1
|
Zhang H, Liang Y, Wu J, Hua Q, Wan X, Renneckar S. Carboxylated xylan nanoparticles prepared by sequential periodate-chlorite oxidation and their application as a highly effective bio-based adsorbent. Int J Biol Macromol 2025; 308:142423. [PMID: 40127799 DOI: 10.1016/j.ijbiomac.2025.142423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/10/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Xylan is one of the main biomass components and is considered to have the potential for environmental remediation due to its renewability, biodegradability, and biocompatibility. In this study, xylan extracted from esparto pulp was prepared as xylan nanoparticles (XNPs), which were subsequently modified to carboxylated xylan nanoparticles (CXNPs) through sequential periodate-chlorite oxidation. Characterization of CXNPs demonstrated that the modified CXNPs possessed a core-shell structure, with dicarboxylic acid xylan as the shell and xylan hydrate crystals as the core. The adsorption study revealed the CXNPs with carboxyl groups on the surface exhibited a high adsorption capacity to methylene blue (MB) at 919.6 mg/g. The adsorption mechanism analysis indicated that the adsorption process was controlled by electrostatic interactionsThese results provide a promising modification approach for the development of xylan-based adsorbent materials that can assist in environmental remediation.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xue Wan
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
2
|
Nunes MABS, Vilas Boas ACD, Fernandes R, Itri R, Marques LR, Ando RA, Petri DFS. Kapok fibers modified with cationic surfactants: Structural insights and efficient removal of Cr(VI) and bisphenol A. J Colloid Interface Sci 2025; 683:1119-1134. [PMID: 39724783 DOI: 10.1016/j.jcis.2024.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10-3 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.6 nm and 2.8 nm, respectively, suggesting the presence of hemimicelles on the surface. KF/CTAB and KF/CPC were used as adsorbents in batch and column adsorption experiments to remove Cr(VI) ions, Bisphenol A (BPA), and their binary mixtures from synthetic solution and fresh water. The adsorbed amounts of Cr(VI) ions on KF/CTAB and KF/CPC, as determined from batch experiments, were 48.62 mg/g and 34.17 mg/g, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that Cr(VI) adsorption on KF/CTAB involved bromide displacement, while chloride remained on KF/CPC. Moreover, Cr(VI) ions were reduced to Cr(III) ions due to a possible oxidation of γ-sitosterol, one component of the KF wax. Density Functional Theory (DFT) calculations indicated that the interaction energy of CTAB- Cr(VI) pair (-167.8 kcal/mol) is more favorable than that of the CPC-Cr(VI) pair (-147.8 kcal/mol). The adsorbed amounts of BPA on KF/CTAB and KF/CPC were 41.66 mg/g and 22.62 mg/g, respectively. XPS analysis indicated the appearance of an OH peak at 533 eV after the adsorption of BPA, aligning with DFT calculations that predicted interactions between the counter-ions (Br or Cl) and BPA hydroxy groups. In column adsorption experiments, Cr(VI) ions were more effectively adsorbed onto KF/CTAB in the presence of BPA, demonstrating the potential of KF/CTAB for the simultaneous remediation of mixed contaminants in water treatment.
Collapse
Affiliation(s)
- Mário A B S Nunes
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Anna C D Vilas Boas
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| | - Rodrigo Fernandes
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
| | - Leandro R Marques
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| | - Rômulo A Ando
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| | - Denise F S Petri
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
3
|
Farhan AM, Khaled ESH, Abdel-Khalek AA, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Tailoring the synergistic effect of integrated polypyrrole hydrogel on the adsorption activity of rice husk-based activated carbon (polypyrrole/activated carbon composite) for bisphenol-A and 4-chlorophenol: experimental and theoretical analysis. Front Bioeng Biotechnol 2025; 13:1556887. [PMID: 40190715 PMCID: PMC11968677 DOI: 10.3389/fbioe.2025.1556887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Rice husk-derived activated carbon was hybridized with polypyrrole hydrogel (Pyh), producing advanced nanocomposite (Pyh/AC). The composite was applied as an enhanced adsorbent for two forms of toxic phenolic compounds, particularly bisphenol-A (BSP-A) and 4-chlorophenol (4-CL). The adsorption studies were evaluated considering the synthetic effect of Pyh based on the criteria of statistical physics equilibrium modeling. The reported saturation adsorption capacities for BSP-A and 4-CL using Pyh/AC are 321.4 mg/g and 365.8 mg/g, respectively. These values are significantly higher than the estimated values for the hydrogel in separated form. The analysis of the steric properties validated the saturation of the composite with about 169.7 mg/g and 119.5 mg/g as active site density during the uptake of BSP-A and 4-CL, respectively. These values are higher than the estimated densities using Pyh (110.5 mg/g (BSP-A) and 99.3 mg/g (4-CL)), demonstrating the positive impact of the hybridization process in terms of surface area, porosity, and incorporated chemical functional groups. Furthermore, the capacity of each site on the structure of Pyh/AC to accommodate up to 3 molecules of BSP-A and 6 molecules of 4-CL displays the operation of multi-molecular mechanisms and the ordering of these adsorbed molecules vertically and in non-parallel forms. The adsorption energies, either based on classic (<21 kJ/mol) or advanced (<20 kJ/mol) isotherm studies, reflect the physisorption of the phenolic compounds on the surface of Pyh/AC. The composite also shows thermodynamically stable properties and the uptake reactions that occurred with exothermic, favorable, and spontaneous properties.
