1
|
Maru K, Kalla S, Jangir R. Strategic Design of Novel Zinc and Cadmium Metal-Organic Frameworks for Enhanced, Reversible, and Multi-Phase Iodine Sequestration. SMALL METHODS 2025:e2500101. [PMID: 40200639 DOI: 10.1002/smtd.202500101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Radioactive iodineisotopes (129I and 131I), generated duringnuclear fission, persist in gaseous and aqueous phases due to their volatilityand bioaccumulation, posing severe health risks. Multiphase iodine removalremains challenging due to the low efficiency of conventional materials, especially in aqueous media where high polarity hinders effective adsorption. Herein, a novel bidentate precursor, 4, 4'-(((2, 3, 5, 6-tetramethyl-1, 4-phenylene)bis(methylene))bis(azanediyl))dibenzoicacid (PMBADH₂), was strategically designed having two -NH linkages to enhance interactions withiodine in the phases. Using PMBADH2, Two new isostructural metal-organic frameworks(MOFs), {[Zn₂(PMBADH₂)₄(DMF)₂]·4DMF}n (SVNIT-1) and {[Cd₂(PMBADH₂)₄(DMF)₂]·4DMF}n (SVNIT-2), were synthesized. The MOFs werealso prepared on a gram scale to enhance practical applicability. Comprehensive characterization of both MOFs was performed using SCXRD, PXRD, FTIR, XPS, BET, and TGA. Both MOFs exhibited outstanding iodine uptake across vapor, organic, and aqueous phases. SVNIT-1 achieved capacities of 6.5 g g-1 (vapor), 2.8 g g-1 (organic), and 2.5 g g-1 (aqueous, including seawater), while SVNIT-2 showed comparable values of 6.1, 2.6, and 2.4 g g-1, respectively. Extensive studies on desorption, recyclability, and stability confirmed the robustness and reusability of thesematerials. Mechanistic studies using FTIR, PXRD, Raman, UV-DRS, XPS, and ESR highlighted the pivotal role of NH linkages in promoting iodine adsorption via strong hostguest interactions.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat, Gujarat, 395 007, India
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat, Gujarat, 395 007, India
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat, Gujarat, 395 007, India
| |
Collapse
|
2
|
Hammi N, Boundor M, Chen S, Couzon N, El Kadib A, Ferri A, Pourpoint F, Loiseau T, Volkringer C, Royer S, Dhainaut J. Evaporation-Induced Reticular Growth of UiO-66_NH 2 in Chitosan Films: Adsorption of Iodine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3952-3961. [PMID: 39763431 DOI: 10.1021/acsami.4c18621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH2/chitosan (ZrCSx-f) films were designed by crystallizing UiO-66_NH2 within a chitosan (CS) skeleton. The resulting ZrCSx-f films displayed remarkable homogeneity with high loadings of UiO-66_NH2 crystals, up to 45 wt %, coupled to a high adsorption capacity of iodine in gas phase, up to 317 mg.g-1.
Collapse
Affiliation(s)
- Nisrine Hammi
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille 59000, France
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | | | - Shuo Chen
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Nelly Couzon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | | | - Anthony Ferri
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Lens F-62300, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Institut Universitaire de France, 1 rue Descartes, Paris 75005, France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
3
|
Zheng YX, Wu X, Yang WG, Li BX, Gao K, Zhou J, Liu Y, Yang D. Nitrogen-rich and core-sheath polyamide/polyethyleneimine@Zr-MOF for iodine adsorption and nerve agent simulant degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135713. [PMID: 39278035 DOI: 10.1016/j.jhazmat.2024.135713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Radioactive nuclides and highly toxic organophosphates are typical deadly threats. Materials with the function of radioactive substances adsorption and organophosphates degradation provide double protection. Herein, dual-functional polyamide (PA)/polyethyleneimine (PEI)@Zr-MOF fiber composite membranes, fabricated by in-situ solvothermal growth of Zr-MOF on PA/PEI electrospun fiber membranes, are designed for protection against two typical model compounds of iodine and dimethyl 4-nitrophenyl phosphate (DMNP). Benefiting from the unique core-sheath structure composed of inner nitrogen-rich fibers and outer porous Zr-MOF, the composite membranes rapidly enrich iodine through abundant active sites of the outer sheath and form complexes with the amine of inner PEI, exhibiting a highly competitive adsorption capacity of 609 mg g-1. Moreover, it can adsorb and degrade DMNP with the synergy of PEI component and Zr-MOF, achieving an 80 % removal of DMNP within 7 min without any additional co-catalyst. This work provides a feasible strategy to fabricate dual-functional materials that protect against radioactive and organophosphorus contaminants.
