary College and Research Institute, Namakkal, Tamil Nadu, India
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | |
Collapse
|
9
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
10
|
Li J, Ding S, Wu J, Guo Z. Underwater Superoleophobic and Underoil Superhydrophilic Copper Benzene-1,3,5-tricarboxylate (HKUST-1) Mesh for Self-Cleaning and On-Demand Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6201-6210. [PMID: 37083365 DOI: 10.1021/acs.langmuir.3c00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Surfaces with underoil superhydrophilic (UOSHL) and underwater superoleophobic (UWOHB) have great potential for on-demand emulsion separation. However, the fabrication of underoil superhydrophilic based on wetting thermodynamic principles is quite challenging. Several previous studies have shown that some sarcocarps are able to spontaneously absorb water to moisturize themselves and have a unique UOSHL ability. By mimicking this unique ability of the sarcocarp, an outstanding UWOHB and UOSHL membrane was prepared. We choose 2300 mesh stainless steel mesh (SSM) as the substrate, then grow Cu and Cu(OH)2 on SSM by a simple electrochemical method, and finally grow HKUST-1 crystals via a fast in situ growth method. The whole preparation process is simple, low cost, and does not require complex and long-term hydrothermal reactions. By growing HKUST-1 crystals, the prepared surface successfully achieved the required UOSHL and UWOHB properties. When the water droplets come into contact with the membrane under n-hexane, it will diffuse and can completely spread out in 2 s. The as-prepared membrane exhibits outstanding anti-fouling and self-cleaning properties for rapeseed oil and crude oil with high viscosity underwater due to the special wetting. By prewetting the surface with an appropriate amount of the dispersion medium, it can rapidly and efficiently on-demand separate different emulsions. The separation efficiencies of water-in-oil emulsions and oil-in-water emulsions are above 99.00 and 97.00%. With their outstanding performance in self-cleaning, on-demand emulsion separation, low cost, and fast preparation, the as-prepared UOSHL and UWOHB HKUST-1 meshes show excellent potential for treating oily wastewater in practical applications.
Collapse
Affiliation(s)
- Jiahao Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Sili Ding
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Jun Wu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
11
|
Li S, Zhang L, Tian S, He Y, Guo X. Mineralized cupric phosphate/alginate gel alternately multilayer-wrapped nanofibrous membrane with robust anti-crude oil pollution for oily wastewater purification. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Tang S, Sun S, Liu T, Li M, Jiang Y, Wang D, Guo N, Guo Z, Chang X. Bionic engineering-induced formation of hierarchical structured minerals with superwetting surfaces for oil-water separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Li X, He X, Ling Y, Bai Z, Liu C, Liu X, Jia K. In-situ growth of silver nanoparticles on sulfonated polyarylene ether nitrile nanofibers as super-wetting antibacterial oil/water separation membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Xiong Q, Yue X, Zhuang Z, Xu J, Qiu F, Zhang T. Biomimetic fabrication of PET composite membranes with enhanced stability and demulsibility for emulsion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
15
|
Zhan B, Aliabadi M, Wang G, Chen ZB, Zhou WT, Stegmaier T, Konrad W, Gresser G, Kaya C, Liu Y, Han Z, Ren L. Underwater Oleophobic Electrospun Membrane with Spindle-Knotted Structured Fibers for Oil-in-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2301-2311. [PMID: 36719318 DOI: 10.1021/acs.langmuir.2c02943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The potential of spider silk as an intriguing biological prototype for collecting water from a humid environment has attracted wide attention, and various materials with suitable structures have been engineered. Here, inspired by this phenomenon, a kind of superwetting poly(vinylidene fluoride) (PVDF) membrane with spindle-knotted structured fibers was prepared by the electrospinning method followed by oxygen plasma etching treatment. The prepared membrane presented a satisfactory separation efficiency for various oil-in-water emulsions. The cooperative effect of the special wettability property and the spindle-knot structure stimulated the emulsified oil droplets to accumulate quickly on the membrane surface. A model that explains the accumulation of emulsified oil droplets has also been developed. Furthermore, an artificial fiber comprising a micron-sized spindle-knot structure was prepared by the dip-coating method to clearly illustrate the aggregation process of the emulsified oil droplets and to verify the theoretical explanation. We hope that this study will provide new inspiration for oil/water emulsion separation techniques.