Collapse
Affiliation(s)
- Amna M. Farhan
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Eman S. H. Khaled
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Ahmed M. El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
4
|
Tian K, Li C, Liu H, Wang L. Functionalization of biochar using SDS/SAP nanomicelles enhanced its immobilization capacity for dyes and heavy metals in water. Sci Rep 2025; 15:7199. [PMID: 40021799 PMCID: PMC11871042 DOI: 10.1038/s41598-025-91229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
To enhance the adsorption capacity of biochar (BC), herein a novel multifunction modified biochar (SDMBC) was prepared by directly crosslinking of the nanomicelle of sodium dodecyl sulfate/sapindus-saponin (SDS/SAP) composite system onto the BC through a simple, environmental friendly approach. Result showed that the adsorption performance of SDMBC has been greatly improved, compared with BC or using alone SDS and SAP, adsorption ability increased by 48.83%, 29.50%, 36.44%, respectively, the best modified effect was appeared when the concentration of SAP to SDS was 0.8 and 0.8 CMC. SDMBC exhibited high adsorption abilities of 130.23, 108.43, 277.09 125.27, 112.78 mg/g for heavy metal ions lead Pb(II), Cadmium Cd(II) and organic pollutants with different chemical properties bisphenol A(BPA), Methylene blue (MB), P-nitrophenol (PNP), respectively, higher than most previously reported adsorbents, importantly, SDMBC can still efficient removal capabilities even in the binary competition. Subsequently, the SDMBC and BC was characterized by Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Zeta potential (Zeta), it found SDMBC has a more layered structure, richer functional groups and more amorphous structure compared with BC, which are closely related with improving its adsorption capacity. The adsorption behavior of SDMBC for MB show that process was found to be spontaneous, propitious, endothermic, the adsorption isotherms fitted Freundlich models well, pseudo-second-order best describes kinetics adsorption, suggesting that the process is multi-layer chemical adsorption. The little affected by ionic strength and coexisting substances, could remained removal rate over a wide pH range, SDMBC still keep high removal rates even after 5 reuses. Based on FT-IR analysis, plausible adsorption mechanism proposed, including hydrogen bond, electrostatic attraction and π-π bonding. Cost analysis manifests that the SDMBC are high efficiency and cheap eco-adsorbents compared with commercial activated carbon, and the SDMBC dosage required for the removal of 99% of a fixed amount of MB in different volumes of effluent was predicted. Seven machine learning (ML) models were used to predict the MB (60 mg/L) adsorption of the SDMBC, using Shapley Additive Explanations (SHAP) for model interpretation. Finding Extreme Gradient Boosting (XGBoost) exhibited best performance, the order of feature importance as time> Ratio> pH> concentration> temperature. Thus, SDMBC as a new cheap and eco-adsorbents, can be used to effectively remove various types of pollutants, has a great application potential in sewage treatment, while the accurate ML prediction model presented a valuable advice for designing efficient adsorbents and optimization operating conditions in the future.
Collapse
Affiliation(s)
- Kun Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China
- College of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chunping Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China
- College of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Huiming Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Lianchun Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China.
- College of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China.
| |
Collapse
|
5
|
Qu J, Meng F, Bi F, Jiang Z, Wang M, Hu Q, Zhang Y, Yu H, Zhang Y. Nitrogen-doped porous hydrochar for enhanced chromium(VI) and bisphenol A scavenging: Synergistic effect of chemical activation and hydrothermal doping. ENVIRONMENTAL RESEARCH 2025; 267:120667. [PMID: 39706314 DOI: 10.1016/j.envres.2024.120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO3, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the SBET of material improved from 3.99 m2/g and 4.71 m2/g to 1176.77 m2/g. Meanwhile, NPHC exhibited more superior adsorption capacity for Cr(VI) (323.25 mg/g) and BPA (545.34 mg/g) than that of porous hydrochar (213.17 and 343.67 mg/g). Moreover, NPHC possessed pH-dependence and presented more excellent tolerance for interfering ions and regeneration performance. Notably, the Cr(VI) capture by NPHC was dominated via pore filling, electrostatic interaction, reduction, and complexation, while π-π stacking, H-bond interaction, and hydrophobic action were relevant to the binding mechanism of BPA. Overall, the proposed functionalization strategy for biochar was conducive to enhance the remediation of water bodies.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fansong Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Zhou H, You XM, Wang XL, Yao YF. Monitoring technology for Cr(VI) adsorption and reduction by operando NMR spectroscopy. Chem Commun (Camb) 2025; 61:2532-2535. [PMID: 39808412 DOI: 10.1039/d4cc05714g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.
Collapse
Affiliation(s)
- Hang Zhou
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Xiao-Meng You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xue-Lu Wang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, P. R. China
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, P. R. China
| |
Collapse
|
7
|
Mota L, Almeida YA, Bispo DF, Souza MFF, Santos DC, Sobrinho RA, Gimenez IF. Preparation of TEMPO-Oxidized Cellulose Hydrogels Modified with β-Cyclodextrin and κ-Carrageenan for Potential Adsorption Applications. ACS OMEGA 2025; 10:972-984. [PMID: 39829506 PMCID: PMC11740384 DOI: 10.1021/acsomega.4c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Cellulose-based materials are promising adsorbents for pollutants and other classes of compounds. Here, we report the preparation of hydrogels via chemical cross-linking of microcrystalline cellulose oxidized by the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). The cross-linking process was carried out in the presence of modifiers such as β-cyclodextrin in order to insert hydrophobic cavities or κ-carrageenan due to the presence of negative charges along the molecular chains. Fourier transform infrared spectroscopy (FTIR) characterization evidenced the modification of cellulose chains. Swelling tests showed that all hydrogels reached the swelling equilibrium in the first 10 min of contact, while N2 adsorption isotherms allowed to evaluate surface areas ranging from 211 to 697 m2/g. Adsorption studies using methylene blue showed the key role of negative charges present in polymer chains favoring interactions with this cationic dye, as hydrogels modified with κ-carrageenan were found to have a high adsorption performance. The kinetic analysis of the adsorption process also suggests contributions from chemical interactions, which may involve electron transfer or electron pairing, as the data from all hydrogels showed high-quality fitting with the pseudo-second-order model.
