1
|
Kajal S, Thakur S. Coexistence of microplastics and heavy metals in soil: Occurrence, transport, key interactions and effect on plants. ENVIRONMENTAL RESEARCH 2024; 262:119960. [PMID: 39251180 DOI: 10.1016/j.envres.2024.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Microplastics (MPs) pollution has raised serious environmental concerns due to its widespread generation and discharge across global ecosystems. It is estimated that approximately 400 million metric tons of plastic are produced annually, with 54% ending up as waste. The MPs account for a significant portion of this pollution. These MPs interact with heavy metals (HMs) in terrestrial ecosystems, such as cadmium (Cd), lead (Pb), and arsenic (As), which are introduced through various industrial activities at rates of thousands of tons per year. Such interactions may cause synergistic or antagonistic effects on plants. Recent studies suggest that MPs and HMs exposure impacts various physiological and biochemical pathways in plants, thereby increasing the toxicity symptoms. However, the existing scholarly understanding of the coupled effect of HMs and MPs on plants is limited, highlighting the need to explore these complex dynamics further. Through a comprehensive analysis of current research, this review underscores various pathways of MPs and HMs infiltration mechanisms, detailing their penetration, translocation, and bioaccumulation within plants. The physiological and biochemical effects of both pollutants on plants are deliberated individually and in combination. The review reveals that the co-existence of these contaminants results in a multifaceted environmental challenge, affecting overall plant growth, yield, and quality in ways that differ from individual exposure. Building on recent advancements, this article is expected to delineate the complex interactions between MPs, HMs, and plants and enhance the current understanding of the intricate interplay between them.
Collapse
Affiliation(s)
- Sanjay Kajal
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Sveta Thakur
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India.
| |
Collapse
|
2
|
Li J, Li X, Luo J, Huang P, Ge C, Yang X, Wang H. Effects of polypropylene films and leached dissolved organic matters on bacterial community structure in mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173516. [PMID: 38802011 DOI: 10.1016/j.scitotenv.2024.173516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Over the past decades, the accumulation of plastics in mangrove ecosystems has emerged as a significant environmental concern, primarily due to anthropogenic activities. Polypropylene (PP) films, one of the plastic types with the highest detection rate, tend to undergo intricate aging processes in mangrove ecosystems, leading to the release of dissolved organic matter (DOM) that may further influence the local bacterial communities. Yet, the specific effects of new and weathered (aged) plastic films and the associated leached DOM on bacterial consortia in mangrove sediments remain poorly understood. In this study, an incubation experiment was conducted to elucidate the immediate effects and mechanisms of the new and relatively short-term (45 or 90 days) aged PP films, as well as their leached DOM (PDOM), on characteristics of DOM and the bacterial community structure in mangrove sediments under different tidal conditions. Surface morphology and functional group analyses showed that both new and aged PP films exhibited comparable degradation profiles under different tidal conditions over the incubation period. As compared to the new PP film treatments, the introduction of the short-term aged PP films significantly affected the content of humic-like compounds in sediments, and such effects were partially ascribed to the release of PDOM during the incubation. Although the addition of PP films and PDOM showed minor effects on the overall diversity and composition of bacterial communities in the sediments, the abundance of some dominant phyla exhibited a growth or reduction tendency, possibly changing their ecological functions. This study was an effective attempt to investigate the relationship among plastic surface characteristics, sedimentary physicochemical properties, and bacterial communities in mangrove sediments. It revealed the ecological ramifications of new and short-term plastic pollution and its leachates in mangrove seedtimes, enhancing our understating of their potential impacts on the health of mangrove ecosystems.
Collapse
Affiliation(s)
- Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xue Li
- School of Life and Health, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Peng Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Imasha HUE, Babel S. Unveiling the abundance and potential impacts of microplastic contamination in commercial organic fertilizers/compost produced from different solid waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50767-50781. [PMID: 39102146 DOI: 10.1007/s11356-024-34554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
This study comprehensively investigated the abundance, morphologies, and polymer types of plastics, larger (1-5 mm) and smaller (< 1 mm) microplastics (MPs), in organic fertilizers using spectroscopic and microscopic methods. MPs abundance varied depending on the type of waste employed. MPs were detected in 80% of the investigated compost samples, while macro/meso plastics were found in only four samples. Compost from mixed municipal solid waste exhibited the highest MPs contamination (23100 ± 3615 items/kg dry weight), whereas compost produced from canteen waste had the lowest contamination (100 ± 65 items/kg dry weight). Smaller MPs were dominant in all samples. The estimated loads of MPs introduced into agricultural soil exceeded the previous studies. Common morphologies observed were sheet, film, fragment, and fiber, while dominant polymer types were polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and polystyrene (PS). Heavy metals, including Cr, Cu, Ni, and Pb, were identified in association with MPs. Results indicate that the utilization of appropriate waste for composting and upgrading fertilizer regulations is crucial to protect the environment and human health from smaller MPs.