Collapse
Affiliation(s)
- Yu-Xuan Zheng
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuwen Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Guang Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bai-Xue Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kejing Gao
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Jingsheng Zhou
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Yunfang Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongzhi Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Liu L, Wang N, He C, Wei Y, Wang J, Wang X. Construction of heterogeneous MOF-on-MOF for highly efficient gaseous iodine sequestration under static conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136017. [PMID: 39362121 DOI: 10.1016/j.jhazmat.2024.136017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Considering the unexpected nuclear power waste emission and potential nuclear leakage, the exploration of robust materials for the effective capture and storage of radioactive iodine is of great importance but still remains a challenge. In this work, we report the rational synthesis of functionalized NH2-UiO-66-on-ZIF-67 architecture to enhance the static adsorption and retention of volatile iodine. Such MOF-on-MOF heterostructures was fabricated through seeding ZIF-67 core on the surface of NH2-UiO-66 satellite via a facile polyvinylpyrrolidone (PVP) regulated internal extended growth strategies. NH2-UiO-66-on-ZIF-67 exhibited unique core-satellite structure, which significantly promotes the binding interactions with iodine through synergizing of the N-rich imidazole moieties and surface functionalized amino groups within the porosity channels. As a result, the as fabricated NH2-UiO-66-on-ZIF-67 achieves enhanced mass diffusion and high capture capacity of 3600 mg/g for iodine vapor under static sorption conditions. Moreover, water vapor in humid conditions (relative humidity of 18 %) has almost no effect on the static iodine adsorption performance of the material. This study sheds light on a reliable MOF-on-MOF hybrid strategy for effective radioiodine treatment to ensure the safety nuclear waste management.
Collapse
Affiliation(s)
- Linshuai Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Chunlin He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, PR China
| | - Jingjing Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
5
|
Zuba I, Ponomareva OY, Vershinina TN, Vinogradov II, Korneeva EA, Hetmańczyk J, Pawlukojć A. Application of zirconium aspartic acid metal-organic framework (MIP-202(Zr)) for high efficient ruthenium adsorption from aqueous solutions. Appl Radiat Isot 2024; 213:111461. [PMID: 39217857 DOI: 10.1016/j.apradiso.2024.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The zirconium metal - organic framework MIP-202(Zr), based on L-aspartic acid, was prepared by hydrothermal method and used for study of ruthenium adsorption from aqueous solutions. The obtained material was characterized by X-ray diffraction (XRD), infra red spectroscopy (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The batch adsorption experiment was performed for determination of adsorption equilibrium, kinetics and thermodynamics parameters to Ru(III) from aqueous solution on MIP-202(Zr). The data of ruthenium sorption onto MIP-202(Zr) were fitted and analyzed by the Langmuir, Freundlich and Temkin equilibrium isotherm models, while the Langumir adsorption isotherm models fit the best. Kinetic data were analyzed by four kinetic models, and ruthenium sorption on MIP202(Zr) can be describes the best by intra particle diffusion (Weber Morris). Analysis of thermodynamic properties of ruthenium ions sorption onto MIP-202(Zr) shows that the sorption process has a spontaneous and endothermic nature and is energetically beneficial.
Collapse
Affiliation(s)
- I Zuba
- Institue of Nuclear Chemistry and Technology, Dorodna 16 Str., Warsaw, Poland.
