1
|
Li C, Wang L, Dai Q, Chong Y, Utsunomiya S, Wang H, Zhang Y, Han J. Chiral pesticide permethrin promotes the antibiotic resistance genes dissemination by transformation: Different chiral isomers engage in distinct regulatory pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137416. [PMID: 39904165 DOI: 10.1016/j.jhazmat.2025.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/28/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
The global dissemination of antibiotic resistance genes (ARGs) poses an increasingly urgent threat to both environmental and human health. The extensive use of chiral permethrin (PM), the most popular synthetic type I pyrethroid insecticide worldwide, has led to its increased detection in aquatic environments. However, our understanding of PM's role in spreading ARGs is still limited. Here, we systematically assessed the effects of two chiral isomers of 1R-cis-PM (CPM) and 1R-trans-PM (TPM) on the dissemination of ARGs in the aquatic environments by using a natural transformation (NT) model comprising plasmid pWH1274 and Acinetobacter baylyi ADP1. It was found that reactive oxygen species (ROS) was the main factor facilitating the NT of ARGs mediated by CPM and TPM, although their respective production mechanisms exhibited distinct pathways: CPM generates ROS primarily through the primary electron transport chain (ETC), whereas TPM does so via a secondary ETC. Furthermore, CPM enhanced NT by improving the bacterial competent state, while TPM promotes it by enhancing recombination. It was confirmed that both CPM and TPM have the potential to accelerate the spread of ARGs through distinct mechanisms. These findings will help us understand that different chiral isomers may pose risks through distinct mechanisms.
Collapse
Affiliation(s)
- Chenxi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Linjie Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qi Dai
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225000, PR China
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Institute of Technology for Carbon Neutralization, School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Liu R, Liang H, Liu J, Zhong H, Cui R, Li X, Yan B, Zhou H. Catalytic and biological properties of Ag-Pt bimetallic nanoparticles: composition-dependent activity and cytotoxicity. NANOSCALE 2025; 17:10865-10875. [PMID: 40195880 DOI: 10.1039/d5nr00713e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Due to their unique elemental compositions and interface coupling effects, bimetallic nanoparticles (BNPs), a class of nanoalloys, have attracted significant attention for applications in biomedicine, environmental remediation, and catalysis. BNPs, formed via the combination of two metal ions under light or thermal conditions, exhibit enhanced catalytic properties due to synergistic interactions between constituent metals, which result in optimized electronic structures, increased active sites, and reduced activation energy for catalytic reactions. However, BNPs may pose potential toxicity risks to organisms through bioaccumulation and environmental exposure. In this study, Ag-Pt nanoparticles (AP NPs) with varying molar ratios were synthesized and characterized to elucidate the relationship between composition, catalytic activity, and cytotoxicity. Catalytic assays revealed that AP NPs exhibited remarkable oxidase-like activity. Cytotoxicity tests revealed dose- and composition-dependent effects, with the AP55 (Ag : Pt at 5 : 5 ratio) exhibiting the highest cytotoxicity compared to monometallic counterparts at equivalent concentrations. Notably, the proportion of Ag in the AP NPs was identified as the dominant factor influencing catalytic activity and cytotoxicity. Mechanistic investigations attributed this cytotoxicity to the interplay of peroxidase-like catalytic activity, oxidative stress, and lysosomal ion release, disrupting cellular redox homeostasis and triggering apoptosis. Enzymatic assays further confirmed reductions in antioxidant defenses, including superoxide dismutase (SOD) and catalase (CAT) activities, amplifying reactive oxygen species (ROS) generation and oxidative damage. These findings underscore the critical role of catalytic behavior in mediating biological interactions and cytotoxic effects of BNPs. We establish a relationship between composition, oxidase-like activity, and cytotoxicity, providing insights into their potential biomedical applications and paving the way for the rational design of multifunctional nanomaterials with tunable biological effects.
Collapse
Affiliation(s)
- Rongtao Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Hongwei Liang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Jian Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Huoqing Zhong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Rongxue Cui
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Xin Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
3
|
Zhao W, Hou Y, Wei L, Wei W, Zhang K, Duan H, Ni BJ. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. WATER RESEARCH 2025; 274:123092. [PMID: 39787839 DOI: 10.1016/j.watres.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process. The results indicated that chlorination could induce genetic mutations and promote horizontal gene transfer through multiple pathways, including increased reactive oxygen species, enhanced membrane permeability, stimulation of the SOS response, and activation of efflux pumps. In addition, this work delves into significant discoveries regarding the factors affecting ARG transmission in drinking water, such as chlorine concentration, reaction time, disinfection byproducts, pipe materials, biofilms, and the water matrix. A series of effective strategies from water source to point-of-use were proposed aimed at mitigating ARGs transmission risks in the drinking water system. Finally, we address existing challenges and outline future research directions to overcome these bottlenecks. Overall, this review aims to advance our understanding of the role of chlorination in the dissemination of ARGs and to inspire innovative research ideas for optimizing disinfection techniques, minimizing the risks of antibiotic resistance transmission, and enhancing the safety of drinking water.
Collapse
Affiliation(s)
- Weixin Zhao
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanan Hou
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Zeng Q, Pu Y, Liu Q, Li Y, Sun Y, Hao Y, Yang Q, Yang B, Wu Y, Shi S, Gong Z. Effects of decabromodiphenyl ethane (DBDPE) exposure on soil microbial community: Nitrogen cycle, microbial defense and repair and antibiotic resistance genes transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124503. [PMID: 39946809 DOI: 10.1016/j.jenvman.2025.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
DBDPE, a widely used brominated flame retardant, is frequently detected in soil. However, the toxic effects of DBDPE on soil microbial communities remain unclear. This study investigated the effects of DBDPE on the microbial community shifts, the nitrogen cycle, microbial defense and repair, and antibiotic resistance genes (ARGs) transfer. After 28 days of DBDPE exposure, the soil microbial community was altered. Denitrifier were enriched by 4.07-78.22% under DBDPE exposure concentrations of 100-1000 ng/g. Additionally, the abundances of genes encoding enzymes involved in nitrification and denitrification processes were up-regulated at 100 ng/g DBDPE exposure, and further promoted at 1000 ng/g DBDPE exposure. Meanwhile, DBDPE exposure at concentrations of 100-1000 ng/g stimulated the production of extracellular polymers substances (EPS) (2155-2347 mg/kg), increased the accumulation of reactive oxygen species (ROS) (by 97.95-108.38%), and activated the antioxidant defense system of soil microorganisms, which correspondingly down-regulated catalase (CAT) genes (by 4.65-4.91%), while up-regulated superoxide dismutase (SOD) (by 0.52-2.63%) and glutathione (GSH) genes (by 19.03%-44.61%). Genes related to the tricarboxylic acid (TCA) cycle, glycerophospholipid metabolism, and peptidoglycan biosynthesis were up-regulated, enhancing cell membrane repair in response to DBDPE exposure. Moreover, the increase in DBDPE concentration selectively enriched and promoted the transmission of ARGs. The co-occurrence network of ARGs and mobile genetic elements (MGEs) revealed that DBDPE facilitated the horizontal gene transfer (HGT)-mediated transmission of transposase, ist, and insertion sequence-associated ARGs.