Collapse
Affiliation(s)
- Bin Zhan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun130012, P. R. China
- Weihai Institute for Bionics-Jilin University, Weihai264402, Shandong, P. R. China
| | - Maryam Aliabadi
- Competence Center Textile Chemistry, Environment & Energy, German Institutes of Textile and Fiber Research, Denkendorf73770, Germany
| | - Guoyong Wang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun130012, P. R. China
| | - Zhi-Biao Chen
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun130012, P. R. China
| | - Wen-Ting Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun130012, P. R. China
| | - Thomas Stegmaier
- Competence Center Textile Chemistry, Environment & Energy, German Institutes of Textile and Fiber Research, Denkendorf73770, Germany
| | - Wilfried Konrad
- Department of Geosciences, University of Tübingen, Tübingen72076, Germany
- Germany and Institute of Botany, Technical University of Dresden, Dresden01062, Germany
| | - Goetz Gresser
- Competence Center Textile Chemistry, Environment & Energy, German Institutes of Textile and Fiber Research, Denkendorf73770, Germany
| | - Cigdem Kaya
- Competence Center Textile Chemistry, Environment & Energy, German Institutes of Textile and Fiber Research, Denkendorf73770, Germany
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun130012, P. R. China
- Weihai Institute for Bionics-Jilin University, Weihai264402, Shandong, P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun130012, P. R. China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun130012, P. R. China
| |
Collapse
|
16
|
Zheng W, Xu J, Wang L, Zhang J, Chu W, Liu J, Lu L, Cai C, Peng K, Huang X. Electro-enhanced Rapid Separation of Nanosized Oil Droplets from Emulsions via the Superhydrophilic Micro-sized Pore Membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
17
|
Wang QM, Liu ZH, Lü QF. Lignin modified Ti3C2Tx assisted construction of functionalized interface for separation of oil/water mixture and dye wastewater. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Tian S, He Y, Zhang L, Li S, Bai Y, Wang Y, Wu J, Yu J, Guo X. CNTs/TiO2- loaded carbonized nanofibrous membrane with two-type self-cleaning performance for high efficiency oily wastewater remediation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Lu T, Cao W, Liang H, Deng Y, Zhang Y, Zhu M, Ma W, Xiong R, Huang C. Blow-Spun Nanofibrous Membrane for Simultaneous Treatment of Emulsified Oil/Water Mixtures, Dyes, and Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15729-15739. [PMID: 36495271 DOI: 10.1021/acs.langmuir.2c02620] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane separation is of great significance due to its unique performance in treating wastewater. However, the simultaneous treatment of oily emulsions and other complex pollutants in water remains challenging. Herein, we have proposed a simple strategy to prepare a multifunctional titanium dioxide/silver nanoparticles/polyacrylonitrile (TiO2/AgNPs/PAN) nanofibrous membrane. The experimental results showed that the combination of the hierarchical structure composed of PAN nanofibers and Ag/TiO2 nanoprotrusions contributed to the superhydrophilicity and superoleophobicity (UOCA = 153.3 ± 2.0°). Further, the nanofibrous membrane exhibited a rapid gravity-driven permeate flux (>1829.37 ± 83.51 L m-2 h-1) and an ultrahigh separation efficiency (>99.9%) for the surfactant-stabilized oil/water emulsions. Moreover, due to the synergistic effect between the PAN fibers and TiO2/Ag heterojunction, Rhodamine B dye in water can be removed quickly and efficiently (up to 97.67% in 90 min). More importantly, the obtained nanofibrous membrane exhibited ultrahigh stability in different harsh environments. The design of superoleophobic nanofiber membrane with a high separation efficiency and high photocatalytic activity has great potential for practical applications in the purification of oily wastewater.