Collapse
Affiliation(s)
- Hewawasam Udumullage Erangi Imasha
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand.
| |
Collapse
|
4
|
Wang K, Li C, Li H, Liu Q, Khan K, Li F, Chen W, Xu L. Interactions of traditional and biodegradable microplastics with neonicotinoid pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174512. [PMID: 38972406 DOI: 10.1016/j.scitotenv.2024.174512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Neonicotinoid pesticides (NNPs) and microplastics (MPs) are two emerging contaminants in agricultural environment. However, the interaction between MPs (especially biodegradable plastics) and NNPs is currently unclear. Therefore, taking thiacloprid (THI) as an example of NNPs, this study explores the adsorption-desorption process and mechanism of NNPs on MPs (traditional and biodegradable plastics), and analyzed the main factors affecting the adsorption (pH, salinity and dissolved organic matter). In addition, by using diffusive gradients in thin-films device, this study assessed the impact of MPs on the bioavailability of NNPs in soil. The results showed that the maximum adsorption capacity of polyamide 6 (96.49 μg g-1) for THI was greater than that of poly (butylene adipate co-terephthalate) (88.78 μg g-1). Aging increased the adsorption amount of THI (5.53 %-15.8 %) due to the higher specific surface area and reduced contact angle of MPs, but the adsorption mechanism remained unchanged. The desorption amount of THI from MPs in simulated intestinal fluid is 1.30-1.36 times. The MPs in soil alter the distribution of THI in the soil, increasing the bioavailability of THI while inhibiting its degradation. The results highlighted the significance of examining the combined pollution caused by MPs and NNPs.
Collapse
Affiliation(s)
- Kang Wang
- School of Environmental Studies & MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Haifeng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Fang Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Wei Chen
- School of Environmental Studies & MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China.
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China.
| |
Collapse
|
5
|
Yang X, Yu R, Wang T, Wen X, He Y, Li Z, Ma C, Chen W, Zhang C. Algae-leached DOM inhibits the Hg(II) reduction and uptake by lettuce in aquatic environments under light conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106928. [PMID: 38688065 DOI: 10.1016/j.aquatox.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The significant role of aquatic phytoplankton in global primary productivity, accounting for approximately 50 % on an annual basis, has been recognized as a crucial factor in the reduction of Hg(II). In this study, we compared the efficiency of Hg(II) photoreduction mediated by three types of algae leaching dissolved organic matter (DOM) and humic acid (DOM-HA). Especially, we investigated the potential effects of algae-leached DOM on the photoreduction of Hg(II) and its subsequent uptake by lettuce, which serves as an indicator of Hg bioavailability for aquatic plants. The results revealed that under light conditions, the conversion of Hg(II) to Hg(0) mediated by algae-leached DOM and DOM-HA was 6.4-39.9 % higher compared to dark condition. Furthermore, the free radical quenching experiment demonstrated that the reduction of Hg(II) mediated by DOM-HA was higher than algae-leached DOM, mainly due to its ability to generate superoxide anion (O2•-). Moreover, the photoreduction efficiences of Hg(II) mediated by algae-leached DOM were 29-18 % lower compared to DOM-HA. The FT-IR analysis revealed that the production of -SH from algae-leached DOM led to the formation of strong metal-complexes, which restricts the reduction process from Hg(II) to Hg(0). Finally, the hydroponics experiment demonstrated that algae-leached DOM inhibited the bioavailability of Hg(II) to plants more effectively than DOM-HA. Our research emphasizes the significant functional roles and potential mechanisms of algae in reducing Hg levels, thereby influencing the availability of Hg in aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China.
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
6
|
Aralappanavar VK, Mukhopadhyay R, Yu Y, Liu J, Bhatnagar A, Praveena SM, Li Y, Paller M, Adyel TM, Rinklebe J, Bolan NS, Sarkar B. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171435. [PMID: 38438042 DOI: 10.1016/j.scitotenv.2024.171435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.