Collapse
Affiliation(s)
- Qianzhi Zeng
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yunhong Pu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qiangwei Liu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yuxin Li
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yanan Sun
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yiming Hao
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qing Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Bowen Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yaxuan Wu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| |
Collapse
|
5
|
Zhang C, Peng J, Zhang S, Chen B, Qiu P. Modified activated carbon material-assisted electrochemical disinfection effectively inactivate antibiotic-resistant bacteria. ENVIRONMENTAL TECHNOLOGY 2025; 46:349-357. [PMID: 38780483 DOI: 10.1080/09593330.2024.2356225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
ABSTRACTThe production and widespread transmission of antibiotic-resistant bacteria (ARB) pose an emerging threat to global public health. Electrochemical disinfection (ED) is an environmentally friendly disinfection technology widely utilized to inactivate ARB. This study explored the effect of modified activated carbon material (MACM) assisted ED on multi-ARB inactivation and the regeneration ability. The established ED technique was proven to be effective in inactivating multi-resistant ARB. Specifically, a 5-log ARB removal was achieved within 30 min treatment of MACM-assisted ED at 2.5 V. Additionally, no ARB regrowth was observed, indicating a permanent inactivation of ARB. The high level of reactive chlorine induced by MACM electrolysis was stressful to the ARB. Reactive chlorine led to overproduction of reactive oxygen species and damage of cell membranes in cells, accelerating the inactivation of ARB. Conclusively, the MACM-assisted ED method demonstrated efficient performance for ARB inactivation, implying this method is a promising alternative to traditional disinfection methods in countering ARB transmission.
Collapse
Affiliation(s)
- Chenxi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Jingze Peng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Bin Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Lin L, Sun M, Pan X, Zhang W, Yang Y, Yang Y. Absence of synergistic effects between microplastics and copper ions on the spread of antibiotic resistance genes within aquatic bacteria at the community level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176591. [PMID: 39343406 DOI: 10.1016/j.scitotenv.2024.176591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics and copper ions (Cu2+) are favorable in accelerating the propagation of antibiotic resistance genes (ARGs) in the plastisphere, however, their combined effects on the ARG spread within the bacterial community of the natural environment were less understood. The influence of microplastic types and Cu2+ concentrations on the horizontal gene transfer (HGT) of ARGs mediated by RP4 plasmid within natural bacterial communities in aquatic environments was investigated. Both biodegradable polybutylene succinate (PBS) and non-biodegradable polyvinyl chloride (PVC) microplastics significantly enhanced the transfer of ARGs, with PBS showing a significant higher effect compared to PVC. Cu2+ also increased transconjugation rates at environmentally relevant concentrations (5 μg L-1), but higher levels (50 μg L-1) lead to decreased rates due to severe bacterial cell membrane damage. The transconjugation rates in the presence of both microplastics and Cu2+ were lower than the sum of their individual effects, indicating no synergistic effects between them on transconjugation. Proteobacteria dominated the composition of transconjugates for all the treatment. Transmission electron microscope images and reactive oxygen species production in bacterial cells indicated that the increased contact frequency due to extracellular polymeric substances, combined with enhanced membrane permeability induced by microplastics and Cu2+, accounted for the increasing transconjugation rates. The study provides valuable insight into the potential effects of microplastics and heavy metals on the spread of ARGs from donors to bacterial communities in natural environments.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Mengge Sun
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Yang
- Guizhou Normal University, Guiyang, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
7
|
Zhang M, Liu J, Zhang W, Feng M, Yu X, Ye C. Neglected contributors to the transmission of bacterial antibiotic resistance in drinking water: Extracellular antibiotic resistance genes and the natural transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175970. [PMID: 39241883 DOI: 10.1016/j.scitotenv.2024.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Collapse
Affiliation(s)
- Menglu Zhang
- Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou 350117, China; College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China.
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Gao Y, Zhou S, Yang Z, Tang Z, Su Y, Duan Y, Song J, Huang Z, Wang Y. Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135624. [PMID: 39208634 DOI: 10.1016/j.jhazmat.2024.135624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Zhengqing Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| |
Collapse
|
9
|
Xu R, Huang C, Yang B, Wang S, Zhong T, Ma L, Shang Q, Zhang M, Chu Z, Liu X. Influence of Two-Dimensional Black Phosphorus on the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes: Promotion or Inhibition? Curr Microbiol 2024; 81:344. [PMID: 39235595 DOI: 10.1007/s00284-024-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The problem of bacterial resistance caused by antibiotic abuse is seriously detrimental to global human health and ecosystem security. The two-dimensional nanomaterial (2D) such as black phosphorus (BP) is recently expected to become a new bacterial inhibitor and has been widely used in the antibacterial field due to its specific physicochemical properties. Nevertheless, the effects of 2D-BP on the propagation of antibiotic resistance genes (ARGs) in environments and the relevant mechanisms are not clear. Herein, we observed that the sub-inhibitory concentrations of 2D-BP dramatically increased the conjugative transfer of ARGs mediated by the RP4 plasmid up to 2.6-fold at the 125 mg/L exposure level compared with the untreated bacterial cells. Nevertheless, 2D-BP with the inhibitory concentration caused a dramatic decrease in the conjugative frequency. The phenotypic changes revealed that the increase of the conjugative transfer caused by 2D-BP exposure were attributed to the excessive reactive oxygen species and oxidative stress, and increased bacterial cell membrane permeability. The genotypic evidence demonstrated that 2D-BP affecting the horizontal gene transfer of ARGs was probably through the upregulation of mating pair formation genes (trbBp and traF) and DNA transfer and replication genes (trfAp and traJ), as well as the downregulation of global regulatory gene expression (korA, korB, and trbA). In summary, the changes in the functional and regulatory genes in the conjugative transfer contributed to the stimulation of conjugative transfer. This research aims to broaden our comprehension of how nanomaterials influence the dissemination of ARGs by elucidating their effects and mechanisms.
