1
|
Koul S, Singhvi M, Kim BS. Green Synthesis of Cobalt-Doped CeFe 2O 5 Nanocomposites Using Waste Gossypium arboreum L. Stalks and Their Application in the Removal of Toxic Water Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1339. [PMID: 39195377 DOI: 10.3390/nano14161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024]
Abstract
Currently, there is an increasing need to find new ways to purify water by eliminating bacterial biofilms, textile dyes, and toxic water pollutants. These contaminants pose significant risks to both human health and the environment. To address this issue, in this study, we have developed an eco-friendly approach that involves synthesizing a cobalt-doped cerium iron oxide (CCIO) nanocomposite (NC) using an aqueous extract of Gossypium arboreum L. stalks. The resulting nanoparticles can be used to effectively purify water and tackle the challenges associated with these harmful pollutants. Nanoparticles excel in water pollutant removal by providing a high surface area for efficient adsorption, versatile design for the simultaneous removal of multiple contaminants, catalytic properties for organic pollutant degradation, and magnetic features for easy separation, offering cost-effective and sustainable water treatment solutions. A CCIO nanocomposite was synthesized via a green co-precipitation method utilizing biomolecules and co-enzymes extracted from the aqueous solution of Gossypium arboreum L. stalk. This single-step synthesis process was accomplished within a 5-h reaction period. Furthermore, the synthesis of nanocomposites was confirmed by various characterization techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and energy dispersive X-ray (EDX) technology. CCIO NCs were discovered to have a spherical shape and an average size of 40 nm. Based on DLS zeta potential analysis, CCIO NCs were found to be anionic. CCIO NCs also showed significant antimicrobial and antioxidant activity. Overall, considering their physical and chemical properties, the application of CCIO NCs for the adsorption of various dyes (~91%) and water pollutants (chromium = ~60%) has been considered here since they exhibit great adsorption capacity owing to their microporous structure, and represent a step forward in water purification.
Collapse
Affiliation(s)
- Saloni Koul
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Mamata Singhvi
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
González-Martínez E, Beganovic NE, Moran-Mirabal JM. Benchtop Fabricated Nano-Roughened Microstructured Electrodes for Electrochemical and Surface-Enhanced Raman Scattering Sensing. SMALL METHODS 2024; 8:e2301215. [PMID: 38678536 DOI: 10.1002/smtd.202301215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Tailoring a material's surface with hierarchical structures from the micro- to the nanoscale is key for fabricating highly sensitive detection platforms. To achieve this, the fabrication method should be simple, inexpensive, and yield materials with a high density of surface features. Here, using benchtop fabrication techniques, gold surfaces with hierarchically structured roughness are generated for sensing applications. Hierarchical gold electrodes are prepared on pre-stressed polystyrene substrates via electroless deposition and amperometric pulsing. Electrodes fabricated using 1 mm H[AuCl₄] and roughened with 80 pulses revealed the highest electroactive surface area. These electrodes are used for enzyme-free detection of glucose in the presence of bovine serum albumin and achieved a limit of detection of 0.36 mm, below glucose concentrations in human blood. The surfaces nanoroughened with 100 pulses also showed excellent surface-enhanced Raman scattering (SERS) response for the detection of rhodamine 6G, with an enhancement factor of ≈2 × 106 compared to detection in solution, and for the detection of a self-assembled monolayer of thiophenol, with an enhancement factor of ≈30 compared to the response from microstructured gold surfaces. It is envisioned that the simplicity and low fabrication cost of these gold-roughened structures will expedite the development of electrochemical and SERS sensing devices.
Collapse
Affiliation(s)
- Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Nadine E Beganovic
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
3
|
Muthukumar B, Duraimurugan R, Parthipan P, Rajamohan R, Rajagopal R, Narenkumar J, Rajasekar A, Malik T. Synthesis and characterization of iron oxide nanoparticles from Lawsonia inermis and its effect on the biodegradation of crude oil hydrocarbon. Sci Rep 2024; 14:11335. [PMID: 38760417 PMCID: PMC11101646 DOI: 10.1038/s41598-024-61760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Crude oil hydrocarbons are considered major environmental pollutants and pose a significant threat to the environment and humans due to having severe carcinogenic and mutagenic effects. Bioremediation is one of the practical and promising technology that can be applied to treat the hydrocarbon-polluted environment. In this present study, rhamnolipid biosurfactant (BS) produced by Pseudomonas aeruginosa PP4 and green synthesized iron nanoparticles (G-FeNPs) from Lawsonia inermis was used to evaluate the biodegradation efficiency (BE) of crude oil. The surface analysis of G-FeNPs was carried out by using FESEM and HRTEM to confirm the size and shape. Further, the average size of the G-FeNPs was observed around 10 nm by HRTEM analysis. The XRD and Raman spectra strongly confirm the presence of iron nanoparticles with their respective peaks. The BE (%) of mixed degradation system-V (PP4+BS+G-FeNPs) was obtained about 82%. FTIR spectrum confirms the presence of major functional constituents (C=O, -CH3, C-O, and OH) in the residual oil content. Overall, this study illustrates that integrated nano-based bioremediation could be an efficient approach for hydrocarbon-polluted environments. This study is the first attempt to evaluate the G-FeNPs with rhamnolipid biosurfactant on the biodegradation of crude oil.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Ramanathan Duraimurugan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, 378, Jimma, Ethiopia.
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
4
|
Ma D, Wang W, Wang Q, Dai Y, Zhu K, Xu H, Yuan C, Dong P, Xi X. A novel visible-light-driven Z-scheme C 3N 5/BiVO 4 heterostructure with enhanced photocatalytic degradation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19687-19698. [PMID: 38366321 DOI: 10.1007/s11356-024-32086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
As a visible-light response semiconductor materials, bismuth vanadate (BiVO4) is extensively applied in photodegradation organic dye field. In this study, we synthesized C3N5 nanosheets and coupled with decahedral BiVO4 to construct a Z-scheme C3N5/BiVO4 heterostructure with close interface contact. By introducing C3N5 into BiVO4, the built Z-scheme transfer pathway provides silky channel for charge carrier migration between different moieties and enables photoexcited electrons and holes accumulated on the surface of BiVO4 and C3N5. The accelerated separation of charge carriers ensures C3N5/BiVO4 heterostructures with a powerful oxidation capacity compared with pure BiVO4. Due to the synergistic effect in Z-scheme heterostructure, the C3N5/BiVO4 demonstrated an improved photodegradation ability of rhodamine B (RhB) and methylene blue (MB) that of bare BiVO4.