Collapse
Affiliation(s)
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mike Paller
- Aquatic Biology Consultants, Inc., 35 Bungalow Ct., Aiken, SC 29803, USA
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
7
|
Huang P, Zhang Y, Hussain N, Lan T, Chen G, Tang X, Deng O, Yan C, Li Y, Luo L, Yang W, Gao X. A bibliometric analysis of global research hotspots and progress on microplastics in soil‒plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122890. [PMID: 37944892 DOI: 10.1016/j.envpol.2023.122890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Plastic pollution has become a global and persistent challenge, posing threats to ecosystems and organisms. In recent years, there has been a rapid increase in scientific research focused on understanding microplastics in the soil‒plant system. This surge is primarily driven by the direct impact of microplastics on agricultural productivity and their association with human activities. In this study, we conducted a comprehensive bibliometric analysis to provide an overview of the current research on microplastics in soil‒plant systems. We systematically analysed 192 articles and observed a significant rise in research interests since 2017. Notably, China has emerged as a leading contributor in terms of published papers, closely followed by Germany and the Netherlands. Through co-authorship network analysis, we identified 634 different institutions that participated in publishing papers in this field, with the Chinese Academy of Sciences having the most collaborations. In the co-occurrence keyword network, we identified four clusters focusing on the diversity of microplastics within the agroecosystem, transportation, and quantification of microplastics in soil, analysis of plastic contamination type and impact, and investigation of microplastic phytotoxicity. Furthermore, we identified ten research priorities, categorized into the effects of microplastics in "soil" and "plant". The research hotspots were found to be the effect of microplastics on soil physicochemical properties and the synergistic phytotoxicity of microplastics with other pollutants. Overall, this bibliometric analysis holds significant value, serving as an important reference point and offering valuable suggestions for future researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Pengxinyue Huang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, 211 Huimin Rd., Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaorui Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, 211 Huimin Rd., Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| |
Collapse
|
8
|
De Silva YSK, Rajagopalan UM, Kadono H, Li D. The synergy of microplastics with the heavy metal zinc has resulted in reducing the toxic effects of zinc on lentil ( Lens culinaris) seed germination and seedling growth. Heliyon 2023; 9:e21464. [PMID: 38034784 PMCID: PMC10685156 DOI: 10.1016/j.heliyon.2023.e21464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 12/02/2023] Open
Abstract
There is growing recognition of the impact of the rising presence of microplastics (MPs) on terrestrial plant growth and, in general, the terrestrial ecosystem. Simultaneously, there is growing heavy metal accumulation in agricultural lands at an astonishing rate owing to the overwhelming use of chemical fertilizers, herbicides, and weedicides. Thus, there is a need to investigate the synergetic effect of MPs along with heavy metals on the inducing combined toxicity. This study investigates effects at smaller exposure periods of a few hours using a novel optical imaging technique, Biospeckle Coherence Tomography. Biospeckle Optical Coherence Tomography (bOCT) is a novel optical imaging technique that we successfully demonstrated earlier in visualizing the internal activity of plants. Previous studies of authors using the bOCT technique have demonstrated its potential in the independent application of polyethylene microplastic (PEMPs) as well as zinc within 6 h after their treatments. The strong inhibitory effect of 100 mg L-1, Zn, and PEMPs alone on the germination of Lens culinaris could be visualized with bOCT. The current study demonstrated that against expectation, combined effects of Zn toxicity were reduced when combined with MPs. This is suggested due to the significant reduction of Zn uptake by the seedlings through the interaction of Zn and MPs in an aqueous solution. Mass-spectrometry results also indicate a reduced intake of Zn. Our findings suggest that PEMPs could be able to reduce the over-availability of Zn, thus mitigating the Zn toxicity on lentils.
Collapse
Affiliation(s)
- Y. Sanath K. De Silva
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle, 80000, Sri Lanka
| | - Uma Maheswari Rajagopalan
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto City, Tokyo, 135-8548, Japan
| | - Hirofumi Kadono
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
| | - Danyang Li
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
| |
Collapse
|
9
|
He Y, Yang X, Li Z, Wang T, Ma C, Wen X, Chen W, Zhang C. Aging rice straw reduces the bioavailability of mercury and methylmercury in paddy soil. CHEMOSPHERE 2023; 339:139711. [PMID: 37536532 DOI: 10.1016/j.chemosphere.2023.139711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Straw amendment is a prevalent agricultural practice worldwide, which can reduce air pollution and improve soil fertility. However, the impact of aging straw amendment on the bioavailability of mercury (Hg) and methylmercury (MeHg) in paddy soil remains unclear. To investigate this, incubation experiments were conducted using the diffusive gradient in thin-film technique. Results showed that amendments of dry-wet aging (DRS), photochemical aging (LRS), and freeze-thaw aging rice straw (FRS) reduced the bioavailable MeHg in paddy soil by 2.2-27.6%, 13.5-69.8%, and 23.5-86.1%, respectively, compared to fresh rice straw (RS) amendment. This result could be due to changes in soil properties such as soil pH and overlying water Fe and Mn as well as microbial abundance (including Clostridiaceae, Firmicutes, and Actinobacteriota). Simultaneously, The LRS and FRS amendments reduced bioavailable Hg in paddy soil by 20.0-40.8% and 17.1-48.6%, respectively, while DRS increased the bioavailable Hg by 15.8-120.0%. This could be attributed to changes in soil oxidation-reduction potential and overlying water SO42- content. Additionally, the results of sand culture experiments showed that the concentrations of Hg uptake by rice seedlings were 97.1-118.2%, 28.1-35.6%, and 198.0-217.1% higher in dissolved organic matter (DOM) derived from DRS, LRS, and FRS than RS, indicating that aging straw leached DOM may promote the Hg bioavailable when straw amendment. This result could be due to lower molecular weight and higher CO functional group content. These results provide new insight into how aging straw amendment affects the bioavailability of Hg and MeHg in paddy soil under different climates.