Collapse
Affiliation(s)
- Rongrong Xu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Chuang Huang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Bo Yang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Shengli Wang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Tianyang Zhong
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Lulu Ma
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Qiannan Shang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Mengyao Zhang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Zhuding Chu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China.
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China.
| |
Collapse
|
10
|
Deng J, Zhang W, Zhang L, Qin C, Wang H, Ling W. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. ENVIRONMENT INTERNATIONAL 2024; 191:108972. [PMID: 39180776 DOI: 10.1016/j.envint.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenkang Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Zhang Q, Zhou H, Jiang P, Wu L, Xiao X. Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133942. [PMID: 38452675 DOI: 10.1016/j.jhazmat.2024.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios.
Collapse
Affiliation(s)
- Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huixian Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Jiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
Yin Y, Tao X, Du Y, Li M, Yang S, Zhang W, Yang C, Li H, Wang X, Chen R. Biochar improves the humification process during pig manure composting: Insights into roles of the bacterial community and metabolic functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120463. [PMID: 38430882 DOI: 10.1016/j.jenvman.2024.120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.
Collapse
Affiliation(s)
- Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China.
| | - Xiaohui Tao
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Yifei Du
- Yellow River Institute of Eco-Environmental Research, No.6 Changchun Road, Zhengzhou, 450003, PR China
| | - Mengtong Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Chao Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 750 07, Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| |
Collapse
|
14
|
Cui Y, Zhao H, Zhang C. Zinc oxide nanoparticles enhance plasmid transfer among growth-promoting endophytes in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169682. [PMID: 38163607 DOI: 10.1016/j.scitotenv.2023.169682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles (NPs) hold great promise for agricultural applications, yet their potential impact on exogenous gene transfer within plant remains poorly understood. In this study, we utilized the non-conjugative plasmid pCAMBIA1300, harboring the bialaphos resistance (bar) gene expressed in plant and the kanamycin resistance (kanR) gene as selectable marker in bacteria. Our results revealed a significant increase in the transfer of plasmid (via carrier Escherichia coli DH5α), both intra- and inter-species within the endophyte, when Arabidopsis thaliana was exposed to environmentally relevant level of zinc oxide (ZnO) NPs at a concentration of 0.7 μg/mL throughout its lifespan. Intriguingly, the plasmid exhibited selective transfer to growth-promoting endophytes, such as Enterobacter, Serratia, and Achromobacter, with the presence of ZnO NPs expanding the pool of potential recipients. This result is due to the facilitation of an endophytic and mutualistic lifestyle of invasive E. coli DH5α and the enrichment of beneficial bacteria aided by ZnO NPs. The plant's descendant generations did not express the bar gene, and the endophytes carrying the exogenous plasmid did not transmit it to sub sequent generation. This research provides crucial insights for assessing the potential risks associated with gene contamination and ensuring the safe and sustainable use of NPs in agriculture.
Collapse
Affiliation(s)
- Yueting Cui
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Huiru Zhao
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100857, China.
| |
Collapse
|
15
|
Li S, Li X, Chang H, Zhong N, Ren N, Ho SH. Comprehensive insights into antibiotic resistance gene migration in microalgal-bacterial consortia: Mechanisms, factors, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166029. [PMID: 37541493 DOI: 10.1016/j.scitotenv.2023.166029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
With the overuse of antibiotics, antibiotic resistance gene (ARG) prevalence is gradually increasing. ARGs are considered emerging contaminants that are broadly concentrated and dispersed in most aquatic environments. Recently, interest in microalgal-bacterial biotreatment of antibiotics has increased, as eukaryotes are not the primary target of antimicrobial drugs. Moreover, research has shown that microalgal-bacterial consortia can minimize the transmission of antibiotic resistance in the environment. Unfortunately, reviews surrounding the ARG migration mechanism in microalgal-bacterial consortia have not yet been performed. This review briefly introduces the migration of ARGs in aquatic environments. Additionally, an in-depth summary of horizontal gene transfer (HGT) between cyanobacteria and bacteria and from bacteria to eukaryotic microalgae is presented. Factors influencing gene transfer in microalgal-bacterial consortia are discussed systematically, including bacteriophage abundance, environmental conditions (temperature, pH, and nutrient availability), and other selective pressure conditions including nanomaterials, heavy metals, and pharmaceuticals and personal care products. Furthermore, considering that quorum sensing could be involved in DNA transformation by affecting secondary metabolites, current knowledge surrounding quorum sensing regulation of HGT of ARGs is summarized. In summary, this review gives valuable information to promote the development of practical and innovative techniques for ARG removal by microalgal-bacterial consortia.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Nianbing Zhong
- Liangjiang International College, Chongqing University of Technology, Chongqing 401135, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
16
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
18
|
Zhang Q, Zhou H, Jiang P, Xiao X. Metal-based nanomaterials as antimicrobial agents: A novel driveway to accelerate the aggravation of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131658. [PMID: 37209560 DOI: 10.1016/j.jhazmat.2023.131658] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The consequences of antibiotic tolerance directly affect human health and result in socioeconomic loss. Nanomaterials as antimicrobial agents are considered a promising alternative to antibiotics and have been blended with various medical applications. However, with increasing evidence that metal-based nanomaterials may induce antibiotic tolerance, there is an urgent need to scrutinize how nanomaterial-induced microbial adaption affects the evolution and spread of antibiotic tolerance. Accordingly, within this investigation, we summarized the principal factors influencing the resistance development exposed to metal-based nanomaterials, including physicochemical properties, exposure scenario, as well as bacterial response. Furthermore, the mechanisms of metal-based nanomaterial-induced antibiotic resistance development were comprehensively elucidated from acquired resistance by horizontal transfer of antibiotic resistance genes (ARGs), intrinsic resistance by genetic mutation or upregulated resistance-related gene expression, and adaptive resistance by global evolution. Overall, our review raises concerns about the safety of nanomaterials as antimicrobial agents, which will facilitate assistance in the safe development of antibiotic-free antibacterial strategies.