Collapse
Affiliation(s)
- Liliane
Oliveira Mota
- Department
of Materials Science and Engineering, Federal
University of Sergipe, 49400-000 São Cristóvão, SE, Brazil
| | | | - Diego Fonseca Bispo
- Department
of Chemistry, Federal University of Sergipe, 49400-000 São
Cristóvão, SE, Brazil
| | - Marcos Fabio Farias Souza
- Department
of Chemical Engineering, Federal University
of Sergipe, 49400-000 São Cristóvão, SE, Brazil
| | - Douglas Costa Santos
- Department
of Chemical Engineering, Federal University
of Sergipe, 49400-000 São Cristóvão, SE, Brazil
| | | | - Iara F. Gimenez
- Department
of Chemistry, Federal University of Sergipe, 49400-000 São
Cristóvão, SE, Brazil
| |
Collapse
|
8
|
Du M, Liu J, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution. J Environ Sci (China) 2025; 147:74-82. [PMID: 39003085 DOI: 10.1016/j.jes.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 07/15/2024]
Abstract
Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhang L, He Y, Jiang L, Shi Y, Hao L, Huang L, Lyu M, Wang S. Plastic additives as a new threat to the global environment: Research status, remediation strategies and perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120007. [PMID: 39284493 DOI: 10.1016/j.envres.2024.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Discharge or leaching of plastic additives, which are an essential part of the plastic production process, can lead to environmental pollution with serious impacts on human and ecosystem health. Recently, the emission of plastic additives is increasing dramatically, but its pollution condition has not received enough attention. Meanwhile, the effective treatment strategy of plastic additive pollution is lack of systematic introduction. Therefore, it is crucial to analyze the harm and pollution status of plastic additives and explore effective pollution control strategies. This paper reviews the latest research progress on additives in plastics, describes the effects of their migration into packaged products and leaching into the environment, presents the hazards of four major classes of plastic additives (i.e., plasticizers, flame retardants, stabilizers, and antimicrobials), summarizes the existing abiotic/biotic strategies for accelerated the remediation of additives, and finally provides perspectives on future research on the removal of plastic additives. To the best of our knowledge, this is the first review that systematically analyzes strategies for the treatment of plastic additives. The study of these strategies could (i) provide feasible, cost-effective abiotic method for the removal of plastic additives, (ii) further enrich the current knowledge on plastic additive bioremediation, and (iii) present application and future development of plants, invertebrates and machine learning in plastic additive remediation.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lirong Huang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Chen X, Li W, Wang A, Chang Z, Xu L, Zhang K, Guo D, Zhao H, Sha L. Designed synthesis of demethylated-hydroxymethylated lignin-based adsorbent for removal of Cr(VI) ions from wastewater. Int J Biol Macromol 2024; 280:135950. [PMID: 39343260 DOI: 10.1016/j.ijbiomac.2024.135950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Lignin-based adsorbents for the removal of Cr(VI) ions have attracted intensive attention due to the advantages of renewability, biodegradablity, low cost and environmental friendliness. However, there are still a lot of challenges such as poor adsorption capacity, low lignin content in adsorbents, and harsh preparation conditions. Here, a tandem hydroxymethylation-demethylation method is proposed for preparing an excellent lignin-based Cr(VI) adsorbent (DHKL), which features with high lignin content (>85 wt%) and high hydroxyl content (up to 6.26 mmol/g) under milder conditions. The prepared DHKL exhibits an adsorption capacity reaching up to 1040.9 mg/g and can maintain this capacity even in the presence of other metal ions in the solution. Model analyses indicate that chemisorption occurring in a monolayer is the main process, which is spontaneous and endothermic. Structural changes of DHKL before and after adsorption indicated that Cr(VI) ions are mainly reduced to Cr(III) ions by hydroxyl groups with some of the absorbed Cr ions dispersed into the inner part of DHKL. Based on these results, the detailed possible adsorption mechanism is deduced, providing guidance for designing, producing and utilizing lignin-based adsorbents.
Collapse
Affiliation(s)
- Xiaohong Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Tìhnology, Hangzhou 310023, China.
| | - Wei Li
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Ao Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Tìhnology, Hangzhou 310023, China
| | - Lei Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Kaili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Tìhnology, Hangzhou 310023, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Tìhnology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Tìhnology, Hangzhou 310023, China
| |
Collapse
|
11
|
El-Kholy SA. Environmentally Benign Freeze-dried Biopolymer-Based Cryogels for Textile Wastewater Treatments: A review. Int J Biol Macromol 2024; 276:133931. [PMID: 39032896 DOI: 10.1016/j.ijbiomac.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants which seriously impact human health and the entire ecosystem. Developing effective materials for potential removal of the water contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers and applied as adsorbents for the purification of textile drainage. We displayed an overview of: the existing contaminants in textile effluents (dyes and heavy metals), their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is also discussed. Finally, the bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.
Collapse
Affiliation(s)
- Samar A El-Kholy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koom 32511, Egypt.
| |
Collapse
|
12
|
Callisaya MP, Fuentes DP, Braga VHA, Finzi-Quintão CM, Oliveira PV, Petri DFS. Harnessing carboxymethyl cellulose and Moringa oleifera seed husks for sustainable treatment of a multi-metal real waste. ENVIRONMENTAL RESEARCH 2024; 252:118970. [PMID: 38642642 DOI: 10.1016/j.envres.2024.118970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to evaluate effective treatment strategies for laboratory waste with an initial pH of 1.0, containing Cr6+, Mn2+, Co2+, Fe3+, Ni2+, Cu2+, Zn2+, Sr2+, Hg2+, and Pb2+ ions, focusing on flocculation, precipitation, and adsorption techniques. The study utilized microparticles derived from Moringa oleifera seed husks (MS), cryogels of carboxymethyl cellulose (CMC), and hybrid cryogels combining CMC and MS (CMC-MS25 and CMC-MS50) as adsorbents. The optimal strategy involved raising the pH to 7 using NH4OH, leading to the partial precipitation of metal ions. The remaining supernatant was then passed through columns packed with the aforementioned adsorbents. Utilizing CMC-MS25 and CMC-MS50 adsorbents resulted in the simultaneous removal of over 90% of the targeted metal ions. The adsorption of Cu2+ ions onto the adsorbents was facilitated by electrostatic interactions between Cu2+ ions and carboxylate groups, as well as Cu-OH chelation, as confirmed by X-ray photoelectron spectroscopy. Under optimized conditions, the fixed-bed column adsorption capacity was determined as 88.2 mg g-1. The CMC-MS25 adsorbents proved reusable at least 5 times, with the recovered Cu2+ ions potentially suitable for other processes. The scalability and feasibility of producing these novel adsorbents suggest a promising, cost-effective solution for treating complex matrices and recovering high-value metals, as copper.