| | - O Yu Ponomareva
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - T N Vershinina
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - I I Vinogradov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - E A Korneeva
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - J Hetmańczyk
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków,Poland
| | - A Pawlukojć
- Institue of Nuclear Chemistry and Technology, Dorodna 16 Str., Warsaw, Poland
| |
Collapse
|
6
|
Plastiras OE, Bouquet P, Raczkiewicz I, Belouzard S, Martin De Fourchambault E, Dhainaut J, Dacquin JP, Goffard A, Volkringer C. Virucidal activity of porphyrin-based metal-organic frameworks against highly pathogenic coronaviruses and hepatitis C virus. Mater Today Bio 2024; 28:101165. [PMID: 39221218 PMCID: PMC11364898 DOI: 10.1016/j.mtbio.2024.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
The antiviral effect of four porphyrin-based Metal-Organic Frameworks (PMOFs) with Al and Zr, namely Al-TCPP, PCN-222, PCN-223 and PCN-224 was assessed for the first time against HCoV-229E, two highly pathogenic coronaviruses (SARS-CoV-2 and MERS-CoV) and hepatitis C virus (HCV). Infection tests in vitro were done under dark or light exposure for different contact times, and it was found that 15 min of light exposure were enough to give antiviral properties to the materials, therefore inactivating HCoV-229E by 99.98 % and 99.96 % for Al-TCPP and PCN-222. Al-TCPP diminished the viral titer of SARS-CoV-2 greater than PCN-222 in the same duration of light exposure, having an effect of 99.95 % and 93.48 % respectively. Next, Al-TCPP was chosen as the best candidate possessing antiviral properties and was tested against MERS-CoV and HCV, showcasing a reduction of infectivity of 99.28 % and 98.15 % respectively for each virus. The mechanism of the antiviral activity of the four PMOFs was found to be the production of singlet oxygen 1O2 from the porphyrin ligand TCPP when exposed to visible light, by using sodium azide (NaN3) as a scavenger, that can later attack the phospholipids on the envelope of the viruses, thus preventing their entry into the cells.
Collapse
Affiliation(s)
- Orfeas-Evangelos Plastiras
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Peggy Bouquet
- Clinical Microbiology Unit, Institut Pasteur de Lille, Lille, F-59000, France
| | - Imelda Raczkiewicz
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Sandrine Belouzard
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Esther Martin De Fourchambault
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Jeremy Dhainaut
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
| | - Jean-Philippe Dacquin
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
| | - Anne Goffard
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
| |
Collapse
|
7
|
Andrade PHM, Dhainaut J, Volkringer C, Loiseau T, Moncomble A, Hureau M, Moissette A. Stability of Iodine Species Trapped in Titanium-Based MOFs: MIL-125 and MIL-125_NH 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400265. [PMID: 38660825 DOI: 10.1002/smll.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Two titanium-based MOFs MIL-125 and MIL-125_NH2 are synthesized and characterized using high-temperature powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), N2 sorption, Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), and electron paramagnetic resonance (EPR). Stable up to 300 °C, both compounds exhibited similar specific surface areas (SSA) values (1207 and 1099 m2 g-1 for MIL-125 and MIL-125_NH2, respectively). EPR signals of Ti3+ are observed in both, whith MIL-125_NH2 also showing ─NH2 ●+ signatures. Both MOFs efficiently adsorbed iodine in continuous gas flow over five days, with MIL-125 trapping 1.9 g.g-1 and MIL-125_NH2 trapping 1.6 g.g-1. MIL-125_NH2 exhibited faster adsorption kinetics due to its smaller band gap (2.5 against 3.6 eV). In situ Raman spectroscopy conducted during iodine adsorption revealed signal evolution from "free" I2 to "perturbed" I2, and I3 -. TGA and in situ Raman desorption experiments showed that ─NH2 groups improved the stabilization of I3 - due to an electrostatic interaction with NH2 ●+BDC radicals. The Albery model indicated longer lifetimes for iodine desorption in I2@MIL-125_NH2, attributed to a rate-limiting step due to stronger interaction between the anionic iodine species and the ─NH2 ●+ radicals. This study underscores how MOFs with efficient charge separation and hole-stabilizer functional groups enhance iodine stability at higher temperatures.