Collapse
Affiliation(s)
- Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
10
|
Pang X, Chen C, Sun J, Zhan H, Xiao Y, Cai J, Yu X, Liu Y, Long L, Yang G. Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131989. [PMID: 37453357 DOI: 10.1016/j.jhazmat.2023.131989] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) broadly coexist with heavy metals (HMs) in soil, Cd and Cu are the main types of soil HMs contamination, in addition to polystyrene (PS), which is also widely present in the environment and prone to aging. However, differences in the effects of MPs and HMs on soil properties and microbial characteristics under alternating wetting and drying (AWD) remain unclear. Thus, this study investigated the effects of four conventional (0.2% (w/w)) and aged MPs in indoor incubation experiments on soil properties under desiccation (Dry) and AWD. We found that with the influence of the "enzyme lock" theory, the coexistence of MPs and HMs under Dry had a more pronounced effect on soil physicochemical properties, whereas the effects on soil enzyme activity under AWD were more significant. In addition, MPs decreased the available Cu by 4.27% and, conversely, increased the available Cd by 8.55%. Under Dry, MPs affected microbial function mainly through physicochemical properties, with a contribution of approximately 72.4%, whereas under AWD enzyme activity and HMs were significantly greater, with increases of 28.2% and 7.9%, respectively. These results indicate that the effects of MPs on environmental variation and microbial profiles under AWD conditions differed significantly from those under Dry.
Collapse
Affiliation(s)
- Xinghua Pang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jie Sun
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, No.15 Shixing Street, Shijingshan District, Beijing 100041, China
| | - Haiquan Zhan
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaoyu Yu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
11
|
Li K, Wang F. Global hotspots and trends in interactions of microplastics and heavy metals: a bibliometric analysis and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93309-93322. [PMID: 37542698 DOI: 10.1007/s11356-023-29091-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Microplastics (MPs) are identified as emerging contaminants; however, their interactions with heavy metals in the environment have not been well elucidated. Here, the research progress, hotspots, and trends in the interactions of MPs and heavy metals were analyzed at a global scale using a bibliometric analysis combined with a literature review. We comprehensively searched the Web of Science Core Collection database from 2008 to July 5, 2022. A total of 552 articles published in 124 journals were selected, which came from 70 countries and 841 institutions. The most contributing journals, countries, institutions, and authors were identified. Visualization methods were used to identify high co-citation references and hot keywords in the 552 articles. Evolutionary and cluster analyses of hot keywords suggested several research hotspots in the co-contamination of MPs and heavy metals, including their toxicity and bioaccumulation, the adsorption and desorption behaviors, the environmental pollution and risk assessment, and their detection and characterization. Based on the current research status, several directions of priority are recommended to understand the interactions between MPs and heavy metals and their potential risks. This article can help recognize the current research status and future directions in this field.
Collapse
Affiliation(s)
- Kehan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China.
| |
Collapse
|
12
|
Hao YY, Liu HW, Zhao J, Feng J, Hao X, Huang Q, Gu B, Liu YR. Plastispheres as hotspots of microbially-driven methylmercury production in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131699. [PMID: 37270960 DOI: 10.1016/j.jhazmat.2023.131699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Microplastics (MPs) as emerging contaminants have accumulated extensively in agricultural ecosystems and are known to exert important effects on biogeochemical processes. However, how MPs in paddy soils influence the conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains poorly understood. Here, we evaluated the effects of MPs on Hg methylation and associated microbial communities in microcosms using two typical paddy soils in China (i.e., yellow and red soils). Results showed that the addition of MPs significantly increased MeHg production in both soils, which could be related to higher Hg methylation potential in the plastisphere than in the bulk soil. We found significant divergences in the community composition of Hg methylators between the plastisphere and the bulk soil. In addition, the plastisphere had higher proportions of Geobacterales in the yellow soil and Methanomicrobia in the red soil compared with the bulk soil, respectively; and plastisphere also had more densely connected microbial groups between non-Hg methylators and Hg methylators. These microbiota in the plastisphere are different from those in the bulk soil, which could partially account for their distinct MeHg production ability. Our findings suggest plastisphere as a unique biotope for MeHg production and provide new insights into the environment risks of MP accumulation in agricultural soils.
