1
|
Yang B, Zhao J, Zhang C, Guo S, Chen Y, Wang Y, Huang X, Zeng Q. Ultra-high capacity and selectivity for uranium fixation by carbon nanosphere supported hydroxyapatite nanorod adsorbent. J Colloid Interface Sci 2025; 688:478-489. [PMID: 40020486 DOI: 10.1016/j.jcis.2025.02.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Uranium (U(VI)) has chemical and radiological toxicity, so the effective treatment of uranium-containing wastewater is crucial for both environmental safety and human health. Here, a carbon nanosphere (CNS) supported hydroxyapatite (HAP) nanorod (HAP/CNS) adsorbent was prepared using a simple glucose-assisted hydrothermal method toeffectively immobilize U(VI). Glucose not only derived CNS, but also facilitated HAP crystallization, prohibited HAP aggregation, and introduced oxygen-containing functional groups (i.e., COOH). The optimized HAP/CNS possessed a fantastic adsorption capability of 3080.3 mg/g for U(VI), nearly three times that of HAP and much higher than many reported HAP-based adsorbents. Notably, HAP/CNS was less affected by coexisting ions (distribution coefficient, Kd, researched 6.0 × 104 mL/g) and humic acid, and maintained good capability for real wastewater. The pseudo-second-order kinetic model and Langmuir isotherm model could better explain U(VI) removal behavior by HAP/CNS. Results showed that HAP/CNS and UO22+ combined to form a new uranium-containing compound, i.e., calcium-uranium mica (Ca(UO2)2(PO4)2·3H2O) via ion exchange and dissolution-precipitation, which should be the main reason for the ultra-high capacity and selectivity of HAP/CNS. Additionally, the hydrophilic oxygen-containing functional groups synergistically facilitated U(VI) fixation through complexation. This work introduces a superior adsorbent for purifying uranium-contaminated wastewater and elucidates its synergetic mechanism in uranium fixation.
Collapse
Affiliation(s)
- Bing Yang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jingjing Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chao Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Shuaishuai Guo
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanlin Chen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yi Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Xixian Huang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Jiao G, Hu J, Lin Z, Zhang S, Sun D, Li C, Sun Q. Bifunctional lignin-based hydrogel membrane with enhanced structural stability for synergistic uranium uptake. J Colloid Interface Sci 2025; 685:214-224. [PMID: 39842311 DOI: 10.1016/j.jcis.2025.01.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Developing biomass-based adsorbents with superior uranium uptake performance is imperative yet challenging for the sustainable development of nuclear energy. Herein, we constructed a novel lignin-based adsorbent (DLP@PAO) with dual functional groups and enhanced structural stability via ingenious integration of lignin and polyamidoxime. The two-step modification strategy was innovatively employed to phosphorylate lignin, significantly enhancing the phosphorylation efficiency and achieving an over eight-fold increase in the U(VI) uptake capacity of lignin. Benefiting from its double-crosslinked network and the strong electrostatic repulsion of phosphate groups, the DLP@PAO membrane, featuring a porous honeycomb structure, exhibits favorable shrinkage resistance even in acidic aqueous environments, facilitating the diffusion and mass transfer of U(VI) ions within the adsorbent. Notably, the synergistic effect of DLP and PAO components on U(VI) uptake was comprehensively verified through experimental data combined with density functional theory (DFT) calculation, which endows DLP@PAO with exceptional uptake capacity (701.02 mg g-1) and selectivity (Kd = 1.45 × 105 mL g-1) towards U(VI) ion. Moreover, DLP@PAO achieved a high U(VI) uptake efficiency of over 91.07 % in a dynamic column device with 10 L of simulated wastewater, indicating its immense potential for practical wastewater treatment. Mechanistic studies revealed that the synergistic coordination between UO22+ ions and O as well as N atoms in the phosphate and amidoxime groups is primarily responsible for the U(VI) uptake by DLP@PAO. This work opens a new direction for the value-added utilization of lignin and advances the development of lignin-based adsorbents for U(VI) uptake.