Collapse
Affiliation(s)
- Dongqi Ma
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Wuyou Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
| | - Qinzheng Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Yelan Dai
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Kai Zhu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Haocheng Xu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Cheng Yuan
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Pengyu Dong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Xinguo Xi
- Key Laboratory for Ecological-Environment Materials of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| |
Collapse
|
5
|
Zahran M, Beltagi AM, Rabie M, Maher R, Hathoot AA, Azzem MA. Biosynthesized silver nanoparticles for electrochemical detection of bromocresol green in river water. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221621. [PMID: 37564062 PMCID: PMC10410218 DOI: 10.1098/rsos.221621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
In this study, silver nanoparticles (AgNPs)-based electrochemical sensor has been reported for assessing bromocresol green (BG) in river water. Firstly, AgNPs were greenly produced using the aqueous extract of Ficus sycomorus leaves. Then, the AgNP-modified glassy carbon (GC) electrode was prepared using the sticking method. AgNPs were characterized using transmission electron microscope (TEM), X-ray diffraction (XRD), square wave voltammetry (SWV) and scanning electron microscope (SEM). TEM and SEM were used for determining the size of AgNPs before and after adsorption, respectively. The results show that there was an increase in AgNP size from 20 to 30 nm. Additionally, XRD was used for characterizing the crystal nature of AgNPs, while SWV exhibited a characteristic oxidation peak of AgNPs at 0.06 V. Moreover, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for characterizing the catalytic effect of AgNPs. BG as a targeted pollutant was detected at AgNPs/GC based on its oxidation through proton and electron transfer. Two peaks corresponding to the monomer and polymer oxidation were detected. The monomer- and polymer-based sensors have revealed a linear range of 2.9 × 10-5 to 2.1 × 10-4 mole l-1 and low detection limits (LODs) of 1.5 × 10-5 and 1.3 × 10-5 mole l-1, respectively.
Collapse
Affiliation(s)
- Moustafa Zahran
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
- Menoufia Company for Water and Wastewater, Holding Company for Water and Wastewater, Menoufia 32514, Egypt
| | - Amr Mohamed Beltagi
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahmoud Rabie
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| | - Reham Maher
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| | - Abla Ahmed Hathoot
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| | - Magdi Abdel Azzem
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| |
Collapse
|
6
|
Ahmed W, Suliman A, Khan GA, Qayyum H. Electrostatically enabled dye reduction using laser synthesized gold nanoparticles. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Zelekew OA, Haitosa HH, Chen X, Wu YN. Recent progress on plant extract-mediated biosynthesis of ZnO-based nanocatalysts for environmental remediation: Challenges and future outlooks. Adv Colloid Interface Sci 2023; 317:102931. [PMID: 37267679 DOI: 10.1016/j.cis.2023.102931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
The plant extract mediated green synthesis of nanomaterials has attracts enormous interest due to its cost-effectiveness, greener, and environmentally friendly. It is also considered as an alternative and facile method in which the phytochemicals can be used as a natural capping and reducing agents and helped to produce nanomaterials with high surface area, different sizes, and shapes. One of the materials fabricated using green methods is zinc oxide (ZnO) semiconductor due to its enormous applications in different field areas. In this review, an overview of recent progress on green synthesized ZnO-based catalysts and various modification methods for the purpose of enhancing the catalytic activity of ZnO and the corresponding structural-activity and interactions towards the removal of pollutants are highlighted. Particularly, the plant extract mediated ZnO-based photocatalysts application for the removal of pollutants via photocatalytic degradation, reduction reaction, and adsorption mechanism are demonstrated. Besides, the opportunities, challenges, and future outlooks of ZnO-based materials for environmental remediation with green and sustainable methods are also included. We believe that this review is a timely and comprehensive review on the recent progress related to plant extract mediated ZnO-based nanocatalysts synthesis and applications for environmental remediation.
Collapse
Affiliation(s)
- Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China; Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Haileyesus Hatano Haitosa
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China.
| |
Collapse
|
8
|
Park CE, Jeong GH, Theerthagiri J, Lee H, Choi MY. Moving beyond Ti 2C 3T x MXene to Pt-Decorated TiO 2@TiC Core-Shell via Pulsed Laser in Reshaping Modification for Accelerating Hydrogen Evolution Kinetics. ACS NANO 2023; 17:7539-7549. [PMID: 36876982 DOI: 10.1021/acsnano.2c12638] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phase engineering of nanocatalysts on specific facets is critical not only for enhancing catalytic activity but also for intensely understanding the impact of facet-based phase engineering on electrocatalytic reactions. In this study, we successfully reshaped a two-dimensional (2D) MXene (Ti3C2Tx) obtained by etching Ti3AlC2 MAX via a pulsed laser irradiation in liquid (PLIL) process. We produced a TiO2@TiC core-shell structure in spheres with sizes of 200-350 nm, and then ∼2 nm ultrasmall Pt NPs were decorated on the surface of the TiO2@TiC core-shell using the single-step PLIL method. These advances allow for a significant increase in electrocatalytic hydrogen evolution reaction (HER) activity under visible light illumination. The effect of optimal Pt loading on PLIL time was identified, and the resulting Pt/TiO2@TiC/Pt-5 min sample demonstrated outstanding electrochemical and photoelectrochemical performance. The photoelectrochemical HER activity over Pt/TiO2@TiC/Pt-5 min catalyst exhibits a low overpotential of 48 mV at 10 mA/cm2 and an ultralow Tafel slope of 54.03 mV/dec with excellent stability of over 50 h, which is hydrogen production activity even superior to that of the commercial Pt/C catalysts (55 mV, 62.45 mV/dec). This investigation not only serves as a potential for laser-dependent phase engineering but also provides a reliable strategy for the rational design and fabrication of highly effective nanocatalysts.
Collapse
Affiliation(s)
- Chae Eun Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyoung Hwa Jeong
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeyeon Lee
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Chinnakutti KK, C Maridevaru M, Kaimal R, Paramasivam N, Kirubaharan AMK, Theerthagiri J, M L AK, Manickam S, Anandan S, Choi MY. Electrochemical detection of arsenic (III) hazardous chemicals using cubic CsPbBr 3 single crystals: Structural insights from DFT study. ENVIRONMENTAL RESEARCH 2023; 229:115940. [PMID: 37080276 DOI: 10.1016/j.envres.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Long-term exposure to the highly toxic heavy metal arsenic can harm ecological systems and pose serious health risks to humans. Arsenic pollutant in water and the food chain must be addressed, and active prompt detection of As(III) is essential. The development of an effective detection method for As(III) ions is urgently needed to slow the alarming growth of arsenic pollution in the environment and safeguard the well-being of future generations. This study presents the results of our exhaustive investigation into cubic CsPbBr3 single crystals, the glassy carbon (GC) electrode modification with CsPbBr3 single crystals prepared by direct solvent evaporation, as well as our observations of the material's remarkable electrocatalytic properties and exceptional anti-interference sensing of As(III) ions in neutral pH media. The developed CsPbBr3/GC is exceptionally useful for the ultra-sensitive and specific identification of arsenic in water, exhibiting a detection limit of 0.381 μmol/L, a rapid response across a defined range of 0.1-25 μmol/L, and an ultra-sensitivity of 0.296 μA/μmolL-1. CsPbBr3/GCE (prepared without a specific reagent) is superior to other modified electrodes used as sensors in electrocatalytic activity, detection limit, analytical sensitivity, and stability response.