Collapse
Affiliation(s)
- Marleidy P Callisaya
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Dairon P Fuentes
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Victor H A Braga
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Cristiane M Finzi-Quintão
- Department of Chemical Engineering, Federal University of São João del-Rei (UFSJ), Ouro Branco, Brazil.
| | - Pedro V Oliveira
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Denise F S Petri
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| |
Collapse
|
13
|
Jing L, Shi T, Chang Y, Meng X, He S, Xu H, Yang S, Liu J. Cellulose-based materials in environmental protection: A scientometric and visual analysis review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172576. [PMID: 38649055 DOI: 10.1016/j.scitotenv.2024.172576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
As sustainable materials, cellulose-based materials have attracted significant attention in the field of environmental protection, resulting in the publication of numerous academic papers. However, there is a scarcity of literature that involving scientometric analysis within this specific domain. This review aims to address this gap and highlight recent research in this field by utilizing scientometric analysis and a historical review. As a result, 21 highly cited articles and 10 mostly productive journals were selected out. The scientometric analysis reveals that recent studies were objectively clustered into five interconnected main themes: extraction of cellulose from raw materials and its degradation, adsorption of pollutants using cellulose-based materials, cellulose-acetate-based membrane materials, nanocellulose-based materials, and other cellulose-based materials such as carboxymethyl cellulose and bacterial cellulose for environmental protection. Analyzing the distribution of author keywords and thoroughly examining relevant literature, the research focuses within these five themes were summarized. In the future, the development of eco-friendly and cost-effective methods for extracting and preparing cellulose and its derivatives, particularly nanocellulose-based materials, remains an enduring pursuit. Additionally, machine learning techniques holds promise for the advancement and application of cellulose-based materials. Furthermore, there is potential to expand the research and application scope of cellulose-based materials for environmental protection.
Collapse
Affiliation(s)
- Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tianyu Shi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yulung Chang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Xingliang Meng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuai He
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Hang Xu
- School of Material Science & Chemical Engineering, Harbin University of Science and Technology, Harbin, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jia Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
14
|
Ren K, Fan Y, Xing G, Zhai M, Sheng J, Song Y. Rapid and convenient synthesis of "green" ammonium-modified chitosan composite sponge with the existence of ascorbic acid for highly efficient removal of Congo red (CR). Carbohydr Polym 2024; 324:121444. [PMID: 37985072 DOI: 10.1016/j.carbpol.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
In this study, a new green composite sponge made of chitosan and modified with ammonium ascorbate (ACS-CIT) was synthesized in just 10 min. Compared with CS-CIT (sponge prepared from acetic acid), ACS-CIT exhibits significantly enhanced adsorption performance for CR, with the saturated adsorption capacities increased from 353.667 to 1261.639 mg·g-1. The adsorption mechanism can be summarized as the generation of more hydrogen bonds, electrostatic attraction, and intra particle diffusion, revealing the addition of ascorbic acid introduced more hydroxyl groups, thereby enhancing the hydrogen bonding force, and the ammonium modification of chitosan improved the electrostatic attraction of the material, resulting in a significant increase in its adsorption capacity. Additionally, the prepared ACS-CIT showed excellent CR removal performance even in the presence of multiple interfering factors coexisting in the simulated wastewater, and the adsorption capacity remained stable after at least five cycles. Furthermore, the maximum bed capacity of ACS-CIT for CR is 1152.829 mg·g-1 under the given conditions of a flow rate of 1 mL·min-1, inlet concentration of 150 mg·L-1, a bed height of 1 cm respectively, and the breakthrough curve followed the Thomas model. The results indicated the eco-friendly and recyclable ACS-CIT is a promising adsorbent for CR dye removal in water.
Collapse
Affiliation(s)
- Keyu Ren
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yanan Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guozheng Xing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Mengge Zhai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
15
|
Wang H, Chen Y, Mo M, Dorsel PKP, Wu C. Visualized adsorption and enhanced photocatalytic removal of Cr 6+ by carbon dots-incorporated fluorescent nanocellulose aerogels. Int J Biol Macromol 2023; 253:127206. [PMID: 37793519 DOI: 10.1016/j.ijbiomac.2023.127206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
In this study, carbon dots (CDs) and titanate nanofibers (TNs) were mixed with TEMPO-oxidized nanocellulose (TOCNC) to prepare fluorescent nanocellulose aerogels (FNAs) by a Schiff base reaction. The resulting FNA can detect the adsorption of Cr6+ through the fluorescence quenching in CDs and promote the removal of Cr6+ through the synergistic effect of CDs in photocatalysis. The optimized FNA has a maximum adsorption capacity of 543.38 mg/g, higher than most reported Cr6+ adsorbents. This excellent performance is due to the porous structure of the aerogel, which gives it a high specific surface area of 20.53 m2/g and provides abundant adsorption sites. Simultaneously, CDs can enhance the amino-induced Cr6+ adsorption, improve the photocatalytic performance of TNs, and expose more adsorption sites through electrostatic adsorption of amino-induced reduction products (Cr3+). This study explores the preparation of visualized nanosorbents with enhanced photocatalytic removal of Cr6+ and provides a new direction for nanoscale photocatalysts.