Collapse
Affiliation(s)
- Gaojie Jiao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China.
| | - Junjie Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China
| | - Ziyi Lin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China
| | - Shumei Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China
| | - Dan Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co., Ltd., Dongying 257335 PR China
| | - Caicai Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China.
| |
Collapse
|
3
|
Liu B, Gao F, Zhang S, Fang M, Yu L, Tan X, Ni M. Boosted charge transfer in a naturally formed Ca(Al 2Si 2O 8)/Fe 2O 3 heterojunction for piezocatalytical formation of H 2O 2 and solidification of U(VI). J Colloid Interface Sci 2024; 667:575-584. [PMID: 38657541 DOI: 10.1016/j.jcis.2024.04.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Energy and environmental issues make the generation of H2O2 and the separation of U(VI) from water very important topics. In this work, we disclosed a low-cost, high-efficiency method for separating U(VI) from water based on the naturally formed catalyst (red volcanic stone powders, RVSP) of Ca(Al2Si2O8)/Fe2O3 heterojunction through a piezocatalytic pathway induced by ultrasonication. The charges were found to be elevatedly separated due to the formation of the heterojunction. It is found that under ultrasonication, charges were effectively separated and then reacted with water to form H2O2 with a high yield of 196.7 μmol·g-1 in 4 h, which further solidifies U(VI) to form a solid of UO2O2. The removal rate of U(VI) in water reached 96 % (50 ppm) within 150 min. Furthermore, the results calculated by VASP show that the cyclic variation of the conduction bands under a cyclic force field facilitates the charge separation, and thus may promote piezocatalysis. Most importantly, the application study in real seawater indicates that U(VI) piezocatalysis based on natural minerals has great potential. This work presents a comprehensive investigation of U(VI) piezocatalysis by Ca(Al2Si2O8)/Fe2O3 and provides a new idea for piezocatalytic extraction of uranium.
Collapse
Affiliation(s)
- Baoyi Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Feixue Gao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuo Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ming Fang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Long Yu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaoli Tan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Meiyan Ni
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
4
|
Wang T, Zhang Q, Qiao Y, Jiang Y, Xiao F, Duan J, Zhao X. Research progress on microbial adsorption of radioactive nuclides in deep geological environments. Front Microbiol 2024; 15:1430498. [PMID: 39021632 PMCID: PMC11251946 DOI: 10.3389/fmicb.2024.1430498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the development and utilization of nuclear energy, the safe disposal of nuclear waste needs to be urgently addressed. In recent years, the utilization of microorganisms' adsorption capacity to dispose of radioactive waste has received increasing attention. When compared with conventional disposal methods, microbial adsorption exhibits the characteristics of high efficiency, low cost, and no secondary pollution. In the long term, microbial biomass shows significant promise as specific chemical-binding agents. Optimization of biosorption conditions, identification of rare earth element binding sites, and studies on the sorption capacities of immobilized cells provide compelling reasons to consider biosorption for industrial applications in heavy metal removal from solutions. However, the interaction mechanism between microorganisms and radioactive nuclides is very complex. This mini-review briefly provides an overview of the preparation methods, factors affecting the adsorption capacity, and the mechanisms of microbial adsorbents.