Collapse
Affiliation(s)
- Pedro H M Andrade
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, 59655, France
- Departamento de Engenharia Metalúrgica e de Materiais (DEMET), Departamento de Física (DF), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jérémy Dhainaut
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
| | - Aurélien Moncomble
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, 59655, France
| | - Matthieu Hureau
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, 59655, France
| | - Alain Moissette
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, 59655, France
| |
Collapse
|
8
|
Li J, Zhang X, Fan M, Chen Y, Ma Y, Smith GL, Vitorica-yrezabal IJ, Lee D, Xu S, Schröder M, Yang S. Direct Observation of Enhanced Iodine Binding within a Series of Functionalized Metal-Organic Frameworks with Exceptional Irradiation Stability. J Am Chem Soc 2024; 146:14048-14057. [PMID: 38713054 PMCID: PMC11117185 DOI: 10.1021/jacs.4c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
Optimization of active sites and stability under irradiation are important targets for sorbent materials that might be used for iodine (I2) storage. Herein, we report the direct observation of I2 binding in a series of Cu(II)-based isostructural metal-organic frameworks, MFM-170, MFM-172, MFM-174, NJU-Bai20, and NJU-Bai21, incorporating various functional groups (-H, -CH3, - NH2, -C≡C-, and -CONH-, respectively). MFM-170 shows a reversible uptake of 3.37 g g-1 and a high packing density of 4.41 g cm-3 for physiosorbed I2. The incorporation of -NH2 and -C≡C- moieties in MFM-174 and NJU-Bai20, respectively, enhances the binding of I2, affording uptakes of up to 3.91 g g-1. In addition, an exceptional I2 packing density of 4.83 g cm-3 is achieved in MFM-174, comparable to that of solid iodine (4.93 g cm-3). In situ crystallographic studies show the formation of a range of supramolecular and chemical interactions [I···N, I···H2N] and [I···C≡C, I-C═C-I] between -NH2, -C≡C- sites, respectively, and adsorbed I2 molecules. These observations have been confirmed via a combination of solid-state nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. Importantly, γ-irradiation confirmed the ultraresistance of MFM-170, MFM-174, and NJU-Bai20 suggesting their potential as efficient sorbents for cleanup of radioactive waste.
Collapse
Affiliation(s)
- Jiangnan Li
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xinran Zhang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Mengtian Fan
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Yujie Ma
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Gemma L. Smith
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K.
| | - Shaojun Xu
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K.
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Benkhaled BT, Chaix A, Gomri C, Buys S, Namar N, Sehoulia N, Jadhav R, Richard J, Lichon L, Nguyen C, Gary-Bobo M, Semsarilar M. Novel Biocompatible Trianglamine Networks for Efficient Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42942-42953. [PMID: 37647569 DOI: 10.1021/acsami.3c08061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Herein, we report for the first time a biocompatible cross-linked trianglamine (Δ) network for the efficient iodine removal from the vapor phase, water, and seawater. In the vapor phase, the cross-linked network could capture 6 g g-1 of iodine, ranking among the most performant materials for iodine vapor capture. In the liquid phase, this cross-linked network is also capable of capturing iodine at high rates from aqueous media (water and seawater). This network displayed fast adsorption kinetics, and they are fully recyclable. This study reveals the high affinity of iodine for the intrinsic cavity of the trianglamine. The synthesized materials are extremely interesting since they are environmentally friendly and inexpensive and the synthesis could easily be scaled up to be used as the material of choice in response to accidents in the nuclear industry.
Collapse
Affiliation(s)
| | - Arnaud Chaix
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Chaimaa Gomri
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Sébastien Buys
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nabil Namar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nadine Sehoulia
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Rohitkumar Jadhav
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Jason Richard
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Laure Lichon
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Christophe Nguyen
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Mona Semsarilar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| |
Collapse
|
10
|
Andrade PHM, Ahouari H, Volkringer C, Loiseau T, Vezin H, Hureau M, Moissette A. Electron-Donor Functional Groups, Band Gap Tailoring, and Efficient Charge Separation: Three Keys To Improve the Gaseous Iodine Uptake in MOF Materials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37315191 DOI: 10.1021/acsami.3c04955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) have been largely investigated worldwide for their use in the capture of radioactive iodine due to its potential release during nuclear accident events and reprocessing of nuclear fuel. The present work deals with the capture of gaseous I2 under a continuous flow and its subsequent transformation into I3- within the porous structures of three distinct, yet structurally related, terephthalate-based MOFs: MIL-125(Ti), MIL-125(Ti)_NH2, and CAU-1(Al)_NH2. The synthesized materials exhibited specific surface areas (SSAs) with similar order of magnitude: 1207, 1099, and 1110 m2 g-1 for MIL-125(Ti), MIL-125(Ti)_NH2, and CAU-1(Al)_NH2, respectively. Because of that, it was possible to evaluate the influence of other variables over the iodine uptake capacity─such as band gap energies, functional groups, and charge transfer complexes (CTC). After 72 h of contact with the I2 gas flow, MIL-125(Ti)_NH2 was able to trap 11.0 mol mol-1 of I2, followed by MIL-125(Ti) (8.7 mol mol-1), and by CAU-1(Al)_NH2 (4.2 mol mol-1). The enhanced ability to retain I2 in the MIL-125(Ti)_NH2 was associated with a combined