Collapse
Affiliation(s)
- Hanyu Wang
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Yehong Chen
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| | - Meiqing Mo
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Padonou-Kengue Patrick Dorsel
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Chaojun Wu
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| |
Collapse
|
16
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|
17
|
Le HV, Dao NT, Bui HT, Kim Le PT, Le KA, Tuong Tran AT, Nguyen KD, Mai Nguyen HH, Ho PH. Bacterial Cellulose Aerogels Derived from Pineapple Peel Waste for the Adsorption of Dyes. ACS OMEGA 2023; 8:33412-33425. [PMID: 37744831 PMCID: PMC10515182 DOI: 10.1021/acsomega.3c03130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Valorization of pineapple peel waste is an attractive research topic because of the huge quantities of this byproduct generated from pineapple processing industries. In this study, the extract from pineapple waste was collected to produce a hydrogel-like form containing bacterial cellulose fibers with a three-dimensional structure and nanoscale diameter by the Acetobacter xylinum fermentation process. The bacterial cellulose suspension was subsequently activated by freeze-drying, affording lightweight aerogels as potential adsorbents in wastewater treatment, in particular the adsorptive removal of organic dyes. Intensive tests were carried out with the adsorption of methylene blue, a typical cationic dye, to investigate the influence of adsorption conditions (temperature, pH, initial dye concentration, time, and experiment scale) and aerogel-preparation parameters (grinding time and bacterial cellulose concentration). The bacterial cellulose-based aerogels exhibited high adsorption capacity not only for methylene blue but also for other cationic dyes, including malachite green, rhodamine B, and crystal violet (28-49 mg/g). However, its activity was limited for most of the anionic dyes, such as methyl orange, sunset yellow, and quinoline yellow, due to the repulsion of these anionic dyes with the aerogel surface, except for the case of congo red. It is also an anionic dye but has two amine groups providing a strong interaction with the hydroxyl group of the aerogel via hydrogen bonding. Indeed, the aerogel has a substantially large congo red-trapping capacity of 101 mg/g. Notably, the adsorption process exhibited similar performances, upscaling the solution volume to 50 times. The utilization of abundant agricultural waste in the simple aerogel preparation to produce a highly efficient and biodegradable adsorbent is the highlight of this work.
Collapse
Affiliation(s)
- Ha Vu Le
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Nghia Thi Dao
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Ha Truc Bui
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Phung Thi Kim Le
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Kien Anh Le
- Institute
for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan
District, Ho Chi Minh City 726500, Viet Nam
| | - An Thi Tuong Tran
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Khoa Dang Nguyen
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Hanh Huynh Mai Nguyen
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Phuoc Hoang Ho
- Chemical
Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
18
|
Nie J, Feng D, Shang J, Nasen B, Jiang T, Liu Y, Hou S. Green composite aerogel based on citrus peel/chitosan/bentonite for sustainable removal Cu(II) from water matrices. Sci Rep 2023; 13:15443. [PMID: 37723182 PMCID: PMC10507072 DOI: 10.1038/s41598-023-42409-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
Here, we propose a green and sustainable 3D porous aerogel based on citrus peel (CP), chitosan (CS), and bentonite (BT). This aerogel is prepared through a simple sol-gel and freeze-drying process and is designed for efficient capture of Cu(II) ions from water matrices. CCBA-2, with its abundance of active binding sites, exhibits an impressive Cu(II) adsorption yield of 861.58 mg/g. The adsorption isotherm and kinetics follow the Freundlich and pseudo-second-order models, respectively. In the presence of coexisting mixed-metal ions, CCBA-2 demonstrates a significantly higher selectivity coefficient (KdCu = 1138.5) for removing Cu(II) ions compared to other toxic metal ions. Furthermore, the adsorption of Cu(II) ions by CCBA-2 is not significantly affected by coexisting cations/anions, ionic strength, organic matter, or different water matrices. Dynamic fixed-bed column experiments show that the adsorption capacity of Cu(II) ions reaches 377.4 mg/g, and the Yoon-Nelson model accurately describes the adsorption process and breakthrough curve. Through experiments, FTIR, and XPS analyses, we propose a reasonable binding mechanism between CCBA-2 and metal cations, involving electrostatic attraction and chemical chelation between Cu(II) and the functional groups of the aerogel. CCBA-2 saturated with Cu(II) ions can be successfully regenerated by elution with 1 M HNO3, with only a slight decrease in adsorption efficiency (5.3%) after 5 adsorption-desorption cycles. Therefore, CCBA-2 offers a cost-effective and environmentally friendly material that can be considered as a viable alternative for the green and efficient removal of toxic Cu(II) ions from wastewater.
Collapse
Affiliation(s)
- Jing Nie
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China.
| | - Dan Feng
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jiangwei Shang
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Bate Nasen
- College of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China
| | - Tong Jiang
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yumeng Liu
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Siyi Hou
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| |
Collapse
|
19
|
Wang K, Qin X, Chai K, Wei Z, Deng F, Liao B, Wu J, Shen F, Zhang Z. Efficient recovery of bisphenol A from aqueous solution using K 2CO 3 activated carbon derived from starch-based polyurethane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67758-67770. [PMID: 37115443 DOI: 10.1007/s11356-023-27273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are increasingly polluting water, making it of practical value to develop novel desirable adsorbents for removing these pollutants from wastewater. Here, a simple cross-linking strategy combined with gentle chemical activation was demonstrated to prepare starch polyurethane-activated carbon (STPU-AC) for adsorbing BPA in water. The adsorbents were characterized by various techniques such as FTIR, XPS, Raman, BET, SEM, and zeta potential, and their adsorption properties were investigated comprehensively. Results show that STPU-AC possesses a large surface area (1862.55 m2·g-1) and an abundance of functional groups, which exhibited superior adsorption capacity for BPA (543.4 mg·g-1) and favorable regenerative abilities. The adsorption of BPA by STPU-AC follows a pseudo-second-order kinetic model and a Freundlich isotherm model. The effect of aqueous solution chemistry (pH and ionic strength) and the presence of other contaminants (phenol, heavy metals, and dyes) on BPA adsorption was also analyzed. Moreover, theoretical studies further demonstrate that hydroxyl oxygen and pyrrole nitrogen are the primary adsorption sites. We found that the efficient recovery of BPA was associated with pore filling, hydrogen-bonding interaction, hydrophobic effects, and π-π stacking. These findings demonstrate the promising practical application of STPU-AC and provide a basis for the rational design of starch-derived porous carbon.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xingzhen Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fan Deng
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bingyu Liao
- Guangxi Xiangsheng Household Materials Technology Co., Ltd., Chongzuo, 532200, Guangxi, China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fang Shen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Zhi Zhang
- Guangxi Xiangsheng Household Materials Technology Co., Ltd., Chongzuo, 532200, Guangxi, China
| |
Collapse
|
20
|
Mansur AAP, Rodrigues MA, Capanema NSV, Carvalho SM, Gomes DA, Mansur HS. Functionalized bioadhesion-enhanced carboxymethyl cellulose/polyvinyl alcohol hybrid hydrogels for chronic wound dressing applications. RSC Adv 2023; 13:13156-13168. [PMID: 37124005 PMCID: PMC10140670 DOI: 10.1039/d3ra01519j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
Wounds produced by trauma, burns, and chronic diseases cause millions of patients to suffer discomfort, pain, and, in many cases, disability and death, leading to enormous health, social and financial impacts globally. Regrettably, current clinical treatments for chronic wounds remain unsatisfactory. Thus, this study reports for the first time the design, development, and synthesis of chemically biofunctionalized hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) crosslinked by citric acid using an entirely biocompatible and green process. They demonstrated suitable physicochemical properties, cytocompatibility, and hemocompatibility to be applied as a smart wound dressing for skin tissue engineering. These novel hybrids were biofunctionalized with l-arginine and RGD peptide through carbodiimide mediated-amide formation to promote bioadhesion of fibroblast and keratinocyte cells as a potential enhancement for wound healing and skin tissue engineering applications.