Collapse
Affiliation(s)
- Tianyu Wang
- Navy Submarine Academy, Qingdao, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qichao Zhang
- Navy Submarine Academy, Qingdao, China
- CAS Key Laboratory of Marine Environment of Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanxin Qiao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | | | - Feng Xiao
- Navy Submarine Academy, Qingdao, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environment of Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhao
- Navy Submarine Academy, Qingdao, China
| |
Collapse
|
5
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Characterization of chitosan- and β-cyclodextrin-modified forms of magnesium-doped hydroxyapatites as enhanced carriers for levofloxacin: loading, release, and anti-inflammatory properties. RSC Adv 2024; 14:16991-17007. [PMID: 38799215 PMCID: PMC11124724 DOI: 10.1039/d4ra02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
An advanced form of magnesium-rich hydroxyapatite (Mg·HAP) was modified with two types of biopolymers, namely chitosan (CH/Mg·HAP) and β-cyclodextrin (CD/Mg·HAP), producing two types of bio-composites. The synthesized materials were developed as enhanced carriers for levofloxacin to control its loading, release, and anti-inflammatory properties. The polymeric modification significantly improved the loading efficiency to 281.4 mg g-1 for CH/Mg·HAP and 332.4 mg g-1 for CD/Mg·HAP compared with 218.3 mg g-1 for Mg·HAP. The loading behaviors were determined using conventional kinetic and isotherm models and mathematical parameters of new equilibrium models (the monolayer model of one energy). The estimated density of effective loading sites (Nm (LVX) = 88.03 mg g-1 (Mg·HAP), 115.8 mg g-1 (CH/Mg·HAP), and 138.5 mg g-1 (CD/Mg·HAP)) illustrates the markedly higher loading performance of the modified forms of Mg·HAP. Moreover, the loading energies (<40 kJ mol-1) in conjunction with the capacity of each loading site (n > 1) and Gaussian energies (<8 kJ mol-1) signify the physical trapping of LVX molecules in vertical orientation. The addressed materials validate prolonged and continuous release behaviors. These behaviors accelerated after the modification procedures, as the complete release was identified after 160 h (CH/Mg·HAP) and 200 h (CD/Mg·HAP). The releasing behaviors are regulated by both diffusion and erosion mechanisms, according to the kinetic investigations and diffusion exponent analysis (>0.45). The entrapping of LVX into Mg·HAP induces its anti-inflammatory properties against the generation of cytokines (IL-6 and IL-8) in human bronchial epithelia cells (NL20), and this effect displays further enhancement after the integration of chitosan and β-cyclodextrin.
Collapse
Affiliation(s)
- May N Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Sarah I Al Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt +2001288447189
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
| |
Collapse
|
6
|
Liu X, Han Z, Lin N, Hao Y, Qu J, Gao P, He X, Liu B, Duan X. Immature persimmon residue as a novel biosorbent for efficient removal of Pb(II) and Cr(VI) from wastewater: Performance and mechanisms. Int J Biol Macromol 2024; 266:131083. [PMID: 38531519 DOI: 10.1016/j.ijbiomac.2024.131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Owing to the powerful affinity of tannin toward heavy metal ions, it is frequently immobilized on adsorbents to enhance their adsorption properties. However, natural adsorbents containing tannin have been overlooked owing to its water solubility. Herein, a novel natural adsorbent based on the immature persimmon residue (IPR) with soluble tannin removed was fabricated to eliminate Pb(II) and Cr(VI) in aquatic environments. The insoluble tannin in IPR endowed it with prosperous properties for eliminating Pb(II) and Cr(VI), and the IPR achieved maximum Pb(II) and Cr(VI) adsorption quantities of 68.79 mg/g and 139.40 mg/g, respectively. Kinetics and isothermal adsorption analysis demonstrated that the removal behavior was controlled by monolayer chemical adsorption. Moreover, the IPR exhibited satisfactory Pb(II) and Cr(VI) removal efficiencies even in the presence of multiple coexisting ions and showed promising regeneration potential after undergoing five consecutive cycles. Additionally, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis unveiled that the elimination mechanisms were primarily electrostatic attraction, chelation and reduction. Overall, the IPR, as a tannin-containing biosorbent, was verified to possess substantial potential for heavy metal removal, which can provide new insights into the development of novel natural adsorbents from the perspective of waste resource utilization.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zixuan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexin Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Qu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengcheng Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Youssef WM, El-Maadawy MM, Masoud AM, Alhindawy IG, Hussein AEM. Uranium capture from aqueous solution using palm-waste based activated carbon: sorption kinetics and equilibrium. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:428. [PMID: 38573523 PMCID: PMC10995074 DOI: 10.1007/s10661-024-12560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Carbonaceous materials produced from agricultural waste (palm kernel shell) by pyrolysis can be a proper type of low-cost adsorbent for wide uses in radioactive effluent treatment. In this context, the as-produced bio-char (labeled as PBC) and its sub-driven sulfuric acid and zinc oxide activated carbons (labeled as PBC-SA, and PBC-Zn respectively) were employed as adsorbents for uranium sorption from aqueous solution. Various analytical techniques, including SEM (Scanning Electron Microscopy), EXD (X-ray Diffraction), BET (Brunauer-Emmett-Teller), FTIR (Fourier Transform Infrared Spectroscopy), and Zeta potential, provide insights into the material characteristics. Kinetic and isotherm investigations illuminated that the sorption process using the three sorbents is nicely fitted with Pseudo-second-order-kinetic and Langmuir isotherm models. The picked data display that the equilibrium time was 60 min, and the maximum sorption capacity was 9.89, 16.8, and 21.9 mg/g for PBC, PBC-SA, and PBC-Zn respectively, which reflects the highest affinity for zinc oxide, activated bio-char, among the three adsorbents, for uranium taking out from radioactive wastewater. Sorption thermodynamics declare that the sorption of U(VI) is an exothermic, spontaneous, and feasible process. About 92% of the uranium-loaded PBC-Zn sorbent was eluted using 1.0 M CH3COONa sodium ethanoate solution, and the sorbent demonstrated proper stability for 5 consecutive sorption/desorption cycles.