Collapse
Affiliation(s)
- Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huixian Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Jiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
19
|
Markowicz A. The significance of metallic nanoparticles in the emerging, development and spread of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162029. [PMID: 36740055 DOI: 10.1016/j.scitotenv.2023.162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An ever-increasing number of newly synthesised nanoparticles have a constantly expanding range of applications. The large-scale implementation of nanoparticles will inevitably lead to intentional or accidental contamination of various environments. Since the major benefit of using several metallic nanoparticles is antimicrobial activity, these emerging contaminants may have a potentially hazardous impact on the development and spread of antibiotic resistance - a challenge that threats infection therapy worldwide. Few studies underline that metallic nanoparticles may affect the emergence and evolution of resistance via mutations and horizontal transfer between different bacterial species. Due to the complexity of factors and mechanisms involved in disseminating antibiotic resistance, it is crucial to investigate if metallic nanoparticles play a significant role in this process through co-selection ability and pressure exerted on bacteria. The aim of this review is to summarise the current research on mutations and three main horizontal gene transfer modes facilitated by nanoparticles. Here, the current results in the field are presented, major knowledge gaps and the necessity for more environmentally relevant studies are discussed.
Collapse
Affiliation(s)
- Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
20
|
Markowicz A, Borymski S, Adamek A, Sułowicz S. The influence of ZnO nanoparticles on horizontal transfer of resistance genes in lab and soil conditions. ENVIRONMENTAL RESEARCH 2023; 223:115420. [PMID: 36764431 DOI: 10.1016/j.envres.2023.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is a severe problem that threatens the achievements of modern medicine. Metallic nanoparticles may promote the horizontal transfer of resistance genes due to their toxicity to bacterial cells and metal-induced co-selection mechanisms. In this study, we investigated the toxicity of ZnO nanoparticles to E. coli DH5α laboratory strain and the abundance of soil microbial community. Moreover, the influence of ZnO nanoparticles on resistance gene transfer in laboratory and soil conditions was evaluated. ZnO nanoparticles at concentrations up to 10 mg L-1 reduced the survival of E. coli cells by 14.6% and increased the transformation frequency by almost 1.8 fold. In soil, ZnO nanoparticles at a concentration of 1000 mg kg-1 affected the total abundance of bacteria, causing a decrease in the 16S rRNA gene copy number. We did not detect the presence of 11 target antibiotic resistance genes (sul1, sul2, imp2, imp5, blaCTX-M, ermB, mefA, strB, aadA1, tetA1, tetB), which confer resistance to five classes of antibiotics in soil treated with ZnO nanoparticles. No elevated conjugation frequency was observed in soil microbial communities treated with ZnO nanoparticles. However, the increase in czcA gene copies indicates the spread of genetic elements harbouring metal resistance. The data shows that metallic nanoparticles promote the spread of antibiotic and metal resistance genes. The broad implication of the present research is that the inevitable nanoparticles environmental pollution may lead to the further dissemination of antibiotic resistance and profoundly influence public health.
Collapse
Affiliation(s)
- Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Sławomir Borymski
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Anna Adamek
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
21
|
Werkneh AA, Islam MA. Post-treatment disinfection technologies for sustainable removal of antibiotic residues and antimicrobial resistance bacteria from hospital wastewater. Heliyon 2023; 9:e15360. [PMID: 37123966 PMCID: PMC10130869 DOI: 10.1016/j.heliyon.2023.e15360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
The World Health Organization (WHO) has identified antimicrobial resistance bacteria and its spread as one of the most serious threats to public health and the environment in the twenty-first century. Different treatment scenarios are found in several countries, each with their own regulations and selection criteria for the effluent quality and management practices of hospital wastewater. To prevent the spread of disease outbreaks and other environmental threats, the development of sustainable treatment techniques that remove all antibiotics and antimicrobial resistant bacteria and genes should be required. Although few research based articles published focusing this issues, explaining the drawbacks and effectiveness of post-treatment disinfection strategies for eliminating antibiotic residues and antimicrobial resistance from hospital wastewater is the reason of this review. The application of conventional activated sludge (CAS) in large scale hospital wastewater treatments poses high energy supply needs for aeration, capital and operational costs. Membrane bioreactors (MBR) have also progressively replaced the CAS treatment systems and achieved better treatment potential, but membrane fouling, energy cost for aeration, and membrane permeability loss restrict their performance at large scale operations. In addition, the membrane process alone doesn't completely remove/degrade these micropollutants; as a substitute, the pollutants are being concentrated in a smaller volume, which requires further post-treatment. Therefore, these drawbacks should be solved by developing advanced techniques to be integrated into any of these or other secondary wastewater treatment systems, aiming for the effective removal of these micropollutants. The purpose of this paper is to review the performances of post-treatment disinfection technologies in the removal of antibiotics, antimicrobial resistant bacteria and their gens from hospital wastewater. The performance of advanced disinfection technologies (such as granular and powered activated carbon adsorption, ozonation, UV, disinfections, phytoremediation), and other integrated post-treatment techniques are primarily reviewed. Besides, the ecotoxicology and public health risks of hospital wastewater, and the development, spreading and mechanisms of antimicrobial resistant and the protection of one health are also highlighted.