Collapse
Affiliation(s)
- Karthik Kumar Chinnakutti
- Department of Chemistry, Vinayaka Missions Kirupananda Variyar Arts and Science College, Vinayaka Missions Research Foundation (Deemed to Be University), Salem, 636308, India.
| | - Madappa C Maridevaru
- Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Reshma Kaimal
- Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Naveena Paramasivam
- Condensed Matter Theory Lab, Department of Physics, National Institute of Technology, Tiruchirappalli, 620015, India
| | - A M Kamalan Kirubaharan
- Coating Department, Centre for Functional and Surface Functionalised Glass, Alexander Dubcek University of Trencin, Trencin, 91150, Slovakia
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Aruna Kumari M L
- Department of Chemistry, The Oxford College of Science, Bengaluru, Karnataka, 560102, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
10
|
Wang Y, Liu Y, Ren C, Ma R, Xu Z, Zhao B. A Charge-Transfer-Induced Strategy for Enantioselective Discrimination by Potential-Regulated Surface-Enhanced Raman Scattering Spectroscopy. BIOSENSORS 2023; 13:bios13040471. [PMID: 37185546 PMCID: PMC10136649 DOI: 10.3390/bios13040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
A simple and efficient enantioselective discrimination method, especially the chirality-label-free discrimination method, for the recognition of chiral small molecules with high resolution and wide applicability has been urgently desired. Herein, achiral Au/p-aminothiophenol (PATP) substrates were prepared to link the enantiomers via coupling reactions for constructing the enantioselective discrimination system. The resultant Au/PATP/enantiomer systems displayed charge-transfer (CT)-induced surface-enhanced Raman scattering (SERS) spectra that offered distinguishable information for the systems with different chirality. The differentiated spectral signal can be amplified by regulating the applied electrode potential, leading to great enantioselective discrimination performance. Moreover, the relationship between the discrimination performance and the potential-regulated CT process was revealed by SERS, which enabled an accurate and effective enantiomeric determination for various chiral molecules, including aromatic and aliphatic small molecules. The aliphatic molecule with the shorter chain was discriminated with a higher resolution, since the longer-chain molecule in the discrimination system may cause a change in the molecular electronic structure of the PATP. In addition, the aromatic chiral molecule can be distinguished easier than the aliphatic molecules, which means that the generation of the conjugation of electrons in the aromatic molecule-involved enantiomeric systems facilitates CT-induced SERS discrimination. Our work provides guidance for the design and development of an effective enantioselective discrimination strategy with high discrimination performance in diverse application fields.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yucong Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chunyu Ren
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ruofei Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhangrun Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Zhang T, Li H, Tang X, Zhong J, Li J, Zhang S, Huang S, Dou L. Boosted photocatalytic performance of OVs-rich BiVO 4 hollow microsphere self-assembled with the assistance of SDBS. J Colloid Interface Sci 2023; 634:874-886. [PMID: 36566633 DOI: 10.1016/j.jcis.2022.12.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In this study, monoclinic phase bismuth vanadate (BiOV4) photocatalyst with unique hollow microsphere morphology was successfully prepared by a hydrothermal method in the existence of sodium dodecyl benzene sulfonate (SDBS). The prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron (SEM) and X-ray photoelectron spectrometer (XPS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). Experimental results show that SDBS definitely changes the microstructure of BiVO4, which is allocated to the template role of SDBS in the preparation process. Moreover, the hydrothermal treatment time is also of crucial importance in affecting the structure and morphology of the photocatalysts, and the optimal hydrothermal treatment time for the formation of hollow microsphere is 24 h. Furthermore, the feasible growth mechanism for hollow microsphere was elaborated. Enriched oxygen vacancies (OVs) are introduced into BiOV4 prepared with SDBS, largely elevating the separation efficiency of photo-generated charges. Under visible light irradiation, the photocatalytic activities of BiOV4 for destruction of rhodamine (RhB) were evaluated. The photocatalytic degradation rate constant of RhB on the 3SBVO is 2.23 times of that on the blank BiOV4 as the mass ratio of SDBS/BiOV4 is 3 %. Photocatalytic degradation mechanism of BiVO4 toward detoxification of organic pollutants was presented.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Huan Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Xiaoqian Tang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Junbo Zhong
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China; College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Jianzhang Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Shulin Zhang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Shengtian Huang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Lin Dou
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| |
Collapse
|
12
|
Bressi V, Chiarotto I, Ferlazzo A, Celesti C, Michenzi C, Len T, Iannazzo D, Neri G, Espro C. Voltammetric Sensor Based on Waste‐Derived Carbon Nanodots for Enhanced Detection of Nitrobenzene. ChemElectroChem 2023. [DOI: 10.1002/celc.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Viviana Bressi
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
- Department of Organic Chemistry University of Córdoba Campus de Rabanales, Marie Curie (C-3), Ctra Nnal IV−A Km 396 Cordoba Spain
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering (SBAI) Sapienza University of Rome Via Castro Laurenziano, 7 00161 Rome Italy
| | - Angelo Ferlazzo
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Consuelo Celesti
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
- Department of Clinical and Experimental Medicine University of Messina Via Consolare Valeria 98125 Messina Italy
| | - Cinzia Michenzi
- Department of Basic and Applied Sciences for Engineering (SBAI) Sapienza University of Rome Via Castro Laurenziano, 7 00161 Rome Italy
| | - Thomas Len
- Department of Organic Chemistry University of Córdoba Campus de Rabanales, Marie Curie (C-3), Ctra Nnal IV−A Km 396 Cordoba Spain
| | - Daniela Iannazzo
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Giovanni Neri
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Claudia Espro
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| |
Collapse
|
13
|
Park J, Min A, Theerthagiri J, Ashokkumar M, Choi MY. In situ studies on free-standing synthesis of nanocatalysts via acoustic levitation coupled with pulsed laser irradiation. ULTRASONICS SONOCHEMISTRY 2023; 94:106345. [PMID: 36871525 PMCID: PMC9988397 DOI: 10.1016/j.ultsonch.2023.106345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Acoustic levitation is a distinctive and versatile tool for levitating and processing free-standing single droplets and particles. Liquid droplets suspended in an acoustic standing wave provide container-free environments for understanding chemical reactions by avoiding boundary effects and solid surfaces. We attempted to use this strategy for the production of well-dispersed uniform catalytic nanomaterials in an ultraclean confined area without the addition of external reducing agents or surfactants. In this study, we report on the synthesis of gold and silver nanoparticles (NPs) via acoustic levitation coupled with pulsed laser irradiation (PLI). In situ UV-Visible and Raman spectroscopic techniques were performed to monitor the formation and growth of gold and silver NPs. The PLI was used for the photoreduction of targeted metal ions present in the levitated droplets to generate metal NPs. Additionally, the cavitation effect and bubble movement accelerate the nucleation and decrease the size of NPs. The synthesized Au NPs with ∼ 5 nm size showed excellent catalytic behavior towards the conversion of 4-nitrophenol to 4-aminophenol. This study may open a new door for synthesizing various functional nanocatalysts and for achieving new chemical reactions in suspended droplets.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia.