effect between its amino group (which has a great affinity toward iodine), its smaller band gap (2.5 eV against 2.6 and 3.8 eV for CAU-1(Al)_NH2 and MIL-125(Ti), respectively), and its efficient charge separation. In fact, the presence of a linker-to-metal charge transfer (LMCT) mechanism in MIL-125(Ti) compounds separates the photogenerated electrons and holes into the two distinct moieties of the MOF: the organic linker (which stabilizes the holes) and the oxy/hydroxy inorganic cluster (which stabilizes the electrons). This effect was observed using EPR spectroscopy, whereas the reduction of the Ti4+ cations into the paramagnetic Ti3+ species was evidenced after irradiation of the pristine Ti-based MOFs with UV light (<420 nm). In contrast, because CAU-1(Al)_NH2 exhibits a purely linker-based transition (LBT)─with no EPR signals related to Al paramagnetic species─it tends to exhibit faster recombination of the photogenerated charge carriers as, in this case, both electrons and holes are located over the organic linker. Furthermore, the transformation of the gaseous I2 into In- [n = 5, 7, 9, ...] intermediates and then into I3- species was evaluated using Raman spectroscopy by following the evolution of their respective bands at about 198, 180, and 113 cm-1. This conversion─which is favored by an effective charge separation and smaller band gaps─increases the I2 uptake capacity of the compounds by creating specific adsorption sites for these anionic species. In fact, because the -NH2 groups act as an antenna to stabilize the photogenerated holes, both In- and I3- are adsorbed into the organic linker via an electrostatic interaction with these positively charged entities. Finally, changes regarding the EPR spectra before and after the iodine loading were considered to propose a mechanism for the electron transfer from the MOFs structure to the I2 molecules considering their different characteristics.
Collapse
Affiliation(s)
- Pedro H M Andrade
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| | - Hania Ahouari
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, F-59000 Lille, France
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, F-59000 Lille, France
| | - Hervé Vezin
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| | - Matthieu Hureau
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| | - Alain Moissette
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
11
|
Wang S, Song L, Liu S, Pei X, Zhao Y, Min C, Shao R, Ma T, Yin Y, Xu Z, Wang C. Metal-organic framework nanoparticles as a free radical scavenger improving the stability of epoxy under high dose gamma irradiation. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Yang X, Li C, Giorgi M, Siri D, Bugaut X, Chatelet B, Gigmes D, Yemloul M, Hornebecq V, Kermagoret A, Brasselet S, Martinez A, Bardelang D. Energy-Efficient Iodine Uptake by a Molecular Host⋅Guest Crystal. Angew Chem Int Ed Engl 2022; 61:e202214039. [PMID: 36198650 PMCID: PMC10092189 DOI: 10.1002/anie.202214039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Recently, porous organic crystals (POC) based on macrocycles have shown exceptional sorption and separation properties. Yet, the impact of guest presence inside a macrocycle prior to adsorption has not been studied. Here we show that the inclusion of trimethoxybenzyl-azaphosphatrane in the macrocycle cucurbit[8]uril (CB[8]) affords molecular porous host⋅guest crystals (PHGC-1) with radically new properties. Unactivated hydrated PHGC-1 adsorbed iodine spontaneously and selectively at room temperature and atmospheric pressure. The absence of (i) heat for material synthesis, (ii) moisture sensitivity, and (iii) energy-intensive steps for pore activation are attractive attributes for decreasing the energy costs. 1 H NMR and DOSY were instrumental for monitoring the H2 O/I2 exchange. PHGC-1 crystals are non-centrosymmetric and I2 -doped crystals showed markedly different second harmonic generation (SHG), which suggests that iodine doping could be used to modulate the non-linear optical properties of porous organic crystals.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille UnivCNRSICRAMUTechMarseilleFrance
| | - Chunyang Li
- School of Materials Science and Engineering& Material Corrosion and Protection Key Laboratory of Sichuan ProvinceSichuan University of Science & EngineeringZigong643000P. R. China
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | - Michel Giorgi
- Aix Marseille UnivCNRS, CentraleMarseille, FSCMSpectropoleMarseilleFrance
| | - Didier Siri
- Aix Marseille UnivCNRSICRAMUTechMarseilleFrance
| | - Xavier Bugaut
- Université de StrasbourgUniversité de Haute-AlsaceCNRSLIMAUMR 704267000StrasbourgFrance
| | - Bastien Chatelet
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | | | - Mehdi Yemloul
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | | | | | | | | | | |
Collapse
|
13
|
Li T, Dong S, Chen Z, Wei Q, Ren X. Breaking through the Separation Barrier of Zr(IV) and Hf(IV): Magical Effect of the Bisamide Ligand. Inorg Chem 2022; 61:13915-13923. [PMID: 35994610 DOI: 10.1021/acs.inorgchem.2c01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fundamental safety improvement of the nuclear industry depends on two important elements: Zr(IV) and Hf(IV). However, the elementary knowledge is that separation processes of the two are difficult, so there are few existing methods to meet the requirement. Furthermore, the process is highly contaminated. The development of green and efficient ligands for the separation of Zr(IV) and Hf(IV) is beneficial to the stable development of the nuclear industry. A bisamide ligand D001 was reported for the extraction and separation of Zr(IV) and Hf(IV). D001 utilizes an anionic association mechanism to extract Zr(IV) and Hf(IV) by coordinating amide groups with metals to form complexes H2ZrCl6·2 D001 and H2HfCl6·2 D001. Using quantum chemical calculations, we illuminate the extraction mechanism of bisamide ligands and the reasons for their better coordination ability than monoamide ligands and carboxylic acid ligands. A process of bisamide extraction and separation of Zr(IV) and Hf(IV) was established, and the thermodynamic parameters of the process were investigated.