Collapse
Affiliation(s)
- Adhena Ayaliew Werkneh
- Department of Environmental Health, School of Public Health, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
- Corresponding author. ;
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| |
Collapse
|
22
|
Metryka O, Wasilkowski D, Adamczyk-Habrajska M, Mrozik A. Undesirable consequences of the metallic nanoparticles action on the properties and functioning of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis membranes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130728. [PMID: 36610340 DOI: 10.1016/j.jhazmat.2023.130728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Controversial and inconsistent findings on the toxicity of metallic nanoparticles (NPs) against many bacteria are common in recorded studies; therefore, further advanced experimental work is needed to elucidate the mechanisms underlying nanotoxicity. This study deciphered the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on membrane permeability, cytoplasmic leakage, ATP level, ATPase activity and fatty acid profiling of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis as model microorganisms. A multifaceted analysis of all collected results indicated the different influences of individual NPs on the measured parameters depending on their type and concentration. Predominantly, membrane permeability was correlated with increased cytoplasmic leakage, reduced total ATP levels and ATPase activity. The established fatty acid profiles were unique and concerned various changes in the percentages of hydroxyl, cyclopropane, branched and unsaturated fatty acids. Decisively, E. coli was more susceptible to changes in measured parameters than B. cereus and S. epidermidis. Also, it was established that ZnO-NPs and Cu-NPs had a major differentiating impact on studied parameters. Additionally, bacterial cell imaging using scanning electron microscopy elucidated different NPs distributions on the cell surface. The presented results are believed to provide novel, valuable and accumulated knowledge in the understanding of NPs action on bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, Katowice 40-032, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, Żytnia 12, Sosnowiec 41-200, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland.
| |
Collapse
|
23
|
Liu W, Xu Y, Slaveykova VI. Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160516. [PMID: 36470380 DOI: 10.1016/j.scitotenv.2022.160516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Limited information exists on how bacterial resistance to antibiotics is acquired and altered in response to short-term metal stress, and what the prevailing pathways are. Here the precursor mechanisms of development of bacterial antibiotic resistance mediated by oxidative stress induce under sub-lethal Cu2+ exposure were explored. The results showed that the overall level of antibiotic resistance in wild-type Escherichia coli and antibiotic-resistant E. coli was enhanced under 4 and 20 mg/L Cu2+ exposure, as demonstrated by the 2- to 8-fold increase in minimum inhibitory concentration (MIC). The MIC correlated with the increase of the cellular ROS generation and the enhancement of the antioxidant enzyme activity (p < 0.05), suggesting that changes in antibiotic resistance under sub-lethal Cu2+ exposure could be associated with oxidative stress. Likewise, enhanced cell membrane permeability and an increase in the number of bacteria entering the viable but non culturable (VBNC) state contributed to bacterial resistance to antibiotics. Moreover, the variance partitioning analysis demonstrated that the alterations of the antibiotic resistance phenotype of wild-type E. coli was mainly caused by oxidative stress-mediated increase in cell membrane permeability and entry into the VBNC state. The development of antibiotic resistance in resistant E. coli was primarily attributed to changes in the abundance and horizontal transfer ability of its antibiotic resistance genes, both of which contributed up to 20 %. Taken together the results allowed to propose a conseptual scheme on developing bacterial antibiotic resistance mediated by oxidative stress under sub-lethal Cu2+ exposure. This result provided a strong basis for reduction of early bacterial resistance.
Collapse
Affiliation(s)
- Wei Liu
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Fukang Road 31, Tianjin, China.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland.
| |
Collapse
|
24
|
Ye L, He X, Obeng E, Wang D, Zheng D, Shen T, Shen J, Hu R, Deng H. The CuO and AgO co-modified ZnO nanocomposites for promoting wound healing in Staphylococcus aureus infection. Mater Today Bio 2023; 18:100552. [PMID: 36819756 PMCID: PMC9936377 DOI: 10.1016/j.mtbio.2023.100552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Bacterial has become a common pathogen of humans owing to their drug-resistant effects and evasion of the host immune system, with their ability to form biofilm and induce severe infections, a condition which has become a primary public health concern globally. Herein, we report on CuO@AgO/ZnO NPs antibacterial activity enhanced by near-infrared (NIR) light which was effective in the elimination of Staphylococcus aureus and the Pseudomonas aeruginosa. The CuO@AgO/ZnO NPs under NIR significantly eradicated S. aureus and its biofilm and P. aeruginosa in vitro, and subsequently exhibited such phenomenon in vivo, eliminating bacteria and healing wound. This demonstrated the combined intrinsic antibacterial potency of the Cu and Ag components of the CuO@AgO/ZnO NPs was enhanced tremendously to achieve such outcomes in vitro and in vivo. Considering the above advantages and facile preparation methods, the CuO@AgO/ZnO NPs synthesized in this work may prove as an important antibacterial agent in bacterial-related infection therapeutics and for biomedical-related purposes.
Collapse
Affiliation(s)
- Lisong Ye
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Danyan Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Dongyang Zheng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianxi Shen
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China,Corresponding author. School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Rongdang Hu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Corresponding author.
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Corresponding author.
| |
Collapse
|
25
|
Jiao X, Guo W, Li X, Yao F, Zeng M, Yuan Y, Guo X, Wang M, Xie QD, Cai L, Yu F, Yu P, Xia Y. New insight into the microbiome, resistome, and mobilome on the dental waste water in the context of heavy metal environment. Front Microbiol 2023; 14:1106157. [PMID: 37152760 PMCID: PMC10157219 DOI: 10.3389/fmicb.2023.1106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Object Hospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW. Methods DWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods. Results DWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. Pseudomonas putida, Pseudomonas aeruginosa, Chryseobacterium indologenes, Sphingomonas laterariae were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs. Conclusion DWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters.