Collapse
Affiliation(s)
- A A P Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| | - M A Rodrigues
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Brazil
| | - N S V Capanema
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| | - S M Carvalho
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| | - D A Gomes
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Brazil
| | - H S Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| |
Collapse
|
21
|
Hua Z, Pan Y, Hong Q. Adsorption of Congo red dye in water by orange peel biochar modified with CTAB. RSC Adv 2023; 13:12502-12508. [PMID: 37091607 PMCID: PMC10119749 DOI: 10.1039/d3ra01444d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
In order to improve the adsorption effect of biochar on Congo red dye, this study used hexadecyl trimethyl ammonium bromide (CTAB) to organically modify orange peel biochar (OBC) to produce CTAB-modified orange peel biochar (NOBC), and the biochar before and after modification was analyzed by SEM-EDS, FTIR and BET. The adsorption performance of NOBC on Congo red dye was investigated and the adsorption mechanism was studied. The results showed that the adsorption amount was influenced by the initial concentration, adsorption time and solution pH. NOBC adsorbed 50 mg L-1 CR with an equilibrium time of 60 min and an equilibrium amount of 290.1 mg g-1, while the adsorption equilibrium time of OBC was 210 min and an equilibrium amount of 155.2 mg g-1, the adsorption of CR by NOBC was above 210 mg g-1 at pH 2 to 11, NOBC can be recycled three times. The experimental results showed that the adsorption data of CR on NOBC were consistent with the Langmuir isothermal adsorption model and the Pseudo-second-order model, and the mechanism of CR adsorption on NOBC mainly included electrostatic attraction and surface adsorption. In conclusion, NOBC is a promising material for dye wastewater adsorption.
Collapse
Affiliation(s)
- Zhongxin Hua
- Zhejiang Zhongda Engineering Costing Firm Co., Ltd Hangzhou 310012 China
| | - Yaping Pan
- Zhejiang Zhongda Engineering Costing Firm Co., Ltd Hangzhou 310012 China
| | - Qiankun Hong
- Zhejiang Tongji Vocational College of Science and Technology Hangzhou 311231 China
| |
Collapse
|
22
|
Qi X, Peng J, Zhang X, Cai H, Huang Y, Qiao J, Guo Y, Guo X, Wu Y. Computer chip-inspired design of nanocellulose/carbon dots hydrogel as superior intensifier of nano-sized photocatalyst for effective Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130689. [PMID: 36586334 DOI: 10.1016/j.jhazmat.2022.130689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Hydrogel, a common carrier of photocatalyst that suffers from compromised catalytic efficiency, is still far from practical application. Herein, based on "computer chip-inspired design", a novel nanocellulose/carbon dots hydrogel (NCH) was fabricated as superior intensifier instead of common carrier of sodium titanate nanofibre (STN), where carbon dots (CDs) enhanced amino group-induced adsorption for Cr(VI), promoted photocatalytic properties of STN via transferring the photogenerated electron-hole pairs and improved amino group-induced desorption for reduced product (Cr(III)) via electrostatic repulsion, showing an efficiency of 1 + 1 > 2. Adsorption and photocatalysis experiments demonstrated superior removal performance of the NCH incorporating STN, as shown by theoretical maximum adsorption capacity of 425.74 mg/g and kinetic constant of 0.0374 min-1 in the photocatalytic process, which was nearly 6.6 and 7.3 times of STN. A series of experiments was conducted to confirm the novel mechanism of CDs-enhanced adsorption-photocatalysis-desorption synergy. This work not only provides new insights into the fabrication of a superior intensifier for nanosized photocatalyst, but also proposes one new mechanism of CDs-enhanced adsorption-photocatalysis-desorption synergy, which is helpful for designing and optimizing nanosized photocatalyst.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junwen Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haoxuan Cai
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianzheng Qiao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yucong Guo
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
23
|
Research progress on chemical modification of waste biomass cellulose to prepare heavy metal adsorbents. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Ghiorghita CA, Dinu MV, Lazar MM, Dragan ES. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238574. [PMID: 36500664 PMCID: PMC9736407 DOI: 10.3390/molecules27238574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To this end, bio-based composite hydrogels as sorbents have received extensive attention in recent years because of advantages such as high adsorptive capacity, controllable mechanical properties, cost effectiveness, and potential for upscaling in continuous flow installations. In this review, we aim to provide an up-to-date analysis of the literature on recent accomplishments in the design of polysaccharide-based composite hydrogels for removal of heavy metal ions, dyes, and oxyanions from wastewater. The correlation between the constituent polysaccharides (chitosan, cellulose, alginate, starch, pectin, pullulan, xanthan, salecan, etc.), engineered composition (presence of other organic and/or inorganic components), and sorption conditions on the removal performance of addressed pollutants will be carefully scrutinized. Particular attention will be paid to the sustainability aspects in the selected studies, particularly to composite selectivity and reusability, as well as to their use in fixed-bed columns and real wastewater applications.