Collapse
Affiliation(s)
- Yun-Yun Hao
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui-Wen Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiao Feng
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Yang X, Li Z, Wang T, Yang Z, Wen X, Yang K, Huang Y, Chen W, He Y, Shi X, Zhang C, Yu Z. Resupply, diffusion, and bioavailability of Hg in paddy soil-water environment with flood-drain-reflood and straw amendment. ENVIRONMENTAL RESEARCH 2023; 231:116127. [PMID: 37187308 DOI: 10.1016/j.envres.2023.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
Mercury (Hg) poses a significant risk in paddy fields, particularly when it is converted to methylmercury (MeHg) and accumulates in rice. However, the bioavailability and resupply kinetics of Hg in the paddy soil-water environment are not well understood. In this study, the diffusive gradients in thin films (DGT) and the 'DGT-induced fluxes in sediments' model (DIFS) were first adopted to investigate the Hg resupply kinetics, diffusion fluxes and bioavailability in a paddy environment subjected to flood-drain-reflood treatment and straw amendment. Our results shown that although the straw amendment limited the bioavailability of Hg (38.2%-47.9% lower than control) in porewater by decreasing its resupply capacity, especially with smaller straw particles, the net production of MeHg in paddy fields was significantly increased after straw amendment (73.5%-77.9% higher than control). The results of microbial sequencing indicate that enhanced methylators (e.g., family Geobacter) and non-Hg methylators (e.g., Methanosarcinaceae) played a crucial role in MeHg production following straw amendment. Moreover, Hg-containing paddy soils generally tend to release Hg into the overlying water, while drain-reflood treatment changes the direction of Hg diffusion fluxes in the paddy soil-water interface. The drainage-reflooded treatment decreases the Hg reactive and resupply capacity of the paddy soil, thereby hindering the release of Hg from soil into overlying water during the early stages of reflooding. Overall, this study provides novel insights into the behavior of Hg in paddy soil-water surface microlayers.
Collapse
Affiliation(s)
- Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaohong Shi
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
14
|
Liu S, Huang J, He W, Zhang W, Yi K, Zhang C, Pang H, Huang D, Zha J, Ye C. Impact of microplastics on lead-contaminated riverine sediments: Based on the enzyme activities, DOM fractions, and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130763. [PMID: 36641852 DOI: 10.1016/j.jhazmat.2023.130763] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are able to interact with diverse contaminants in sediments. However, the impacts of MPs on sediment properties and bacterial community structure in heavy metal-contaminated sediments remain unclear. In this study, we investigated the adsorption of Pb(II) by sediment-MPs mixtures and the effects of different concentration MPs on sediment enzyme activities, DOM fractions, and Pb bioavailability in riverine sediments, and further explored the response of sediment microbial community to Pb in the presence of MPs. The results indicated that the addition of MPs significantly decreased the adsorption amount of Pb(II) by sediments, especially decreased by 12.6% at 10% MPs treatment. Besides, the changes in enzyme activities, DOM fractions exhibited dose-dependent effects of MPs. The higher level of MPs (5% and 10%) tends to transform Pb into more bioavailable fractions in sediments. Also, MPs amendment was observed to alter sediment bacterial community structures, and community differences were evident in the uncontaminated and lead-contaminated sediments. Therein, significant increase of Bacteroidota, Proteobacteria and decrease of Firmicutes abundance in Pb-contaminated sediment at the phylum level were observed. These findings are expected to provide comprehensive information for assessing the combined ecological risks of heavy metals and MPs in riverine sediments.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - JinHui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - WenJuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - KaiXin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - ChenYu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - HaoLiang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - DanLian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jun Zha
- Hunan Yixin Environmental Engineering Co., Ltd., Changsha 410004, Hunan, PR China
| | - Cong Ye
- Hunan Yixin Environmental Engineering Co., Ltd., Changsha 410004, Hunan, PR China
| |
Collapse
|
15
|
Chen W, Yu Z, Yang X, Wang T, Li Z, Wen X, He Y, Zhang C. Unveiling the Role of Dissolved Organic Matter on the Hg Phytoavailability in Biochar-Amended Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3761. [PMID: 36834455 PMCID: PMC9963283 DOI: 10.3390/ijerph20043761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/13/2023]
Abstract
Biochar can effectively reduce the phytoavailability of mercury (Hg) in soil, but the mechanisms are not fully understood. In this study, the dynamic changes in Hg content adsorbed by the biochar (BC-Hg), Hg phytoavailability in the soil (P-Hg), and soil dissolved organic matter (DOM) characteristics were determined over a 60-day treatment period. Biochar obtained at 300 °C, 500 °C and 700 °C reduced the P-Hg concentration assessed by MgCl2 extraction by 9.4%, 23.5% and 32.7%, respectively. However, biochar showed a very limited adsorption on Hg, with the maximum BC-Hg content only accounting for 1.1% of the total amount. High-resolution scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) results showed that the proportion of Hg atoms in biochar after 60 d was barely detectable. Biochar treatment can shift soil DOM toward higher aromatic content and molecular weight. Additionally, the addition of high-temperature biochar increased more humus-like components, but low-temperature biochar increased more protein-like components. Correlation analysis and partial least squares path modeling (PLS-PM) showed that biochar promoted humus-like fractions formation to reduce the Hg phytoavailability. This research has deepened the understanding of the mechanisms by which biochar stabilizes Hg in agricultural soils.