Collapse
Affiliation(s)
- Xiaoyang Jiao
- College of Medicine, Shantou University, Shantou, China
| | - Wenyan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xin Li
- College of Medicine, Shantou University, Shantou, China
| | - Fen Yao
- Department of Pharmacology, College of Medicine, Shantou University, Shantou, China
| | - Mi Zeng
- College of Medicine, Shantou University, Shantou, China
| | - Yumeng Yuan
- College of Medicine, Shantou University, Shantou, China
| | - Xiaoling Guo
- College of Medicine, Shantou University, Shantou, China
| | - Meimei Wang
- College of Medicine, Shantou University, Shantou, China
| | - Qing Dong Xie
- College of Medicine, Shantou University, Shantou, China
| | - Leshan Cai
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feiyuan Yu
- College of Medicine, Shantou University, Shantou, China
| | - Pen Yu
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong Xia
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Yong Xia,
| |
Collapse
|
26
|
Zeng J, Li Y, Jin G, Su JQ, Yao H. Short-Term Benzalkonium Chloride (C 12) Exposure Induced the Occurrence of Wide-Spectrum Antibiotic Resistance in Agricultural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15054-15063. [PMID: 36069710 DOI: 10.1021/acs.est.2c04730] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) are global pollutants that pose a potential risk to human health. Benzalkonium chloride (C12) (BC) disinfectants are thought to exert selection pressure on antibiotic resistance. However, evidence of BC-induced changes in antibiotic resistance in the soil environment is lacking. Here, we established short-term soil microcosms to investigate ARG profile dynamics in agricultural soils amended with sulfamethazine (SMZ, 10 mg kg-1) and gradient concentrations of BC (0-100 mg kg-1), using high-throughput quantitative PCR and Illumina sequencing. With the increase in BC concentration, the number of ARGs detected in the soil increased, but the normalized ARG abundance decreased. The added SMZ had a limited impact on ARG profiles. Compared to broad-spectrum fungicidal BC, the specificity of SMZ significantly affected the microbial community. Network analysis found that low-medium BC exposure concentrations resulted in the formation of small but strong ARG co-occurrence clusters in the soil, while high BC exposure concentration led to a higher incidence of ARGs. Variation partitioning analysis suggested that BC stress was the major driver shaping the ARG profile. Overall, this study highlighted the emergence and spread of BC-induced ARGs, potentially leading to the antimicrobial resistance problem in agricultural soils.
Collapse
Affiliation(s)
- Jieyi Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Guoping Jin
- Ningbo No. 9 Hospital, Ningbo 315020, People's Republic of China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| |
Collapse
|
27
|
Lu J, Yu Z, Ding P, Guo J. Triclosan Promotes Conjugative Transfer of Antibiotic Resistance Genes to Opportunistic Pathogens in Environmental Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15108-15119. [PMID: 36251935 DOI: 10.1021/acs.est.2c05537] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although triclosan, as a widely used antiseptic chemical, is known to promote the transmission of antibiotic resistance to diverse hosts in pure culture, it is still unclear whether and how triclosan could affect the transmission of broad-host-range plasmids among complex microbial communities. Here, bacterial culturing, fluorescence-based cell sorting, and high-throughput 16S rRNA gene amplicon sequencing were combined to investigate contributions of triclosan on the transfer rate and range of an IncP-type plasmid from a proteobacterial donor to an activated sludge microbiome. Our results demonstrate that triclosan significantly enhances the conjugative transfer of the RP4 plasmid among activated sludge communities at environmentally relevant concentrations. High-throughput 16S rRNA gene sequencing on sorted transconjugants demonstrates that triclosan not only promoted the intergenera transfer but also the intragenera transfer of the RP4 plasmid among activated sludge communities. Moreover, triclosan mediated the transfer of the RP4 plasmid to opportunistic human pathogens, for example, Legionella spp. The mechanism of triclosan-mediated conjugative transfer is primarily associated with excessive oxidative stress, followed by increased membrane permeability and provoked SOS response. Our findings offer insights into the impacts of triclosan on the dissemination of antibiotic resistance in the aquatic environmental microbiome.
Collapse
Affiliation(s)
- Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Pengbo Ding
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
28
|
Luo L, Deng D, Zhao X, Hu H, Li X, Gu J, He Y, Yang G, Deng O, Xiao Y. The Dual Roles of Nano Zero-Valent Iron and Zinc Oxide in Antibiotics Resistance Genes (ARGs) SPREAD in Sediment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159405. [PMID: 35954758 PMCID: PMC9368363 DOI: 10.3390/ijerph19159405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticles (NPs) are widely used and ubiquitous in the environment, but the consequences of their release into the environment on antibiotics resistance genes (ARGs), microbial abundance, and community, are largely unknown. Therefore, this study examined the effect of nano zero-valent iron (nZVI) and zinc oxide (nZnO) on tetracycline resistance genes (tet-ARGs) and class 1 integron (intI1) in sediment under laboratory incubation. The coexistence of NPs and tetracycline (TC) on tet-ARGs/intI1 was also investigated. It was found that nZVI and nZnO promoted tet-ARGs/intI1 abundance in sediment without TC but reduced the inducing effect of TC on tet-ARGs/intI1 in sediment overlaid with TC solution. Without TC, nZVI, intI1, and the bacterial community could directly promote tet-ARGs spread in nZVI sediment, while intI1 and bacterial abundance were the most directly important reasons for tet-ARGs spread in nZnO sediment. With TC, nZVI and bacterial community could reduce tet-ARGs abundance in nZVI sediment, while nZnO and bacterial community could directly promote tet-ARGs in nZnO sediment. Finally, these findings provided valuable information for understanding the role of NPs in promoting and reducing ARGs in the environment.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
- Correspondence: (L.L.); (Y.X.)
| | - Dahang Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Hairong Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Xinyi Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Jidong Gu
- Environmental Science and Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China;
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, China;
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
- Correspondence: (L.L.); (Y.X.)
| |
Collapse
|
29
|
Lu J, Ding P, Wang Y, Guo J. Antidepressants promote the spread of extracellular antibiotic resistance genes via transformation. ISME COMMUNICATIONS 2022; 2:63. [PMID: 37938640 PMCID: PMC9330934 DOI: 10.1038/s43705-022-00147-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
The development of antibiotic resistance as an unavoidable consequence of the application of antimicrobials is a significant concern for human health. Antidepressants are being increasingly consumed globally. Human gut microbial communities are frequently exposed to antidepressants, yet little is known about the interaction between antidepressants and antibiotic resistance. This study aimed to investigate whether antidepressants can accelerate the dissemination of antibiotic resistance by increasing the rate of the horizontal transfer of antibiotic resistance genes (ARGs). Results demonstrated that some of the commonly-prescribed antidepressants (Duloxetine, Sertraline, Fluoxetine and Bupropion) at clinically relevant concentrations can significantly (n = 9; padj < 0.01) promote the transformation of extracellular ARGs into Acinetobacter baylyi ADP1 for a maximum of 2.3-fold, which is primarily associated with the overproduction of reactive oxygen species. The increased cell membrane permeability and porosity, stimulated transcription and translation of competence, SOS response, universal stress response and ATP synthesis-related genes are also associated with antidepressants-enhanced transformation. This study demonstrated that some antidepressants can speed up the spread of antibiotic resistance by promoting the transformation of ARGs, which emphasizes the necessity to assess the potential risks of antidepressants in spreading antibiotic resistance during clinical antidepressant applications.