Collapse
Affiliation(s)
- Ting Li
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China.,School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.,Shandong Institute of Ship-Building Technology, Institute of Shipping Oil Residue and Oily Sewage Clean Technology, Weihai, Shandong 264209, China
| | - Shishun Dong
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China.,School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.,Shandong Institute of Ship-Building Technology, Institute of Shipping Oil Residue and Oily Sewage Clean Technology, Weihai, Shandong 264209, China
| | - Zhaowen Chen
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China.,School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Qifeng Wei
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China.,School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.,Shandong Institute of Ship-Building Technology, Institute of Shipping Oil Residue and Oily Sewage Clean Technology, Weihai, Shandong 264209, China
| | - Xiulian Ren
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China.,School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.,Shandong Institute of Ship-Building Technology, Institute of Shipping Oil Residue and Oily Sewage Clean Technology, Weihai, Shandong 264209, China
| |
Collapse
|
14
|
Luo L, Huang H, Heng Y, Shi R, Wang W, Yang B, Zhong C. Hierarchical-pore UiO-66-NH 2 xerogel with turned mesopore size for highly efficient organic pollutants removal. J Colloid Interface Sci 2022; 628:705-716. [PMID: 35944301 DOI: 10.1016/j.jcis.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023]
Abstract
Persistent organic pollutants in water are not only a potential threat to human health, but also cause damage to the ecological environment. Hence, the removal of large organic pollutants from wastewater is of great importance for environmental protection. Herein, hierarchical-pore UiO-66-NH2 xerogels (H-UiO-66-NH2 xerogels) with different mesopore size, H-UiO-66-NH2-11.6 nm and H-UiO-66-NH2-3.7 nm, were successfully synthesized by combining sol-gel-based method and acid modulator, featuring the characteristics of simple operation, rapid and scalable process, low cost, and the high space-time yield (STY). N2 adsorption-desorption isotherms reveal that the obtained H-UiO-66-NH2 xerogels possess high surface area, hierarchical-pore structures, large pore volume, and turntable mesopore size. Batch adsorption experiments demonstrate that H-UiO-66-NH2-11.6 nm has excellent adsorption performance for reactive red 195 (RR 195) dye removal. The maximum adsorption capacity of H-UiO-66-NH2-11.6 nm is 884.96 mg g-1, which is 4.7 times of the microporous UiO-66-NH2 (185.15 mg g-1). Moreover, the removal efficiency of H-UiO-66-NH2-11.6 nm for RR 195 can exceed 99 %. The adsorption mechanism reveals that the excellent RR 195 capture stems from the large mesoporous structure and abundant adsorption sites provided by the Zr cluster and -NH2 groups in H-UiO-66-NH2-11.6 nm. Besides, H-UiO-66-NH2-11.6 nm also exhibits a much larger adsorption capacity for some other organic pollutants, such as tetracycline, reactive black 5, and amoxicillin, demonstrating that the H-UiO-66-NH2 xerogel has great potential for organic pollutant removal.