Collapse
|
25
|
Kandiyil J, Vasudevan S, Athiyanathil S. Efficient selective methylene blue adsorption by polyurethane/montmorillonite‐based antifouling electrospun composite membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Juraij Kandiyil
- Department of Chemistry, Materials Research Laboratory National Institute of Technology Calicut Kozhikode India
| | - Suni Vasudevan
- Department of Chemistry, Inorganic and Bio‐inorganic Laboratory National Institute of Technology Calicut Kozhikode India
| | - Sujith Athiyanathil
- Department of Chemistry, Materials Research Laboratory National Institute of Technology Calicut Kozhikode India
| |
Collapse
|
26
|
Hussain NB, Akgül ET, Yılmaz M, Parlayıcı Ş, Hadibarata T. Preparation and characterization of low-cost activated carbon from Moringa oleifera chemically activated using ZnCl 2 for the adsorption of bisphenol A. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1199-1214. [PMID: 36437736 DOI: 10.1080/15226514.2022.2144796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of agricultural by-products such as Moringa oleifera plants is one effort to support the reduction of environmental pollution. Activated carbon produces from agricultural wastes is relatively less expensive and can replace traditional methods such as renewable as well as nonrenewable materials such as petroleum residue and coal. In this study, the removal of bisphenol A from aqueous media was studied using activated carbon produced from M. oleifera pods and peels. A batch adsorption study was carried out by varying the parameters of the adsorption process. A maximum removal percentage of 95.46% was achieved at optimum conditions of 2.5 g L-1 adsorbent dose, pH 7, 60 min contact time and 20 mg L-1 initial concentration of BPA. The BET surface areas of MOP, MOP-AC and MOP-ACZ were found to be 12.60, 4.10 and 45.96 m2/g, respectively. The experimental data were analyzed by Langmuir, Freundlich and Temkin adsorption isotherm models. Equilibrium data fitted well with the Langmuir isotherm with a maximum monolayer adsorption capacity of 20.14 mg g-1. The rates of adsorption were found to conform to the pseudo-second-order kinetics with a good correlation. The results indicate that the M. oleifera activated carbon could be employed as a low-cost alternative to commercial activated carbon in the removal of BPA from water.
Collapse
Affiliation(s)
- Nafsiah Binti Hussain
- UBF Maintenance Sdn Bhd, Kawasan Perindustrian Teluk Kalong Kemaman, Kijal, Terengganu, Malaysia
| | - Eda Taga Akgül
- Department of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Murat Yılmaz
- Department of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Şerife Parlayıcı
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Malaysia
| |
Collapse
|
27
|
Raj V, Chauhan MS, Pal SL. Potential of sugarcane bagasse in remediation of heavy metals: A review. CHEMOSPHERE 2022; 307:135825. [PMID: 35948091 DOI: 10.1016/j.chemosphere.2022.135825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Presence of heavy metal (HM) ions in wastewater have emerged as among the most prominent issues for improving water quality and reducing it's consequences for the environment, animal and public health. This paper mainly focuses on the remediation of HM ions from wastewater utilizing the relatively inexpensive and widely accessible agricultural waste-Sugarcane Bagasse (SCB). For this, a brief understanding of HMs was discussed (by understanding the sources and toxicity of HM, advantages and shortcomings of conventional processes). Apart from that, to understand the potential of SCB, this review would provide vital information on employing SCB biosorbent in natural and modified forms for HM removal. Therefore, various ways of SCB modifications (including physical, chemical, and composite formation), essential optimal operational conditions (solution pH, dosage of biosorbent, initial metal concentration, contact time, agitation speed, temperature, suitable isotherm and kinetic model) and involving adsorption mechanism were also studied. Finally, significant study gaps were identified to facilitate future research since SCB has been confirmed as a potential bio-adsorbent for removing HM ions.
Collapse
Affiliation(s)
- Vinay Raj
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India.
| | - Mrityunjay Singh Chauhan
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India.
| | - Sunder Lal Pal
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India.
| |
Collapse
|
28
|
Hotan Alsohaimi I, Alhumaimess MS, Abdullah Alqadami A, Tharwi Alshammari G, Fawzy Al-Olaimi R, Abdeltawab AA, El-Sayed MY, Hassan HM. Adsorptive performance of Aminonaphthalenesulfonic acid modified magnetic-graphene oxide for methylene blue dye: mechanism, isotherm and thermodynamic studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Yin T, Zhang X, Shao S, Xiang T, Zhou S. Covalently crosslinked sodium alginate/poly(sodium p-styrenesulfonate) cryogels for selective removal of methylene blue. Carbohydr Polym 2022; 301:120356. [DOI: 10.1016/j.carbpol.2022.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
30
|
Environmental application of Saccharum munja biomass-derived hybrid composite for the simultaneous removal of cationic and anionic dyes and remediation of dye polluted water: A step towards pilot-scale studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Novaes SD, Oliveira PV, Petri DFS. Hydroxypropyl methylcellulose-sugarcane bagasse adsorbents for removal of 17α-ethinylestradiol from aqueous solution and freshwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63936-63952. [PMID: 35467193 DOI: 10.1007/s11356-022-20345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Adsorbents made of hydroxypropyl methylcellulose (HPMC) and sugarcane bagasse (BG) microparticles were applied for the separation of 17α-ethinylestradiol (EE2) from aqueous solution in batch, and from aqueous solution and freshwater in fixed-bed columns. HPMC chains and BG microparticles were crosslinked by the esterification with citric acid. The adsorbents presented compression modulus values that increased from 208 ± 20 kPa (pure HPMC) to 917 ± 90 kPa, when the content of BG particles added to HPMC was 50 wt% (HPMC50BG). The porosity (~ 97%), specific surface area (1.16 ± 0.10 m2/g) and swelling degree (20 ± 1 g water/g) values were not affected by the addition of BG particles. The adsorption isotherms determined for EE2 on HPMC and on HPMC50BG fitted to the Langmuir and Freundlich models; the adsorption capacity of HPMC was slightly higher than that of composite HPMC50BG. Nevertheless, the addition of BG particles rendered outstanding mechanical reinforcement and dimensional stability to the adsorbents. The adsorption was driven by (i) hydrophobic interactions between EE2 methylene and aromatic groups and HPMC methyl groups, as evidenced by FTIR spectroscopy, and (ii) H bonds between HPMC and EE2 hydroxyl groups, as revealed by the adsorption enthalpy change (ΔHads) of - 45 kJ/mol. Column adsorption experiments of EE2 from aqueous solution on HPMC and HPMC50BG indicated adsorptive capacity (q0) values of 8.06 mg/g and 4.07 mg/g, respectively. These values decreased considerably for the adsorption of EE2 from river water, probably due to the competition of EE2 with humic substances dissolved in natural water. The HPMC adsorbents could be recycled retaining up to 83% of the original efficiency.