Collapse
Affiliation(s)
- Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pengbo Ding
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yue Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
30
|
Relationship between the Antifungal Activity of Chitosan-Capsaicin Nanoparticles and the Oxidative Stress Response on Aspergillus parasiticus. Polymers (Basel) 2022; 14:polym14142774. [PMID: 35890550 PMCID: PMC9322876 DOI: 10.3390/polym14142774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
The fungus Aspergillus parasiticus is a contaminant in agricultural crops and its eradication involves the indiscriminate use of harmful synthetic pesticides. In the search for antifungal agents of natural origin, chitosan (Q) and capsaicin (C) are coupled in the form of nanoparticles (Np), which can possess a direct application under specific conditions. Due to their small size, Np can cross through the cell wall, taking the cells into a pro-oxidant environment known as “oxidative stress”, which presents when the reactive oxygen species (ROS) surpass the number of antioxidants in the cell. In the present investigation, nanoparticles of chitosan (Np Q) and nanoparticles of chitosan-capsaicin (Np QC) with an average diameter of 44.8 ± 20.6 nm and 111.1 ± 14.1 nm, respectively, were synthesized, and there was a zeta potential of + 25.6 ± 0.7 mV and + 26.8 ± 6.1 mV, respectively. The effect of the concentration of Np Q (A, B, C, and D), of Np QC (A, B, C, and D), and capsaicin in a solution (control) was evaluated on the viability of the spores, the accumulation of intracellular ROS, and the morphometric changes of A. parasiticus. Acute toxicity of the Np was determined utilizing bioassays with Artemia salina, and acute phytotoxicity was evaluated in lettuce seeds (Lactuca sativa). According to ROS results, capsaicin (control) did not induce oxidative stress in the cell; otherwise, it was observed to have an elevated (p < 0.05) accumulation of ROS when the concentration of Np Q increased. For both, Np Q and Np QC, an inverse physiological pattern relating spore viability and ROS accumulation in the fungus was found; the viability of spores decreased as the ROS accumulation increased. The spore viability of A. parasiticus diminished upon increasing the concentration of chitosan (0.3−0.4 mg/mL) in the Np, while the intracellular accumulation of ROS increased proportionally to the concentration of the nanomaterials in the treatments of Np Q and Np QC. On the other hand, Np QC presented a lower (p < 0.05) toxicological effect in comparison with Np Q, which indicates that the incorporation of bioactive compounds, such as capsaicin, into nanoparticles of chitosan is a strategy that permits the reduction of the toxicity associated with nanostructured materials.
Collapse
|
31
|
Susanti D, Haris MS, Taher M, Khotib J. Natural Products-Based Metallic Nanoparticles as Antimicrobial Agents. Front Pharmacol 2022; 13:895616. [PMID: 35721199 PMCID: PMC9205242 DOI: 10.3389/fphar.2022.895616] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Natural products offer a wide range of bioactivity including antimicrobial properties. There are many reports showing the antimicrobial activities of phytochem icals from plants. However, the bioactivity is limited due to multidrug resistant properties of the microorganism and different composition of cell membrane. The antibacterial activity of the natural products is different toward Gram-negative and Gram-positive bacteria. These phenomena are caused by improper physicochemical conditions of the substance which hinder the phytochemical bioactivity against the broad range of bacteria. One of the strategies to improve the antimicrobial action is by biogenic synthesis via redox balance of the antimicrobial active substance with metal to form nanosized materials or nanoparticles (NPs). Antibiotic resistance is not relevant to NPs because the action of NPs is via direct contact with bacterial cell walls without the need of penetration into microbial cells. The NPs that have shown their effectiveness in preventing or overcoming biofilm formation such as silver-based nanoparticles (AgNPs), gold-based nanoparticles (AuNPs), platinum-based nanoparticles (PtNPs) and Zinc oxide-based nanoparticles (ZnONPs). Due to its considerably simple synthesis procedure has encouraged researchers to explore antimicrobial potency of metallic nanoparticles. Those metallic nanoparticles remarkably express synergistic effects against the microorganisms tested by affecting bacterial redox balance, thus disrupting their homeostasis. In this paper, we discuss the type of metallic nanoparticle which have been used to improve the antimicrobial activity of plant extract/constituents, preparation or synthesis process and characterisation of the plant-based metallic nanoparticles.
Collapse
Affiliation(s)
- Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia.,IKOP Pharma Sdn Bhd, Jalan Sultan Ahmad Shah, Kuantan, Malaysia.,Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia.,Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
32
|
Chislett M, Guo J, Bond PL, Wang Y, Donose BC, Yuan Z. Reactive nitrogen species from free nitrous acid (FNA) cause cell lysis. WATER RESEARCH 2022; 217:118401. [PMID: 35427827 DOI: 10.1016/j.watres.2022.118401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Free nitrous acid (FNA, i.e. HNO2) has been demonstrated to have broad biocidal effects on a range of microorganisms, which has direct implications for wastewater management. However, the biocidal mechanisms still remain largely unknown. This study aims to test the hypothesis that FNA will induce cell lysis via cell membrane perforations, and consequently cause cell death via proteolysis, through the use of two model organisms namely Escherichia coli K12 and Pseudomonas putida KT2440. A combination of analytical techniques that included viability assays, atomic force microscopy (AFM), protein abundance assays and proteomic analysis using Quadruple-Orbitrap™ Mass spectrometry was used to evaluate the extent of cell death and possible cell lysis mechanisms. FNA treatment at 6.09 mg/L for 24 h (conditions typically applied in applications) induced 36 ± 4.2% and 91 ± 3.5% cell death/lysis of E. coli and P. putida, respectively. AFM showed that the lysis of cells was observed via perforations in the cell membrane; cells also appeared to shrink and become flat following FNA treatment. By introducing a reactive nitrogen species (RNS) scavenger to act as a treatment control, we further revealed that it was the nitrosative decomposition species of FNA, such as .NO that caused the cell lysis through the destruction of protein macromolecules found in the cell membrane (proteolysis). Subsequently, the RNS went on to cause the destruction of protein macromolecules within the cells. The death of these model organisms E. coli and P. putida following exposure to FNA treatment provides insights into the use of FNA as an antimicrobial agent in wastewater treatment.