Collapse
Affiliation(s)
- Liqiong Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Yu Heng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Ruimin Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Wenqiang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Bai Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
15
|
Nerisson P, Barrachin M, Ohnet MN, Cantrel L. Behaviour of ruthenium in nitric media (HLLW) in reprocessing plants: a review and some perspectives. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Andrade PHM, Henry N, Volkringer C, Loiseau T, Vezin H, Hureau M, Moissette A. Iodine Uptake by Zr-/Hf-Based UiO-66 Materials: The Influence of Metal Substitution on Iodine Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29916-29933. [PMID: 35758325 DOI: 10.1021/acsami.2c07288] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many works reported the encapsulation of iodine in metal-organic frameworks as well as the I2 → I3- chemical conversion. This transformation has been examined by adsorbing gaseous iodine on a series of UiO-66 materials and the different Hf/Zr metal ratios (0-100% Hf) were evaluated during the evolution of I2 into I3-. The influence of the hafnium content on the UiO-66 structure was highlighted by PXRD, SEM images, and gas sorption tests. The UiO-66(Hf) presented smaller lattice parameter (a = 20.7232 Å), higher crystallite size (0.18 ≤ Φ ≤ 3.33 μm), and smaller SSABET (818 m2·g-1) when compared to its parent UiO-66(Zr) ─ a = 20.7696 Å, 100 ≤ Φ ≤ 250 nm, and SSABET = 1262 m2·g-1. The effect of replacing Zr atoms by Hf in the physical properties of the UiO-66 was deeply evaluated by a spectroscopic study using UV-vis, FTIR, and Raman characterizations. In this case, the Hf presence reduced the band gap of the UiO-66, from 4.07 eV in UiO-66(Zr) to 3.98 eV in UiO-66(Hf). Furthermore, the UiO-66(Hf) showed a blue shift for several FTIR and Raman bands, indicating a stiffening on the implied interatomic bonds when comparing to UiO-66(Zr) spectra. Hafnium was found to clearly favor the capture of iodine [285 g·mol-1, against 230 g·mol-1 for UiO-66(Zr)] and the kinetic evolution of I2 into I3- after 16 h of I2 filtration. Three iodine species were typically identified by Raman spectroscopy and chemometric analysis. These species are as follows: "free" I2 (206 cm-1), "perturbed" I2 (173 cm-1), and I3- (115 and 141 cm-1). It was also verified, by FTIR spectroscopy, that the oxo and hydroxyl groups of the inorganic [M6O4(OH)4] (M = Zr, Hf) cluster were perturbed after the adsorption of I2 into UiO-66(Hf), which was ascribed to the higher acid character of Hf. Finally, with that in mind and considering that the EPR results discard the possibility of a redox phenomenon involving the tetravalent cations (Hf4+ or Zr4+), a mechanism was proposed for the conversion of I2 into I3- in UiO-66─based on an electron donor-acceptor complex between the aromatic ring of the BDC linker and the I2 molecule.
Collapse
Affiliation(s)
- Pedro H M Andrade
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| | - Natacha Henry
- Unité de Catalyse et Chimie du Solide (UCCS), Université de Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181, F-59000 Lille, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS), Université de Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181, F-59000 Lille, France
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide (UCCS), Université de Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181, F-59000 Lille, France
| | - Hervé Vezin
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| | - Matthieu Hureau
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| | - Alain Moissette
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), Université de Lille─Sciences et Technologies, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
17
|
Zhang X, Maddock J, Nenoff TM, Denecke MA, Yang S, Schröder M. Adsorption of iodine in metal-organic framework materials. Chem Soc Rev 2022; 51:3243-3262. [PMID: 35363235 PMCID: PMC9328120 DOI: 10.1039/d0cs01192d] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - John Maddock
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Tina M Nenoff
- Materials, Physics and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Melissa A Denecke
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Division of Physical and Chemical Science, Department of Nuclear Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Sihai Yang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Martin Schröder
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
18
|
Leloire M, Walshe C, Devaux P, Giovine R, Duval S, Bousquet T, Chibani S, Paul JF, Moissette A, Vezin H, Nerisson P, Cantrel L, Volkringer C, Loiseau T. Capture of Gaseous Iodine in Isoreticular Zirconium-Based UiO-n Metal-Organic Frameworks: Influence of Amino Functionalization, DFT Calculations, Raman and EPR Spectroscopic Investigation. Chemistry 2022; 28:e202104437. [PMID: 35142402 DOI: 10.1002/chem.202104437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 01/09/2023]
Abstract
A series of Zr-based UiO-n MOF materials (n=66, 67, 68) have been studied for iodine capture. Gaseous iodine adsorption was collected kinetically from a home-made set-up allowing the continuous measurement of iodine content trapped within UiO-n compounds, with organic functionalities (-H, -CH3 , -Cl, -Br, -(OH)2 , -NO2 , -NH2 , (-NH2 )2 , -CH2 NH2 ) by in-situ UV-Vis spectroscopy. This study emphasizes the role of the amino groups attached to the aromatic rings of the ligands connecting the {Zr6 O4 (OH)4 } brick. In particular, the preferential interaction of iodine with lone-pair groups, such as amino functions, has been experimentally observed and is also based on DFT calculations. Indeed, higher iodine contents were systematically measured for amino-functionalized UiO-66 or UiO-67, compared to the pristine material (up to 1211 mg/g for UiO-67-(NH2 )2 ). However, DFT calculations revealed the highest computed interaction energies for alkylamine groups (-CH2 NH2 ) in UiO-67 (-128.5 kJ/mol for the octahedral cavity), and pointed out the influence of this specific functionality compared with that of an aromatic amine. The encapsulation of iodine within the pore system of UiO-n materials and their amino-derivatives has been analyzed by UV-Vis and Raman spectroscopy. We showed that a systematic conversion of molecular iodine (I2 ) species into anionic I- ones, stabilized as I- ⋅⋅⋅I2 or I3 - complexes within the MOF cavities, occurs when I2 @UiO-n samples are left in ambient light.