Collapse
Affiliation(s)
- Stephanie Dias Novaes
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Pedro Vitoriano Oliveira
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
32
|
Simultaneous adsorption of three anionic dyes at neutral pH from their individual and multi-component systems on a CTAB modified Pennisetum glaucum based carbon nanotube green composite: Adsorption mechanism and process optimization by Box-Behnken design model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Potential application of BC3 nanotube for removal of bisphenol from water; density functional theory study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Peng J, Yuan H, Ren T, Liu Z, Qiao J, Ma Q, Guo X, Ma G, Wu Y. Fluorescent nanocellulose-based hydrogel incorporating titanate nanofibers for sorption and detection of Cr(VI). Int J Biol Macromol 2022; 215:625-634. [PMID: 35772640 DOI: 10.1016/j.ijbiomac.2022.06.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
Chromium pollution is a major environmental concern; thus, effective and multifunctional adsorbents for removing the Cr(VI) ion are urgently needed. A fluorescent nanocellulose-based hydrogel (FNH) incorporating titanate nanofibers (TNs) was developed for the sorption and detection of Cr(VI) ion. The chemical and physical structures of the hydrogels, as well as their sorption and detection properties, were studied. The predicted maximum adsorption capacity and the lowest detection limit of FNH were 648.4 mg/g and 0.039 μg/L, respectively. Furthermore, the sorption and detection mechanisms of FNH were discussed in detail. These results showed that the excellent sorption and detection might be mainly attributed to the three-dimensional (3D) porous structure constructed by TNs and cellulose nanocrystals modified with carbon dots, which improved the sorption ability and provided the rapid visual response to Cr(VI). Furthermore, cost analysis showed that FNH was cheaper than activated carbon in removing the Cr(VI) ion. This work established a facile technique in developing low-cost and multifunctional adsorbents.
Collapse
Affiliation(s)
- Junwen Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China; College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanmeng Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tingting Ren
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhihuan Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianzheng Qiao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Guoxin Ma
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China.
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
35
|
Shi RJ, Wang T, Lang JQ, Zhou N, Ma MG. Multifunctional Cellulose and Cellulose-Based (Nano) Composite Adsorbents. Front Bioeng Biotechnol 2022; 10:891034. [PMID: 35497333 PMCID: PMC9046606 DOI: 10.3389/fbioe.2022.891034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
In recent years, faced with the improvement of environmental quality problems, cellulose and cellulose-based (nano) composites have attracted great attention as adsorbents. In this review article, we first report the recent progress of modification and functionalization of cellulose adsorbents. In addition, the adsorbents produced by the modification and functionalization of carboxymehyl cellulose are also introduced. Moreover, the cellulose-based (nano) composites as adsorbents are reviewed in detail. Finally, the development prospect of cellulose and cellulose-based (nano) composites is studied in the field of the environment. In this review article, a critical comment is given based on our knowledge. It is believed that these biomass adsorbents will play an increasingly important role in the field of the environment.
Collapse
Affiliation(s)
- Ru-Jie Shi
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- *Correspondence: Ru-Jie Shi, ; Ming-Guo Ma,
| | - Tian Wang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Jia-Qi Lang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Ming-Guo Ma
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Ru-Jie Shi, ; Ming-Guo Ma,
| |
Collapse
|
36
|
Efficiency of air-dried and freeze-dried alginate/xanthan beads in batch, recirculating and column adsorption processes. Int J Biol Macromol 2022; 204:345-355. [PMID: 35149093 DOI: 10.1016/j.ijbiomac.2022.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Alginate (Alg) beads are low-cost adsorbents used for wastewater remediation. In this work, alginate (Alg) and alginate/xanthan (Alg/XG) blend beads were synthesized by gelation method into calcium chloride and freeze-dried to improve the porosity. Their adsorption efficiency was tested for methylene blue (MB) dye in batch, recirculating and column adsorption systems. The blend beads were characterized using by SEM, FTIR-ATR and X-ray microcomputer tomography (Micro-CT) analyzes. Freeze-dried Alg and Alg/XG beads presented porosity of 46 ± 5% and 77 ± 3%, respectively. Adsorption isotherms of MB on freeze-dried Alg/XG beads indicated better adsorption capacity in comparison to the air-dried ones. Adsorption kinetics and breakthrough curves based on recirculating and vertical column adsorption processes of MB on freeze dried Alg/XG and air-dried Alg/XG beads indicated higher efficiency for the vertical column system packed with freeze dried Alg/XG beads. The removal efficiency of 91% MB by the freeze-dried Alg/XG beads in vertical column remained even after four consecutive adsorption-desorption cycles, disclosing these beads as potential systems for the wastewater treatment.
Collapse
|
37
|
In-situ fabrication of surfactant modified CNT-based novel bio-composite and its performance evaluation for simultaneous removal of anionic dyes: Optimization by Box-Behnken design. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|