Collapse
Affiliation(s)
- Mariella Chislett
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip L Bond
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yue Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bogdan C Donose
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
33
|
Zha Y, Li Z, Zhong Z, Ruan Y, Sun L, Zuo F, Li L, Hou S. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128561. [PMID: 35278945 DOI: 10.1016/j.jhazmat.2022.128561] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes.
Collapse
Affiliation(s)
- Yingying Zha
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ziwei Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Zheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Yiming Ruan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Lili Sun
- Guangzhou Inspection Testing and Certification Group Co., Ltd., China
| | - Fangfang Zuo
- Guangzhou Inspection Testing and Certification Group Co., Ltd., China; Key Laboratory for Quality Research and Evaluation of Medical Textile Protective Products, Guangdong Medical Products Administration, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Sen Hou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
34
|
Potent and Broad-Spectrum Bactericidal Activity of a Nanotechnologically Manipulated Novel Pyrazole. Biomedicines 2022; 10:biomedicines10040907. [PMID: 35453657 PMCID: PMC9029483 DOI: 10.3390/biomedicines10040907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
The antimicrobial potency of the pyrazole nucleus is widely reported these days, and pyrazole derivatives represent excellent candidates for meeting the worldwide need for new antimicrobial compounds against multidrug-resistant (MDR) bacteria. Consequently, 3-(4-chlorophenyl)-5-(4-nitrophenylamino)-1H-pyrazole-4-carbonitrile (CR232), recently reported as a weak antiproliferative agent, was considered to this end. To overcome the CR232 water solubility issue and allow for the determination of reliable minimum inhibitory concentration values (MICs), we initially prepared water-soluble and clinically applicable CR232-loaded nanoparticles (CR232-G5K NPs), as previously reported. Here, CR232-G5K NPs have been tested on several clinically isolates of Gram-positive and Gram-negative species, including MDR strains. While for CR232 MICs ≥ 128 µg/mL (376.8 µM) were obtained, very low MICs (0.36–2.89 µM) were observed for CR232-G5K NPs against all of the considered isolates, including colistin-resistant isolates of MDR Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemases (KPCs)-producing K. pneumoniae (0.72 µM). Additionally, in time–kill experiments, CR232-G5K NPs displayed a rapid bactericidal activity with no significant regrowth after 24 h on all isolates tested, regardless of their difficult-to-treat resistance. Conjecturing a clinical use of CR232-G5K NPs, cytotoxicity experiments on human keratinocytes were performed, determining very favorable selectivity indices. Collectively, due to its physicochemical and biological properties, CR232-G5K NPs could represent a new potent weapon to treat infections sustained by broad spectrum MDR bacteria.
Collapse
|
35
|
Yu S, Wang Y, Shen F, Fang H, Yu Y. Copper-based fungicide copper hydroxide accelerates the evolution of antibiotic resistance via gene mutations in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152885. [PMID: 34998765 DOI: 10.1016/j.scitotenv.2021.152885] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The extensive use of copper-based fungicides in orchards, especially in vineyards, leads to the accumulation of copper, which has caused growing concern. However, data on the acquisition of antibiotic resistance in opportunistic pathogens under copper-based fungicides are scarce. In this study, we investigated the potential development of antibiotic resistance in Escherichia coli K12 under selective copper hydroxide pressure. The results indicated that copper hydroxide at concentrations of 100 mg/L and 200 mg/L evolved resistance against chloramphenicol and tolerance against tetracycline to 4-8 and 2.00-2.67 times than the initial minimal inhibitory concentrations (MICs), respectively. Whole-genome sequencing analysis showed that the obtained resistant strains carried gene mutations including AcrAB-TolC multidrug efflux pump (acrB and marR), outer membrane porin (evZ), and another indirect pathways. Furthermore, the expression of multidrug efflux pump genes and oxidative stress-related genes were significantly upregulated, whereas outer membrane porin genes were downregulated. Thus, our results could well explain the emergence of antibiotic resistance and resistance mechanisms selected by copper-based fungicide, and provide a basis for the management of copper-based fungicide in agriculture to avoid the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Guo A, Zhou Q, Bao Y, Qian F, Zhou X. Prochloraz alone or in combination with nano-CuO promotes the conjugative transfer of antibiotic resistance genes between Escherichia coli in pure water. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127761. [PMID: 34799177 DOI: 10.1016/j.jhazmat.2021.127761] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Conjugative plasmid transfer is a major contributor to the spread of antibiotic resistance genes (ARGs). However, the role of conventional fungicides on conjugative plasmid transfer has been neglected. Based on the condition that the increasing use of the combination of nano- and conventional fungicides will lead to combined contamination, the effects of a conventional fungicide prochloraz alone or in combination with nano-CuO on the conjugation of plasmid RP4 between Escherichia coli in phosphate-buffered saline were investigated in this study. The results demonstrated that 50 µg/L prochloraz alone significantly increased the conjugative transfer by 1.82 folds. The combination of 100 µg/L nano-CuO and prochloraz at 5, 50, and 500 µg/L significantly increased the conjugation by 2.56, 3.61, and 2.13 folds, respectively. The promotion of conjugative transfer of ARGs mediated by fungicides is mainly attributed to (i) the increased cell membrane permeability, (ii) the increased cell adhesion via enhancing the synthesis of polysaccharides in extracellular polymeric substances, and (iii) the up-regulation of the genes relevant to conjugation, oxidative stress, SOS response, outer membrane, polysaccharide export, intercellular adhesion, and ATP synthesis. Our findings provide evidence for the contribution of fungicides to ARGs transfer, which is significant to control the risk of ARGs dissemination.
Collapse
Affiliation(s)
- Aiyun Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), & Tianjin Key Laboratory of Urban Eco-Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), & Tianjin Key Laboratory of Urban Eco-Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), & Tianjin Key Laboratory of Urban Eco-Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), & Tianjin Key Laboratory of Urban Eco-Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xu Zhou
- College of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|