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
14
|
Wang J, Yu J, Yu Y, Luo Z, Li G, Lin X. Nanoporous electrode with stable polydimethylsiloxane coating for direct electrochemical analysis of bisphenol A in complex wine media. Food Chem 2023; 405:134806. [DOI: 10.1016/j.foodchem.2022.134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
|
15
|
Wang W, Zhang J, Hou Z, Chen P, Zhou X, Wang W, Tan F, Wang X, Qiao X. Improvement of Carbonyl Groups and Surface Defects in Carbon Nanotubes to Activate Peroxydisulfate for Tetracycline Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13010216. [PMID: 36616125 PMCID: PMC9824654 DOI: 10.3390/nano13010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes (CNTs) were considered a promising activator for persulfates due to their high electrical conductivity, large specific surface area and low toxicity. The functional groups and surface defects of CNTs could significantly affect their activation performance. In this study, CNTs with high C=O ratio and defect density (CNT-O-H) were prepared through a facile treatment of raw CNTs with HNO3 oxidation followed by calcination at 800 °C under an argon atmosphere. X-ray photoelectron spectroscopy (XPS) and Raman results showed that the C=O proportion and defect degree (ID/IG) rose to 75% and 1.53, respectively. The obtained CNT-O-H possessed a superior performance towards peroxydisulfate (PDS) activation, and the degradation efficiency of tetracycline (TC) in the CNT-O-H/PDS system was increased to 75.2% from 56.2% of the raw CNTs/PDS system within 40 min. Moreover, the activity of CNT-O-H after use could be easily recovered with re-calcination. In addition, the CNT-O-H/PDS system exhibited high adaptabilities towards wide solution pH (2-10), common coexisting substances and diverse organic pollutants. Singlet oxygen (1O2) was confirmed to be the dominant reactive oxygen species (ROS) generated in the CNT-O-H/PDS system. It was inferred that surface C=O groups and defects of CNTs were the key site to activate PDS for TC degradation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- Correspondence: ; Tel./Fax: +86-27-87541540
| | | | | | | |
Collapse
|
16
|
Overcoming tumor and mucosal barriers through active-loaded nanocarriers: nanoparticles and exosomes. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Mughilmathi, Sonali JMI, Kumar PS, Archana KM, Rajagopal R, Gayathri KV. Application of copper iodide (CuI) and natural dye extracted from Hibiscus rosa-sinensis onto cotton fabric: an integrated approach. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Singh SP, Chandra P. Nano-Engineered Surface Comprising Metallic Dendrites for Biomolecular Analysis in Clinical Perspective. BIOSENSORS 2022; 12:1062. [PMID: 36551029 PMCID: PMC9775260 DOI: 10.3390/bios12121062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 09/28/2023]
Abstract
Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a lot of interests in the recent years because of their interesting hierarchical structures and distinctive features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches with a plethora of pointed ends, ridges, and edges. These features provide them with larger active surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used in the fabrication of sensors. This review begins with the properties and various synthetic approaches of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety of real matrices. Finally, to enlighten future research, the limitations and future potential of these newly discovered materials are discussed.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Daphika S. Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Surinder P. Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
19
|
Wang Y, Zhao P, Gao B, Yuan M, Yu J, Wang Z, Chen X. Self-reduction of bimetallic nanoparticles on flexible MXene-graphene electrodes for simultaneous detection of ascorbic acid, dopamine, and uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Ali S, Abdul Nasir J, Nasir Dara R, Rehman Z. Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Begildayeva T, Theerthagiri J, Lee SJ, Yu Y, Choi MY. Unraveling the Synergy of Anion Modulation on Co Electrocatalysts by Pulsed Laser for Water Splitting: Intermediate Capturing by In Situ/Operando Raman Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204309. [PMID: 36192152 DOI: 10.1002/smll.202204309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Herein, the authors produce Co-based (Co3 (PO4 )2 , Co3 O4 , and Co9 S8 ) electrocatalysts via pulsed laser ablation in liquid (PLAL) to explore the synergy of anion modulation on phase-selective active sites in the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Co3 (PO4 )2 displays an ultralow overpotential of 230 mV at 10 mA cm-2 with 48.5 mV dec-1 Tafel slope that outperforms the state-of-the-art Ir/C in OER due to its high intrinsic activity. Meanwhile, Co9 S8 exhibits the highest HER performance known to the authors among the synthesized Co-based catalysts, showing the lowest overpotential of 361 mV at 10 mA cm-2 with 95.8 mV dec-1 Tafel slope in the alkaline medium and producing H2 gas with ≈500 mmol g-1 h-1 yield rate under -0.45 V versus RHE. The identified surface reactive intermediates over in situ electrochemical-Raman spectroscopy reveal that cobalt(hydr)oxides with higher oxidation states of Co-cation forming under oxidizing potentials on the electrode-electrolyte surface of Co3 (PO4 )2 facilitate the OER, while Co(OH)2 facilitate the HER. Notably, the fabricated two-electrode electrolyzers using Co3 (PO4 )2 , Co3 O4 , and Co9 S8 electrocatalysts deliver the cell potentials ≈2.01, 2.11, and 1.89 V, respectively, at 10 mA cm-2 . This work not only shows PLAL-synthesized electrocatalysts as promising candidates for water splitting, but also provides an underlying principle for advanced energy-conversion catalysts and beyond.