Collapse
Affiliation(s)
- Maeva Leloire
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Catherine Walshe
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Philippe Devaux
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Raynald Giovine
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Sylvain Duval
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Till Bousquet
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Siwar Chibani
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Jean-Francois Paul
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Alain Moissette
- Laboratoire de Spectroscopie pour les Interactions la Réactivité et l'Environnement, Université de Lille, UMR CNRS 8516-LASIRE, 59000, Lille, France
| | - Hervé Vezin
- Laboratoire de Spectroscopie pour les Interactions la Réactivité et l'Environnement, Université de Lille, UMR CNRS 8516-LASIRE, 59000, Lille, France
| | - Philippe Nerisson
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSN-RES, 13115, Saint Paul lez Durance, France
| | - Laurent Cantrel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSN-RES, 13115, Saint Paul lez Durance, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| |
Collapse
|
19
|
Abramova A, Couzon N, Leloire M, Nerisson P, Cantrel L, Royer S, Loiseau T, Volkringer C, Dhainaut J. Extrusion-Spheronization of UiO-66 and UiO-66_NH 2 into Robust-Shaped Solids and Their Use for Gaseous Molecular Iodine, Xenon, and Krypton Adsorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10669-10680. [PMID: 35188731 DOI: 10.1021/acsami.1c21380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of an extrusion-spheronization process was investigated to prepare robust and highly porous extrudates and granules starting from UiO-66 and UiO-66_NH2 metal-organic framework powders. As-produced materials were applied to the capture of gaseous iodine and the adsorption of xenon and krypton. In this study, biosourced chitosan and hydroxyethyl cellulose (HEC) are used as binders, added in low amounts (less than 5 wt % of the dried solids), as well as a colloidal silica as a co-binder when required. Characterizations of the final shaped materials reveal that most physicochemical properties are retained, except the textural properties, which are impacted by the process and the proportion of binders (BET surface area reduction from 5 to 33%). On the other hand, the mechanical resistance of the shaped materials toward compression is greatly improved by the presence of binders and their respective contents, from 0.5 N for binderless UiO-66 granules to 17 N for UiO-66@HEC granules. UiO-66_NH2-based granules demonstrated consequent iodine capture after 48 h, up to 527 mg/g, in line with the pristine UiO-66_NH2 powder (565 mg/g) and proportionally to the retaining BET surface area (-5% after shaping). Analogously, the shaped materials presented xenon and krypton sorption isotherms correlated to their BET surface area and high predicted xenon/krypton selectivity, from 7.1 to 9.0. Therefore, binder-aided extrusion-spheronization is an adapted method to produce shaped solids with adequate mechanical resistance and retained functional properties.
Collapse
Affiliation(s)
- Alla Abramova
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Nelly Couzon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Maëva Leloire
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France
| | - Philippe Nerisson
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France
| | - Laurent Cantrel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
20
|
Iodinated vs non-iodinated: Comparison of sorption selectivity by [Zn2(bdc)2dabco]n and superstructural 2-iodoterephtalate-based metal–organic framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Construction of poly-iodine aromatic carboxylate Mn/Co frameworks and iodine adsorption behavior. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00481-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|