Collapse
Affiliation(s)
- Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wenxuan Cao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Hebin Liang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| |
Collapse
|
20
|
Constructing A Janus membrane with extremely asymmetric wettability for water unidirectional permeation and switchable emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Qiao B, Song H, Qian H, Kong Q. Fabrication of novel zwitterionic copolymer high performance membrane applied for Oil/Water Mixtures and Emulsions Separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Hou N, Zhao X, Han Z, Jiang X, Fang Y, Chen Y, Li D. Dodecenylsuccinic anhydride-modified oxalate decarboxylase loaded with magnetic nano-Fe 3O 4@SiO 2 for demulsification of oil-in-water emulsions. CHEMOSPHERE 2022; 308:136595. [PMID: 36167213 DOI: 10.1016/j.chemosphere.2022.136595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The inability to demulsify oil-in-water emulsions via green and efficient processes is a challenging problem in many industrial processes. As a novel biodemulsifier, protein demulsifiers display excellent dispersibility and stability, but their demulsification mechanisms are not clear, which severely restricts their large-scale production and application. In this study, the demulsification mechanism of the high-efficiency protein biodemulsifier oxalate decarboxylase (Bacm OxdC), which is secreted by the Bacillus mojavensis XH1 strain, for an oil-in-water emulsion was analyzed. The results showed that Bacm OxdC was spontaneously adsorbed at the oil-water interface and turned its hydrophobic amino acids outward to increase its hydrophobicity and break the emulsified system. Furthermore, it effectively reduced the oil-water interfacial tension and interfacial film strength, thereby reducing the oil-water interfacial energy and finally enabling demulsification. To further improve the demulsification efficiency and reusability, Fe3O4@SiO2@OxdC-DDSA was prepared. This method provided a magnetic response for Bacm OxdC and enabled efficient demulsification. The demulsification rate of Fe3O4@SiO2@OxdC-DDSA reached 98.1% at 24 h, which was 30.7% higher than that of the original Bacm OxdC. After three cycles, the demulsification rate still reached 89.3%, proving it has excellent recyclability. This work is the first study on the demulsification mechanism of protein biodemulsifiers and provides useful insights into the demulsification mechanism of biodemulsifiers for oil-in-water emulsions. In addition, a promising high-efficiency modification technique for protein biodemulsifiers was proposed, which provided information for the development of biodemulsifiers for oil-water separation.
Collapse
Affiliation(s)
- Ning Hou
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Xin Zhao
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Ziyi Han
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Xinxin Jiang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Yongping Fang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Yun Chen
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
23
|
Yin X, He Y, He T, Li H, Wu J, Zhou L, Li S, Li C. A durable MOF-303-coated stainless steel mesh with robust anti-oil-fouling performance for multifunctional oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Jiang Y, Xian C, Xu X, Zheng W, Zhu T, Cai W, Huang J, Lai Y. Robust PAAm-TA hydrogel coated PVDF membranes with excellent crude-oil antifouling ability for sustainable emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Han X, Guo Z, Liu W. Cellulose/Poly(vinyl alcohol)/Tannic Acid Porous Cross-Linked Composite Frame Materials with Excellent Oil/Water Separation Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12795-12803. [PMID: 36215179 DOI: 10.1021/acs.langmuir.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Problems such as increasingly serious water pollution attracted widespread concern. The underwater OCAs of the samples became larger with increasing pH and the under-oil WCAs of the samples did not vary regularly with increasing pH. Nanoneedle structures were grown on metal foam by anodization. Cellulose is fixed to the frame by cross-linking with supramolecular binder poly(vinyl alcohol)/tannin. A cellulose/poly(vinyl alcohol)/tannin porous composite framework with special wettability is prepared. This porous composite framework can be used for the continuous separation of oil/water mixtures with high separation efficiency, high throughput, excellent reusability, and mechanical durability. In addition, due to the coating of cellulose and the supramolecular binder, the pore size of the frame is reduced, and the cagelike structure of the porous framework can promote its demulsification effect. Therefore, the cellulose/poly(vinyl alcohol)/tannic acid porous composite frame can also be used for the separation of oil/water emulsions. This porous frame material has broad application prospects in oil spill treatment and sewage purification.
Collapse
Affiliation(s)
- Xutong Han
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| |
Collapse
|
26
|
Stejskal J. Recent Advances in the Removal of Organic Dyes from Aqueous Media with Conducting Polymers, Polyaniline and Polypyrrole, and Their Composites. Polymers (Basel) 2022; 14:4243. [PMID: 36236189 PMCID: PMC9573281 DOI: 10.3390/polym14194243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022] Open
Abstract
Water pollution by organic dyes, and its remediation, is an important environmental issue associated with ever-increasing scientific interest. Conducting polymers have recently come to the forefront as advanced agents for removing dye. The present review reports on the progress represented by the literature published in 2020-2022 on the application of conducting polymers and their composites in the removal of dyes from aqueous media. Two composites, incorporating the most important polymers, polyaniline, and polypyrrole, have been used as efficient dye adsorbents or photocatalysts of dye decomposition. The recent application trends are outlined, and future uses also exploiting the electrical and electrochemical properties of conducting polymers are offered.