Collapse
Affiliation(s)
- Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yiseul Yu
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
22
|
Wang S, Li Y, Liu Q, Wang J, Zhao Y, Cai Y, Li H, Chen Z. fvPhoto-/electro-/piezo-catalytic elimination of environmental pollutants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ahmadi-Leilakouhi B, Hormozi Jangi SR, Khorshidi A. Introducing a novel photo-induced nanozymatic method for high throughput reusable biodegradation of organic dyes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Theerthagiri J, Karuppasamy K, Lee SJ, Shwetharani R, Kim HS, Pasha SKK, Ashokkumar M, Choi MY. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:250. [PMID: 35945216 PMCID: PMC9363469 DOI: 10.1038/s41377-022-00904-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 05/03/2023]
Abstract
The global energy crisis is increasing the demand for innovative materials with high purity and functionality for the development of clean energy production and storage. The development of novel photo- and electrocatalysts significantly depends on synthetic techniques that facilitate the production of tailored advanced nanomaterials. The emerging use of pulsed laser in liquid synthesis has attracted immense interest as an effective synthetic technology with several advantages over conventional chemical and physical synthetic routes, including the fine-tuning of size, composition, surface, and crystalline structures, and defect densities and is associated with the catalytic, electronic, thermal, optical, and mechanical properties of the produced nanomaterials. Herein, we present an overview of the fundamental understanding and importance of the pulsed laser process, namely various roles and mechanisms involved in the production of various types of nanomaterials, such as metal nanoparticles, oxides, non-oxides, and carbon-based materials. We mainly cover the advancement of photo- and electrocatalytic nanomaterials via pulsed laser-assisted technologies with detailed mechanistic insights and structural optimization along with effective catalytic performances in various energy and environmental remediation processes. Finally, the future directions and challenges of pulsed laser techniques are briefly underlined. This review can exert practical guidance for the future design and fabrication of innovative pulsed laser-induced nanomaterials with fascinating properties for advanced catalysis applications.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - R Shwetharani
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore, 562112, Karnataka, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - S K Khadheer Pasha
- Department of Physics, Vellore Institute of Technology (Amaravati Campus), Amaravati, 522501, Guntur, Andhra Pradesh, India
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville Campus, Melbourne, VIC, 3010, Australia
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
25
|
Parthipan P, Cheng L, Dhandapani P, Elumalai P, Huang M, Rajasekar A. Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119384. [PMID: 35504349 DOI: 10.1016/j.envpol.2022.119384] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous toxic contaminants and considered as primary pollutants due to their persistent nature and most of them are carcinogenic and mutagenic. The key challenge in PAHs degradation is their hydrophobic nature, which makes them one of the most complex materials and inaccessible by a broad range of microorganisms. This bioavailability can be increased by using a biosurfactant. In the present study mixed PAHs were degraded using the biosurfactant producing bacterial strains. In addition, iron nanoparticles were synthesized and the impact of iron nanoparticles on the growth of the mixed bacterial strains (Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3) was optimized. The mixed PAHs (anthracene, pyrene, and benzo(a)pyrene) degradation was enhanced by addition of biosurfactant (produced by Bacillus subtilis A1) and iron nanoparticles, resulting in 85% of degradation efficiency. The addition of the biosurfactant increased the bioavailability of the PAHs in the aqueous environment, which might help bacterial cells for the initial settlement and development. The addition of iron nanoparticles increased both bacterial biomass and PAHs adsorption over their surface. These overall interactions assisted in the utilization of PAHs by the mixed bacterial consortia. This study illustrates that this integrated approach can be elaborated for the removal of the complex PAHs pollutants from soil and aqueous environments.
Collapse
Affiliation(s)
- Punniyakotti Parthipan
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute of Materials Engineering Nanjing University, Nantong, 226000, China.
| | - Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Punniyakotti Elumalai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| |
Collapse
|
26
|
Mansour E, Sherbo S, Saliba W, Kloper V, Haick H. Effect of the Dispersion Process and Nanoparticle Quality on Chemical Sensing Performance. ACS OMEGA 2022; 7:22484-22491. [PMID: 35811934 PMCID: PMC9260890 DOI: 10.1021/acsomega.2c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
On the surface of chemiresistive films, the scarce heterogeneity of a molecularly capped gold nanoparticle (MCGNP) colloidal dispersion and uneven evaporation of the MCGNP-contained drying drop applied to this surface are among the main factors that affect reproducibility, and repeatable fabrication of thin films of MCGNPs. This article shows that an increase in reproducibility and repeatability is possible using a dispersant and a surfactant during the deposition and annealing processes of the MCGNP. The results show higher sensitivity and accuracy of the sensors for the detection of volatile organic compounds in air and an increased limit of detection. These simple and practical additions might serve as a launching pad for fabrication of other types of thin-film-based sensors.
Collapse
Affiliation(s)
- Elias Mansour
- The
Department of Chemical Engineering, Technion
− Israel Institute of Technology, Haifa 3200003, Israel
| | - Shay Sherbo
- The
Department of Chemical Engineering, Technion
− Israel Institute of Technology, Haifa 3200003, Israel
| | - Walaa Saliba
- The
Department of Chemical Engineering, Technion
− Israel Institute of Technology, Haifa 3200003, Israel
| | - Viki Kloper
- The
Department of Chemical Engineering, Technion
− Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The
Department of Chemical Engineering, Technion
− Israel Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
27
|
Hatamluyi B, Rezayi M, Amel Jamehdar S, Rizi KS, Mojarrad M, Meshkat Z, Choobin H, Soleimanpour S, Boroushaki MT. Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens Bioelectron 2022; 207:114209. [PMID: 35339072 PMCID: PMC8938305 DOI: 10.1016/j.bios.2022.114209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023]
Abstract
The sudden increase of the COVID-19 outbreak and its continued growth with mutations in various forms has created a global health crisis as well as devastating social and economic effects over the past two years. In this study, a screen-printed carbon electrode reinforced with boron nitride quantum dots/flower-like gold nanostructures (BNQDs/FGNs/SPCE) and functionalized by highly specific antisense DNA oligonucleotide presents an alternative and promising solution for targeting SARS-CoV-2 RNA without nucleic acid amplification. The platform was tested on 120 SARS-CoV-2 RNA isolated from real clinical samples (60 positive and 60 negative confirmed by conventional RT-PCR method). Based on obtained quantitative results and statistical analysis (box-diagram, cutoff value, receiver operating characteristic curve, and t-test), the biosensor revealed a significant difference between the two positive and negative groups with 100% sensitivity and 100% specificity. To evaluate the quantitation capacity and detection limit of the biosensor for clinical trials, the detection performance of the biosensor for continuously diluted RNA isolated from SARS-CoV-2-confirmed patients was compared to those obtained by RT-PCR, demonstrating that the detection limit of the biosensor is lower than or comparable to that of RT-PCR. The ssDNA/BNQDs/FGNs/SPCE showed negligible cross-reactivity with RNA fragments isolated from Influenza A (IAV) clinical samples and also remained stable for up to 14 days. In conclusion, the fabricated biosensor may serve as a promising tool for point-of-care applications.