Collapse
Affiliation(s)
- Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
16
|
Khan MA, Kumar S, Wang Q, Wang M, Fahad S, Nizamani MM, Chang K, Khan S, Huang Q, Zhu G. Influence of polyvinyl chloride microplastic on chromium uptake and toxicity in sweet potato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114526. [PMID: 36634477 DOI: 10.1016/j.ecoenv.2023.114526] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The extensive use of plastic products and rapid industrialization have created a universal concern about microplastics (MPs). MPs can pose serious environmental risks when combined with heavy metals. However, current research on the combined effects of MPs and hexavalent chromium [Cr(VI)] on plants is insufficient. Herein, a 14-day hydroponic experiment was conducted to investigate the impact of PVC MPs (100 and 200 mg/L) and Cr(VI) (5, 10, and 20 μM) alone and in combination on sweet potato. Results showed that combined Cr(VI) and PVC MPs affected plant growth parameters significantly, but PVC MPs alone did not. The combined application of PVC MPs and Cr(VI) resulted in a decrease in plant height (24-65%), fresh biomass per plant (36-71%), and chlorophyll content (16-34%). Cr(VI) bioaccumulation increased with the increase in its doses, with the highest concentration of Cr(VI) in the leaves (16.45 mg/kg), stems (13.81 mg/kg), and roots (236.65 mg/kg). Cr(VI) and PVC MPs-induced inhibition varied with Cr(VI) and PVC MPs doses. Osmolytes and antioxidants, lipid peroxidation, and H2O2 contents were significantly increased, while antioxidant enzymes except CAT were decreased with increasing Cr(VI) concentration alone and mixed treatments. The presence of PVC MPs promoted Cr(VI) accumulation in sweet potato plants, which clearly showed severe toxic effects on their physio-biochemical characteristics, as indicated by a negative correlation between Cr(VI) concentration and these parameters. PVC MPs alone did not significantly inhibit these parameters. The findings of this study provide valuable implications for the proper management of PVC MPs and Cr(VI) in sweet potato plants.
Collapse
Affiliation(s)
- Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou/Key Laboratory of Advanced Materials of Tropical Island Resources/Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, 570228, China; Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou/Key Laboratory of Advanced Materials of Tropical Island Resources/Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, 570228, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
| | - Kenlin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University/ Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou/Key Laboratory of Advanced Materials of Tropical Island Resources/Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, 570228, China.
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Xu Z, Bai X, Li Y, Weng Y, Li F. New insights into the decrease in Cd 2+ bioavailability in sediments by microplastics: Role of geochemical properties. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130103. [PMID: 36303335 DOI: 10.1016/j.jhazmat.2022.130103] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) are considered to influence the bioavailability of heavy metals through direct adsorption, but this neglects the distribution of heavy metal chemical speciation indirectly influenced by MPs by altering geochemical properties. The present study aims to explore the link between the fractionation distribution of cadmium (Cd2+) and changes in geochemical properties in sediments induced by polyethylene terephthalate microplastics (PET-MPs). The PET-MPs reduced the acid-soluble fraction of Cd2+ in sediments and increased its organically bound fraction. In addition, the concentration of bioavailable Cd2+ in the sediment decreased by 4.09-25.96 % with increasing PET-MPs doses and aging. Whereas the thermal aging of PET-MPs led to a decrease in the molar ratio of oxygen-containing functional groups and the BET surface area, which is not favorable for improving the adsorption capacity of PET-MPs. On the other hand, the correlation analysis demonstrated the key role of PET-MPs in increasing the content of sediment organic matter and its humification level, which indirectly led to a decrease in Cd2+ bioavailability. The microbial analysis demonstrated that PET-MPs increase the relative abundances of Chloroflexi, hexokinase, and 6-phosphofructose kinase in sediments, thereby increasing the humification level of sediment organic matter. The present study provides a new perspective for understanding the environmental risks of MPs-altered heavy metals.