Collapse
Affiliation(s)
- Jaroslav Stejskal
- University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| |
Collapse
|
27
|
Nonflammable, robust and recyclable hydrophobic zeolitic imidazolate frameworks/sponge with high oil absorption capacity for efficient oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Yao Y, Dang X, Qiao X, Li R, Chen J, Huang Z, Gong YK. Crosslinked biomimetic coating modified stainless-steel-mesh enables completely self-cleaning separation of crude oil/water mixtures. WATER RESEARCH 2022; 224:119052. [PMID: 36099762 DOI: 10.1016/j.watres.2022.119052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The development of high-flux, durable and completely self-cleaning membranes is highly desired for separation of massive oil/water mixtures. Herein, differently crosslinked poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brush grafted stainless steel mesh (SSM) membranes (SSM/PMPCs) were fabricated by integrating of mussel inspired universal adhesion and crosslinking chemistry with surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP). The durability and self-cleaning performance of the prepared SSM membranes were evaluated by separating sticky crude oil/water mixtures in a continuous recycling dead-end filtration device. The water filtration flux driven by gravity reached 60,000 L⋅m-2⋅h-1 with a separation efficiency of over 99.98%. Furthermore, zero-flux-decline was observed during a 5 h continuous filtration when assisted by mechanical stirring. More significantly, such a completely self-cleaning separation of the well crosslinked SSM/PMPC2 membrane under optimized flux and stirring conditions had been operated cumulatively for 190 h in 30 days without any additional cleaning. These significant advances are more promising for practical applications in crude oil-contaminated water treatments and massive oil/water mixture separation.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xingzhi Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xinyu Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Jiazhi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Zhihuan Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, PR China.
| |
Collapse
|
29
|
Gao Z, Gu X, Liu C, Zhang Z, Shao H, Zhang Q, Long M, Guo X. An internal electrostatic force-driven superoleophilic membrane-magnetic nanoparticles coupling system for superefficient water-in-oil emulsions separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Cui W, Fan T, Li Y, Wang X, Liu X, Lu C, Ramakrishna S, Long YZ. Robust functional Janus nanofibrous membranes for efficient harsh environmental air filtration and oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Su X, Huang S, Wu W, Li K, Xie H, Wu Y, Zhang X, Xie X. Protonated cross-linkable nanocomposite coatings with outstanding underwater superoleophobic and anti-viscous oil-fouling properties for crude oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129129. [PMID: 35584584 DOI: 10.1016/j.jhazmat.2022.129129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Superhydrophilic/underwater superoleophobic coatings that effectively prevent viscous oil contamination have been of considerable interest for the great potential in oil spill remediation and oilfield wastewater treatment. In the present work, a protonated cross-linkable nanocomposite coating with robust underwater superoleophobicity and intensified hydration capability is proposed through the synthesis of active polymeric nanocomplex (PNC), cross-linking reaction between PNC and hydrophilic chitosan (CS), and final protonation to further improve water affinity. Benefiting from the hierarchical structure and strong hydration capability induced by electrostatic interactions and hydrogen bondings, the nanocomposite coating coated textile exhibits excellent superhydrophilicity (within 0.28 s with water contact angle reaching 0°), underwater superoleophobicity (underwater crude oil contact angle at 160°), and ultralow oil adhesion even to highly viscous silicone oil. Moreover, the nanocomposite coating presents a robust chemical resistance, mechanical tolerance, and storage stability. Simultaneously, the nanocomposite coating adapts well to various porous substrates (e.g., stainless steel mesh and Ni sponge) with great anti-oil-fouling and self-cleaning performances. Importantly, the coating coated textile is successfully applied in crude oil/water separation with excellent efficiency and repeatability. The findings conceivably stand out as a new methodology to fabricate superhydrophilic/underwater superoleophobic materials with outstanding anti-viscous oil-fouling property for practically treating oily wastewater.