Collapse
Affiliation(s)
- Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Salimian Rizi
- Isfahan University of Technology, Department of Materials Engineering, Isfahan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Li S, Qi J, Zhou B, Guo J, Tong Y, Zhou Q, Jiang L, Yang R, Chen C, Zhang Y, Liu H, Niu J, Huang S, Yuan S. Sensitive determination of polychlorinated biphenyls from beverages based on switchable solvent microextraction: A robust methodology. CHEMOSPHERE 2022; 297:134185. [PMID: 35257709 DOI: 10.1016/j.chemosphere.2022.134185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a kind of hazardous persistent organic contaminants and widely present in nature due to large consumption in the past. Although PCBs have been banned in many countries of the world, they are still present at trace level in food and water samples. It is of significant value to establish reliable enrichment and detection method. Based on the conversion of the hydrophilicity and hydrophobicity from heptanoic acid under alkali and acid, increasing the contact area between heptanoic acid and PCBs, a new switchable solvent micro-extraction method for PCBs from beverages was developed with good extraction efficiency using heptanoic acid as the extractant prior to gas chromatography-tandem mass spectrometry (GC-MS/MS). The key parameters that had impact on enrichment of PCBs were investigated in detail. Under the optimal conditions, a good linearity can be achieved in a concentration range of 0.01-20 μg L-1 with the correlation coefficients of 0.9978-0.9994. Limits of detection for PCB28, PCB53, PCB206 were 3 ng L-1 and PCB118 was 5 ng L-1 while other target PCBs were 2 ng L-1. Intra-day and inter-day precisions were in the range of 1.9-4.2% and 2.1-4.2%(relative standard deviation, RSD, n = 6), respectively. The real sample spiked recoveries of the targets were in the range of 93.2-114.3% (n = 3). The enrichment factors were in the range of 16.2-17.9. The results proved that this method was reliable for monitoring trace PCBs in beverage samples and will help for future assessments of impacts on human and animal health.
Collapse
Affiliation(s)
- Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingxiao Qi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Liusan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Ruochen Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Yue Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huanhuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingwen Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shiyu Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shuai Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
29
|
Elshikh MS, Hussein DS, Al-Khattaf FS, Rasheed El-Naggar RA, Almaary KS. Diclofenac removal from the wastewater using activated sludge and analysis of multidrug resistant bacteria from the sludge. ENVIRONMENTAL RESEARCH 2022; 208:112723. [PMID: 35063434 DOI: 10.1016/j.envres.2022.112723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Diclofenac is an anti-inflammatory drug and has been frequently detected from the wastewater. In the present study, factors affecting diclofenac adsorption on sewage sludge was evaluated. At 1 mg/L initial diclofenac concentration, more than 80% diclofenac removal was achieved. Adsorption increased at higher concentration (100 mg/L concentration) and more than 99% diclofenac was adsorbed from the wastewater. Significant removal of diclofenac was observed after 5 min contact time. The adsorption efficacy was more than 98% after 50 and 60 min. Pseudo-first and second order kinetics revealed reasonable regression value (0.9) indicated that the model is best fitted. Diclofenac adsorption was extremely high at acidic pHs than alkaline range. The sludge samples showed the presence of multi drug resistant bacteria. Vancomycin-resistant enterococcus stains were 27%, Methicillin-resistant Staphylococcus aureus positive strains were 16.5% and Extended-spectrum betal-lactamase-harbouring Enterobacteriacea were 65.4% in the sludge. The drug resistance Enterobacteriaceae revealed 14 Klebsiella pneumonia strains, 11 strains from E. coli and two from the genus Enterobacter. To conclude, the activated sludge could be effectively utilized for the removal of diclofenac from wastewater.
Collapse
Affiliation(s)
- Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Dina S Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, USA
| | - Fatimah S Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed El-Naggar
- Department of Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
30
|
Sun J, Gao X, Wei W. Synthesis of silver leaves and their potential application for analysis and degradation of phenolic pollutants. IET Nanobiotechnol 2022; 16:78-84. [PMID: 35142048 PMCID: PMC9007148 DOI: 10.1049/nbt2.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
A one-pot bottom-up synthesis method was used to synthesise multi-level leaf-like nano-silver (silver leaf) by simply mixing AgNO3 , L-ascorbic acid, Sodium sodium citrate, and polyvinylpyrrolidone (PVP) in the ethanol-water mixed solvents. Scanning electron microscopy (SEM) characterisations show that the silver leaves have tertiary structures and their sizes are controllable. In addition, silver leaves exhibit excellent Raman enhancement effect (SERS) and chemical catalytic activities for phenolic molecules. Interestingly, the SERS and catalytic activities increase as the size of the silver leaves decrease within a certain range, but when the size is too small, both of these performances weaken. The nanometre size and interstitial structure have a common amplification effect and influence on these activities. The present work not only showed a new method for the synthesis of silver leaves but also could be generalised to find other metallic leaves that could be used as promising heterogeneous catalysts for various reactions. The production of such small-sized silver leaves will facilitate the analysis of phenolic pollutants through Raman enhancement and treat these pollutants through catalytic degradation.