Collapse
Affiliation(s)
- Zhenjia Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Yujian Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Fengjie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
18
|
Liu Y, Cui W, Li W, Xu S, Sun Y, Xu G, Wang F. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130102. [PMID: 36206709 DOI: 10.1016/j.jhazmat.2022.130102] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Both microplastics (MPs) and cadmium (Cd) are common contaminants in soil-rice systems, but their combined effects remain unknown. Thereby, we explored the effects of three MPs, i.e., polyethylene terephthalate (PET), polylactic acid (PLA), and polyester (PES), on Cd accumulation in rice and the community diversity and structure of arbuscular mycorrhizal fungi (AMF) in soil spiked with or without Cd. Results showed that 2% PLA decreased shoot biomass (-28%), but PET had a weaker inhibitive effect. Overall, Cd alone did not significantly change shoot and root biomass and increased root biomass in combination with 0.2% PES. MPs generally increased soil Cd availability but decreased Cd accumulation in rice tissues. Both MPs and Cd improved the bioavailability and uptake of Fe and Mn in rice roots. MPs altered the diversity and community composition of AMF, depending on their type and dose and co-existing Cd. Overall, 2% PLA caused the most distinct changes in soil properties, plant growth and Cd accumulation, and AMF communities, but showed no synergistic interactions with Cd. In conclusion, MPs can mediate rice performance and Cd accumulation via altering soil properties, nutrient uptake, and root mycorrhizal communities, and biodegradable PLA MPs thought environment-friendly can exhibit higher phytotoxicity than conventional MPs.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenzhi Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenguang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| |
Collapse
|
19
|
Sun N, Shi H, Li X, Gao C, Liu R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. ENVIRONMENT INTERNATIONAL 2023; 171:107711. [PMID: 36566717 DOI: 10.1016/j.envint.2022.107711] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Micro/nanoplastics (MPs/NPs) are ubiquitous in the environment and living organisms have been exposed to these substances for a long time. When MPs/NPs enter different organisms, they transport various pollutants, including heavy metals, persistent organic pollutants, drugs, bacteria, and viruses, from the environment. On this basis, this paper summarizes the combined toxicity induced by MPs/NPs accumulating contaminants from the environment and entering organisms through a systematic review of 162 articles. Moreover, the factors influencing toxic interactions are critically discussed, thus highlighting the dominant role of the relative concentrations of contaminants in the combined toxic effects. Furthermore, for the first time, we describe the threats posed by MPs/NPs combined with other pollutants to human health, as well as their cytotoxic behavior and mechanism. We found that the "Trojan horse" effect of nanoplastics can increase the bioaccessibility of environmental pollutants, thus increasing the carcinogenic risk to humans. Simultaneously, the complex pollutants entering the cells are observed to be constantly dissociated due to the transport of lysosomes. However, current research on the intracellular release of MP/NP-loaded pollutants is relatively poor, which hinders the accurate in vivo toxicity assessment of combined pollutants. Based on the findings of our critical review, we recommend analyzing the toxic effects by clarifying the dose relationship of each component pollutant in cells, which is challenging yet crucial to exploring the toxic mechanism of combined pollution. In the future, our findings can contribute to establishing a system modeling the complete load-translocation toxicological mechanism of MP/NP-based composite pollutants.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
20
|
Lin H, Li M, Zhu Y, Lan W, Feng Q, Ding S, Li T, Wang Y, Duan Y, Wei J, Li M. Development and validation of the DGT technique using the novel cryogel for measuring dissolved Hg(II) in the estuary. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105773. [PMID: 36283212 DOI: 10.1016/j.marenvres.2022.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The complex seawater matrix has significantly influenced the determination of estuarine dissolved Hg(II), hindering its monitoring and risk assessment in maricultural areas. In this work, SiO2-SH-DGT assembled by the sulfhydryl-modified silica cryogel (SiO2-SH cryogel) as the novel binding phase was developed to tackle this problem. The uniform dispersion of the cryogel into binding gel was advantageous for achieving remarkable and comparable capacity, which endowed the estimated diffusion coefficient (D) to be 1.39-3.08 times of the existing research. The SiO2-SH-DGT performance was independent of pH (3-9), ionic strength (10-800 mM), fulvic acid at low content, and seawater matrix (Na+, K+, Ca2+, Cl-), but the high content of Mg2+ did interfere with the Hg(II) accumulation, which manifested as competitive adsorption and diffusion. Therefore, the calibrated model was established by calibrating accumulated mass (M') and diffusion coefficient (D') based on the Mg2+ concentration, its high accuracy was further verified in the lab. Finally, SiO2-SH-DGT was deployed in the three typical aquaculture areas in Beibu Gulf, field trials achieved the actual Hg(II) level to be 1.52-5.38 ng/L with consideration of the diffusion boundary layer. The finding could provide new thought and technical support for metal pollution monitoring in estuary maricultural areas.