Collapse
Affiliation(s)
- Xiaojing Su
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shengqi Huang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenjian Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Huali Xie
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunhui Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaofan Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xin Xie
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
32
|
Robust modified nylon mesh for the separation of crude-oil/water emulsion based on the coupling of squeezing coalescence demulsification and sieving separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Usha ZR, Babiker DM, Yu R, Yang J, Che W, Chen X, Li L. Super hydrophilic modified biaxially oriented polypropylene microporous membrane for excellent gravity-driven oil/water emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Chen X, Li Y, Yang Y, Zhang D, Guan Y, Bao M, Wang Z. A super-hydrophobic and antibiofouling membrane constructed from carbon sphere-welded MnO2 nanowires for ultra-fast separation of emulsion. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Tian Q, Qiu F, Li Z, Xiong Q, Zhao B, Zhang T. Structured sludge derived multifunctional layer for simultaneous separation of oil/water emulsions and anions contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128651. [PMID: 35299105 DOI: 10.1016/j.jhazmat.2022.128651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The effective treatment of complex oily wastewater is of great significance but still a considerable challenge, since single-function, expensive reagents, and complicated process have emerged as shackles for practical applications. Herein, with the objective to waste-control-waste, we proposed a facile and sustainable strategy to fabricate a low-cost multifunctional layer from hazardous waste aluminum sludge (WAS) for complex oily wastewater management. The as-designed layered double oxides/WAS (LDOs/WAS) layer with three-dimensional (3D) hierarchical rough surface exhibited excellent underwater superoleophobicity even under corrosive conditions and low adhesion to oil without any chemical modification reagent treatment. Significantly, the layer can be applied to gravity-directed simultaneous efficient oil-in-water emulsions and anions (taking phosphate as an example) separation with a separation efficiency for emulsion and phosphate up to 99.4% and 99.1%, respectively, and a high separation flux of above 2585 L m-2 h-1. Notably, the flux can be controlled simply and flexibly by adjusting the thickness of the layer. Furthermore, the layer also displayed excellent thermal stability, chemical stability, durability and recyclability. Therefore, this work not only presents a promising approach to design sludge-based multifunctional materials for complex oily wastewater remediation, but also shows great potential and value in environmental pollutions reduction and industrial applications.
Collapse
Affiliation(s)
- Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Xiong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bencheng Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
36
|
Wang Y, Liu X, He Q, Wang X, Lu H, Guo F, Zhang Y, Wang W. Multifunctional natural sepiolite nanofibre composite demulsifiers for efficient purification of oils and dyes in simulated and actual wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
He Z, Wu H, Shi Z, Gao X, Sun Y, Liu X. Mussel-Inspired Durable TiO 2/PDA-Based Superhydrophobic Paper with Excellent Self-Cleaning, High Chemical Stability, and Efficient Oil/Water Separation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6086-6098. [PMID: 35504860 DOI: 10.1021/acs.langmuir.2c00429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oceanic oil spill and the discharge of industrial oily wastewaters can cause significant threats to the ecological environment and human health. Herein, we design a durable TiO2/PDA-based superhydrophobic paper for efficient oil/water separation. Bioinspired from mussel adhesive proteins, the mechanical durability of the as-prepared superhydrophobic paper is enhanced by the deposition of polydopamine (PDA) onto cellulosic fibers via self-polymerization of dopamine. The TiO2/PDA-based superhydrophobic paper shows a high water contact angle of 168.2° and an oil contact angle of ∼0°, exhibiting excellent superhydrophobicity and superoleophilicity. Furthermore, the as-prepared superhydrophobic paper possesses excellent chemical stability, thermal stability, and mechanical durability in terms of being immersed in corrosive solutions and solvents and boiling water and being subjected to the sandpaper abrasion test, respectively. More importantly, the separation efficiency of the TiO2/PDA-based superhydrophobic paper for an oil/water mixture is 97.2%, and it maintains a separation efficiency above 94.3% even after 15 cyclic separation processes. Furthermore, the separation efficiency for water-in-oil emulsions is higher than 93.7% after 15 cyclic separation tests, showing its excellent recyclable stability for water-in-oil emulsions. Therefore, the rationally designed TiO2/PDA-based superhydrophobic paper shows great potential in the practical applications of self-cleaning, antifouling, and oil/water separation.