Collapse
Affiliation(s)
- Jianan Sun
- Department of Basic MedicineJinzhou Medical UniversityJinzhouChina
| | - Xianhui Gao
- Department of Basic MedicineJinzhou Medical UniversityJinzhouChina
| | - Wei Wei
- Department of Basic MedicineJinzhou Medical UniversityJinzhouChina
| |
Collapse
|
31
|
Prema P, Nguyen VH, Venkatachalam K, Murugan JM, Ali HM, Salem MZM, Ravindran B, Balaji P. Hexavalent chromium removal from aqueous solutions using biogenic iron nanoparticles: Kinetics and equilibrium study. ENVIRONMENTAL RESEARCH 2022; 205:112477. [PMID: 34863690 DOI: 10.1016/j.envres.2021.112477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Green mediated biosynthesis of iron oxide nanoparticles utilising Rosa indica flower petal extracts (RIFP-FeONPs) was used in this investigation. The RIFP-FeONPs were evaluated by the UV-Visible Spectroscopy, FTIR, SEM, EDX, XRD, Zeta potentials, and DLS, and been engaged than for the elimination of Cr (VI) from the contaminated environments. At 269 nm, the RIFP-FeONPs surface plasmon vibration bands were observed, which attributed to the Fe3+. XRD patterns of RIFP-FeONPs depicted the intense diffraction peak of face-centered cubic (fcc) iron at a 2θ value of 45.33° from the (311) lattice plane indisputably revealed that the particles are constituted of pure iron. The fabricated nanomaterials are spherical and polydisperse with a diameter of 70-120 nm, and various agglomeration clusters are attributable to intermolecular interaction. Zeta potential measurement and particle size distribution of RIFP-FeONPs showed a mean average size of 115.5 ± 29 nm and a polydispersity index (PDI) of 0.420. The study aims to analyse the appropriateness of RIFP-FeONPs for removing hexavalent chromium from the aqueous environment and the application of adsorption isotherm and statistical models in the experiment. The sorption of Cr (VI) on RIFP-FeONPs was observed to fit well with the isothermal models (R2 = 0.98). The linear correlation between processing parameters and time demonstrated that the adsorption efficiency of Cr (VI) well correlated with the pseudo-first order kinetic model and isothermal adsorption with the Langmuir and Freundlich isothermal models, so that the RIFP-FeONPs could be a prospective nanosorbent for hexavalent chromium removal from industrial waste.
Collapse
Affiliation(s)
- P Prema
- Department of Zoology, VHN Senthikumara Nadar College (Autonomous), Virudhunagar, Tamilnadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang, Surat Thani, 84000, Thailand
| | - J M Murugan
- PG and Research Centre in Biotechnology, MGR College, Hosur, India
| | - Hayssam M Ali
- Department of Botany and Microbiology College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Z M Salem
- Department of Forestry and Wood Technology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, India.
| |
Collapse
|
32
|
Park J, Kim J, Min A, Choi MY. Fabrication of nonenzymatic electrochemical sensor based on Zn@ZnO core-shell structures obtained via pulsed laser ablation for selective determination of hydroquinone. ENVIRONMENTAL RESEARCH 2022; 204:112340. [PMID: 34740621 DOI: 10.1016/j.envres.2021.112340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Herein, we fabricated a more sensitive nonenzymatic electrochemical sensor for the selective determination of hydroquinone as a targeted pollutant at zinc@zinc oxide (Zn@ZnO) core-shell nanostructures. The nanostructured Zn@ZnO materials were produced using pulsed laser ablation in an aqueous medium without the use of any reducing agents or surfactants. The detailed structural, morphological, elemental composition, and electrochemical voltammetric analyses revealed a significant improvement in Zn@ZnO performance for selective hydroquinone detection. A broad linear calibration response was obtained as 10-90 μM with high sensitivity of 0.5673 μA μM-1 cm-2 and the low detection limit was 0.10443 μM for detection of hydroquinone. The modified Zn@ZnO electrode's excellent electrochemical sensing performance was attributed to the accessibility of a high electrochemically active surface area (EASA = 0.00345 μF/cm2) and an improved electron transfer rate. Stability and antiinterference tests were also carried out. A 100 fold increase in the concentration of common cations and anions (Na+, Mg2+, Cl-, SO42-, and NO3-) did not affect the selective determination of HQ. As a result, the fabricated electrochemical sensor has a wide range of potential applications in environmental and biomedical science.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jiwon Kim
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea; Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
33
|
Kandasamy B, Govindasamy P, Thangavelu P, Theerthagiri J, Min A, Choi MY. Improved visible light photocatalytic degradation of yttrium doped NiMgAl layered triple hydroxides for the effective removal of methylene blue dye. CHEMOSPHERE 2022; 290:133299. [PMID: 34914961 DOI: 10.1016/j.chemosphere.2021.133299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Fabrication of layered triple hydroxides (LTH) is a typical and remarkable approach to produce new functionalities passionately investigated for photocatalytic removal of organic pollutants from industrial wastewater. The hydrothermal method was used to prepare different weight percentages of yttrium (Y) doped NiMgAl LTH. The structural, functional, optical, and morphological properties of the prepared samples were investigated using X-ray diffraction, Fourier transformed-infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, and scanning electron microscopy. The photocatalytic degradation of the different percentages of Y-doped LTH samples were assessed through the photocatalytic degradation of methylene blue dye under the visible light irradiation. When compared to other lower concentrations of Y doping, the photocatalytic degradation efficiency of 1 wt.% Y-doped LTH was higher. Thus, the optimized LTH's improved photocatalytic performance was attributed to increased visible light absorption with low transmission and improved electron-hole separation.
Collapse
Affiliation(s)
- Bhuvaneswari Kandasamy
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - Palanisamy Govindasamy
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - Pazhanivel Thangavelu
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India.
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
34
|
Rajivgandhi G, Gnanamangai BM, Ramachandran G, Chackaravarthy G, Chelliah CK, Maruthupandy M, Alharbi NS, Kadaikunnan S, Li WJ. Effective removal of heavy metals in industrial wastewater with novel bioactive catalyst enabling hybrid approach. ENVIRONMENTAL RESEARCH 2022; 204:112337. [PMID: 34742711 DOI: 10.1016/j.envres.2021.112337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recent years, heavy metal reduction of contaminated atmosphere using microbes is heightened worldwide. In this context, the current study was focused on heavy metal resistant actinomycete strains were screened from effluent mixed contaminated soil samples. Based on the phenotypic and molecular identification, the high metal resistant actinomycete strain was named as Nocardiopsis dassonvillei (MH900216). The highest bioflocculent and exopolysaccharide productions of Nocardiopsis dassonvillei (MH900216) was confirmed by various invitro experiments result. The heavy metal degrading substances was characterized and effectively confirmed by Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscope (SEM). Further, the heavy metal sorption ability of actinomycete substances bioflocculent was exhibited 85.20%, 89.40%, 75.60%, and 51.40% against Cd, Cr, Pb and Hg respectively. Altogether, the bioflocculent produced actinomycete Nocardiopsis dassonvillei (MH900216) as an excellent biological source for heavy metal reduction in waste water, and it is an alternative method for effective removal of heavy metals towards sustainable environmental management.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | | | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | | | - Chenthis Kanisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Tamil Nadu, 629180, India
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
35
|
Abdullah Al-Dhabi N, Arasu MV. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. ENVIRONMENTAL RESEARCH 2022; 204:112115. [PMID: 34563525 DOI: 10.1016/j.envres.2021.112115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 05/18/2023]
Abstract
Lead is one of the highly toxic heavy metals causes various diseases even at very lower concentrations to human and affects eco-system. It is mainly released into the water through industrial activities. Phytoremediation is useful to degrade, reduce, metabolize and assimilate lead from wastewater. In this study, Turbinaria ornata was collected from the sea and dried biomass was used for biosorption of heavy metals. Adsorption of heavy metal was maximum after 100 min incubation with alga powder at acidic pH (4.5). The interactive effects of lead concentration, contact times, pH, biomass concentration and agitation speed was evaluated by a two-level full factorial design. Initial lead concentration, agitation speed and biomass concentration were the most important variables affecting lead removal (p < 0.001) were selected for optimization using central composite rotatable design. Lead removal was found to be maximum (99.8%) in optimized conditions: initial lead 99.8 mg/L, 250 rpm agitation speed and 16.2 g/L biomass concentrations. Municipal wastewater was collected and lead concentration (0.013 mg/L) and physiochemical factors were analyzed. Algal biomass removed >98.5% lead form the wastewater within 10 min in an optimized condition. The present study confirmed the potential application of T. ornata for the removal of lead from contaminated environment.