Collapse
Affiliation(s)
- Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; Guangxi Universities Key Laboratory of Environmental Protection, Guangxi University, Nanning, China.
| | - Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yifan Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Wenlu Lan
- Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; Guangxi Universities Key Laboratory of Environmental Protection, Guangxi University, Nanning, China
| | - Shiming Ding
- Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Tianshen Li
- Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Mingen Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Yao Y, Wang L, Gong L, Li G, Xiu W, Yang X, Tan B, Zhao J, Zhang G. Differences, links, and roles of microbial and stoichiometric factors in microplastic distribution: A case study of five typical rice cropping regions in China. Front Microbiol 2022; 13:985239. [PMID: 36118223 PMCID: PMC9478377 DOI: 10.3389/fmicb.2022.985239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Microplastics (MPs), as new pollutants in agroecosystems, have already attracted widespread attention from scientists. However, our understanding of MP geographic distribution and its influencing factors across spatial scales remains poor. Here, a regional-scale field investigation was conducted to assess the distribution characteristic of MPs in five major rice-growing regions of China, and we explored the roles of biological and abiotic factors, especially stoichiometry and microbial influences on MP distribution. MPs were observed in all sampling sites, averaging 6,390 ± 2,031 items⋅kg-1. Sizes less than 0.5 mm and black and transparent MPs dominated. Fiber, classified as one of the MP shapes, occurred most frequently. MP community analysis, firstly used in paddy soil, revealed more black MPs abundance in Henan (HE), more rayon, blue, and other colors MPs in Hunan (HN), more transparent MPs in Tianjing (TJ), and more PE MPs in Heilongjiang (DB). Higher MP community diversity was found in most south paddy soils of this study, due to a broader range of sources. C/N showed a positive relationship with pellet-shaped MP abundance and MPs of size between 2 and 5 mm (P < 0.05). Chao1 index of soil microbial communities was positively correlated with the MP abundance, MPs of size less than 0.5 mm, and fiber abundance. The minimum temperature was positively correlated with MP abundance (P < 0.05), implying the potential effects of the freeze-thaw process might exist. The regression analysis highlighted the important role of population quantity in determining MP abundance (R = 0.421, P = 0.02). This study confirmed the wide distribution of MPs in different soil depths of paddy lands in China and demonstrated that its distribution was influenced by population quantity and environmental variables, such as microbiology. These findings could provide a basis for the toxicological behavior of MPs and the potential risk to human health.
Collapse
Affiliation(s)
- Yao Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Lingxuan Gong
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Gang Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Weiming Xiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Bingchang Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jianning Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| |
Collapse
|
22
|
Kumar R, Ivy N, Bhattacharya S, Dey A, Sharma P. Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155619. [PMID: 35508241 DOI: 10.1016/j.scitotenv.2022.155619] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution has severe ecological and environmental concerns because of its enormous production and discharge in natural ecosystems worldwide. Microplastics interact with heavy metals and metalloids like arsenic, chromium, copper, cadmium, and lead in soil and can cause detrimental effects on soil structure and microbial activities and subsequently impact the plants and human health. This article focuses on microplastic translocation from soil to plants together with heavy metals. Microplastic exposure impacts biomass, photosynthetic activity, chlorophyll content, root and shoot length in the plants through apoplastic and symplastic pathways. Microplastics can also indirectly affect the plant growth by changing soil nutrient content and microbial community structure. At the same time, microplastics can absorb heavy metals and increase phytotoxicity in plants. However, the current knowledge about the coupled effect of heavy metals and microplastics bioaccumulation in plants is limited. It is postulated that heavy metals and microplastics collectively impact the chlorophyll content, photosynthetic activity, and induction of reactive oxygen species in plants. This work also outlines the environmental health perspectives based on microplastic and heavy metals toxicity and provides a guideline for future research on the coupled effects of heavy metals and microplastics on plants and humans.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, 803116, Bihar, India
| | - Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, 803116, Bihar, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, 803116, Bihar, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, 803116, Bihar, India.
| |
Collapse
|