Collapse
Affiliation(s)
- Zhiwei He
- Center for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hanqing Wu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhen Shi
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Xianming Gao
- Center for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yuping Sun
- Center for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xianguo Liu
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| |
Collapse
|
38
|
Wang R, Zhu X, Zhu L, Li H, Xue J, Yu S, Liu X, Gan S, Xue Q. Multifunctional superwetting positively charged foams for continuous oil/water emulsion separation and removal of hazardous pollutants from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
L-lysine functionalized Ti3C2Tx coated polyurethane sponge for high-throughput oil–water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Multilayered chitosan/kaolin@calcium carbonate composite films with excellent chemical and thermal stabilities for oil/water filtration realized by a facile layer-by-layer assembly. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Electrospinning PAN/PEI/MWCNT-COOH nanocomposite fiber membrane with excellent oil-in-water separation and heavy metal ion adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Sun X, Wang X, Li J, Huang L, Sun H, Hao Y, Bai L, Pan J, Gao X. Enhanced oil–water separation via superhydrophobic electrospun carbon fiber membrane decorated with Ni nanoclusters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Zheng Y, Long X, Zuo Y, Wang L, Wang Y, Feng F, Jiao F. Tannin-Based Spontaneous Adhesion Superhydrophilic Coatings for Efficient Oil-in-Water Emulsion Separation and Dye Removal. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yijian Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xuan Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yi Zuo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Lujun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yinke Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Fenling Feng
- School of Traffic and Transportation Engineering, Central South University, Changsha 410083, P.R. China
| | - Feipeng Jiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
44
|
Teng D, Xu Y, Zhao T, Zhang X, Li Y, Zeng Y. Zein adsorbents with micro/nanofibrous membrane structure for removal of oils, organic dyes, and heavy metal ions in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128004. [PMID: 34915293 DOI: 10.1016/j.jhazmat.2021.128004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Developing multi-functional media for effectively removing different contaminants coexisted in wastewater system is highly desired. Herein, zein, a natural protein possessing abundant functional groups in molecule, is chosen to be fabricated into micro/nanofibrous membranes as adsorbents and separation media. Zein fibers with novel groove ribbon structures, which possess better structural characteristics, are designed for obtaining good adsorption performance. The adsorption performances of zein fiber membranes are evaluated. The results show that zein fiber membranes have the adsorption capacities up to 94 g/g for motor oil, 168 mg/g for Congo red, and 189 mg/g for Pb2+ ion for 1000 mg/L initial solution concentration, showing considerable competitiveness as compared with the reported adsorbents. The zein membrane with groove ribbon fiber morphology exhibits optimal adsorption capability and can be attractive multi-functional separation media.
Collapse
Affiliation(s)
- Defang Teng
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuanqiang Xu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Tienan Zhao
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaomin Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
45
|
Hou S, Zhu T, Shen W, Kang F, Inagaki M, Huang ZH. Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127724. [PMID: 34799174 DOI: 10.1016/j.jhazmat.2021.127724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Exfoliated graphite (EG) blocks are prepared from the ultra-large flakes of graphite by intercalation of H2SO4 using a large amount of H2O2 at 5 °C and following exfoliation at 30 °C. By the exfoliation in a closed container, EG blocks with the bulk densities of 0.008-0.024 g/cm3 are successfully prepared. The resultant EG blocks have high sorption capacities for a diesel oil, up to 45 g/g. The EG blocks after oil sorption can get certain resilience for compressive stress with high reproducibility by compression-release cycles, which allows us to apply the compression-releasing for the oil sorption-desorption of the EG blocks. The performance of cyclic oil sorption-desorption by compression-releasing of EG block is compared with those of filtration and distillation. Since the resultant EG blocks had sufficient mechanical strength, the continuous removal of oil floating on the water surface is possible, exporting oil through a catheter inserted into the block and connected to a peristaltic pump. By warming up by Joule heating, even a crude oil having high viscosity can be continuously removed from the water with sufficient rate. The high hydrophobicity and lipophilicity of EG make selective removal of oil from water possible.
Collapse
Affiliation(s)
- Shiyu Hou
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing 100191, China.
| | - Wanci Shen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feiyu Kang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Michio Inagaki
- Hokkaido University, 228-7399 Nakagawa, Hosoe-cho, Kita-ku, Hamamatsu 431-1304, Japan.
| | - Zheng-Hong Huang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
46
|
Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly(acrylic acid) for effective wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Zhu X, Zhang J, Zhu L, Wang R, Gan S, Xue J, Liu X, Li H, Xue Q. Multifunctional recycled wet wipe with negatively charged coating for durable separation of oil/water emulsion via interface charge demulsification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Zhang J, Huang X, Xiong Y, Zheng W, Liu W, He M, Li L, Liu J, Lu L, Peng K. Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Lei J, Guo Z. Superamphiphilic stainless steel mesh for oil/water emulsion separation on-demand. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Feng Q, Zhan Y, Yang W, Dong H, Sun A, Liu Y, Wen X, Chiao YH, Zhang S. Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|