Collapse
Affiliation(s)
- Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
36
|
Al-Khattaf FS, Al-Ansari MM, Maruthamuthu MK, Dyona L, Agastian P. Polyhydroxybutyrate degradation by biocatalyst of municipal sludge water and degradation efficacy in sequencing batch biofilm reactor. ENVIRONMENTAL RESEARCH 2022; 204:112336. [PMID: 34740626 DOI: 10.1016/j.envres.2021.112336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The main aim of the study was to degrade poly-β-hydroxybutyrate (P(3HB)) in the sequencing batch biofilm reactor (SBBR) using biocatalyst. Enrichment method was used for the isolation of P(3HB) degrading bacteria. These bacterial strains were isolated from the wastewater sludge sample treated with P(3HB) sheets. A total of 75 bacteria were isolated after 60 days of incubation. The zone of clearance varied between 12 ± 1 mm and 19 ± 2 mm. Two bacterial strains (Nitrobacter vulgaris SW1 and Pseudomonas aeruginosa KS10) showed rapid PHB degradation activity on agar plates. Plate screening experiments confirmed PHB degrading ability of P. aeruginosa KS10 and N. vulgaris SW1. Biodegrading potential improved after 72 h fermentation period. The bacteria produced depolymerase and enzyme activity was maximum after 72 h. The sequencing batch biofilm reactor (SBBR) co-cultured with N. vulgaris SW1 and P. aeruginosa KS10 was operated to remove PHB from the wastewater. Biofilm in the reactor degraded PHB and the production of polyhydroxybutyrate depolymerase influenced on PHB degradation. Polyhydroxybutyrate degradation improved continuously and maximum degradation (95.6%) was achieved after 8 days. The degradation of biopolymers help to reduce environmental pollution associated with the petroleum based polymers.
Collapse
Affiliation(s)
- Fatimah S Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Therapeutic Biomaterials Laboratory, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill. NC, USA
| | - L Dyona
- Department of Botany, Holycross College, Nagercoil, Kanyakumari District, Tamilnadu, India.
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College (Autonomous), University of Madras, Chennai, 34, Tamil Nadu, India.
| |
Collapse
|
37
|
Beak K, Choi M, Kim DH, Yu Y, Theerthagiri J, Al-Mohaimeed AM, Kim Y, Jung HJ, Choi MY. Silane-treated BaTiO 3 ceramic powders for multilayer ceramic capacitor with enhanced dielectric properties. CHEMOSPHERE 2022; 286:131734. [PMID: 34352545 DOI: 10.1016/j.chemosphere.2021.131734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Silane/ceramic combination provides the composites with several advantages from the advancements of new ceramic composite materials with good thermal conductivity, high mechanical and dielectric properties have wide significant applications in electrical and electronic industries. In this study, to enhance the dispersibility of dielectric barium titanate (BaTiO3) ceramic powder and additives for the fabrication of multilayer ceramic capacitors (MLCCs), surface treatment of the precursor of ceramic powder was performed using silane coupling agents. Dielectric ceramic sheets fabricated from ceramic powders that had been surface-treated with different amounts of N-[3-(trimethoxysilyl)propyl]aniline (TMSPA) which increased the surface gloss. In particular, the dielectric properties of the multilayer ceramic sheet fabricated by stacking sheets from the TMSPA-treated ceramic powder sintering at 1200 °C, it was confirmed that the dielectric constant increased from 881 to 2382 and the dielectric loss dropped from 1.96 to 1.34% with utilization of the TMSPA treatment. The physical and dielectric properties of the TMSPA-treated multilayer ceramic sheet were also determined by Fourier-transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, glossmetry, and electrochemical impedance analysis. The results revealed that the TMSPA-modified BaTiO3 surfaces considerably increased the dielectric property of the fabricated nanocomposite.
Collapse
Affiliation(s)
- Kyungki Beak
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, Republic of Korea; School of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Moonhee Choi
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, Republic of Korea
| | - Dong Hyun Kim
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, Republic of Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Yangdo Kim
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Hyeon Jin Jung
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, Republic of Korea.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
38
|
Yu Y, Min A, Jung HJ, Theerthagiri J, Lee SJ, Kwon KY, Choi MY. Method development and mechanistic study on direct pulsed laser irradiation process for highly effective dechlorination of persistent organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118158. [PMID: 34543953 DOI: 10.1016/j.envpol.2021.118158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Chlorine-based compounds are typical persistent organic pollutants (POPs) that are widely generated in industrial production. This paper reports an effective and rapid pulsed laser irradiation technique for the dechlorination of hexachlorobenzene (HCB), a model pollutant, without additional catalysts or supports. The effects of the laser parameters, including the laser wavelength and power, on the dechlorination efficiency, were also investigated. The optimized results showed that a lower laser wavelength of 266 nm with 10 mJ/pulse power exhibited the highest dechlorination efficiency with 95% within 15 min. In addition, the laser beam effect was examined by designing the direct-pulsed laser single and multipath irradiation system. The results showed that improving the laser beam profile resulted in more than 95% dechlorination efficiency within 5 min. Thus, the dechlorination reaction proceeded much faster as the surface area that the laser beam came in contact with increased due to the multipath system than the single pathway. Gas chromatography identified benzene as the final product of HCB with pentachlorobenzene (PCB), tetrachlorobenzene (TeCB), trichlorobenzene (TCB), dichlorobenzene (DCB), and chlorobenzene (CB) as intermediate products. The mechanism of HCB dechlorination was explained by a comparison of theoretical calculations with the experimental results. The present study reports an advanced technique for the complete dechlorination of chlorobenzenes, which holds great application potential in environmental remediation.
Collapse
Affiliation(s)
- Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyeon Jin Jung
- Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ki-Young Kwon
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|