Collapse
Affiliation(s)
| | | | - A M Masoud
- Nuclear Materials Authority, Cairo, Egypt.
| | | | | |
Collapse
|
8
|
Zhu Z, Liu S, Zhu Y, He H, Zhang J, Mo X, Tang S, Fan Y, Zhang L, Zhou X. Study on the performance and mechanism of cobaltous ion removal from water by a high-efficiency strontium-doped hydroxyapatite adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30059-30071. [PMID: 38594560 DOI: 10.1007/s11356-024-33239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
In this study, a high-efficiency strontium-doped hydroxyapatite (Sr-HAP) adsorbent was synthesized by a sol-gel method for removing cobaltous ions (Co(II)) from water. The effects of adsorbent dose, initial solution pH, initial Co(II) concentration and temperature on the removal performance of Co(II) were investigated. Experimental results indicated that the optimum Sr-HAP dose was 0.30 g/50 mL solution, the Sr-HAP adsorbent could effectively remove Co(II) in a wide pH range of 3-8. Increasing temperature was conducive to the adsorption, and the maximum Co(II) adsorption capacity by Sr-HAP reached 48.467 mg/g at 45 °C. The adsorption of Co(II) followed the pseudo-second-order kinetic model, indicating that the Co(II) adsorption by Sr-HAP was attributed mainly to chemisorption. The isothermal adsorption results showed that at lower Co(II) equilibrium concentration, the Langmuir model fitted the data better than the Freundlich model but opposite at higher Co(II) equilibrium concentration. Therefore, the adsorption of Co(II) was a process from monolayer adsorption to multilayer adsorption with the increase of the Co(II) equilibrium concentration. The diffusion analysis of Co(II) to Sr-HAP indicated that the internal diffusion and surface adsorption were the rate-controlled steps of Co(II) adsorption. Thermodynamic study demonstrated that the Co(II) adsorption process was spontaneous and endothermic. The mechanism study revealed that in addition to chemisorption, Sr-HAP also removed Co(II) ions from water via ion exchange and surface complexation.
Collapse
Affiliation(s)
- Zongqiang Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning, 530022, China
| | - Shuangshuang Liu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yinian Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Hao He
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jun Zhang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaoxin Mo
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Shen Tang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Yinming Fan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Lihao Zhang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Xiaobin Zhou
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
9
|
Sun X, Talha N, Ahmed AM, Rafea MA, Alenazi NA, Abukhadra MR. Steric and energetic studies on the influence of cellulose on the adsorption effectiveness of Mg trapped hydroxyapatite for enhanced remediation of chlorpyrifos and omethoate pesticides. Int J Biol Macromol 2024; 265:130711. [PMID: 38490378 DOI: 10.1016/j.ijbiomac.2024.130711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Magnesium-trapped hydroxyapatite (Mg.HP) was hybridized with cellulose fiber to produce a bio-composite (CLF/HP) with enhanced adsorption affinities for two types of toxic pesticides (chlorpyrifos (CF) and omethoate (OM)). The enhancement influence of the hybridized cellulose on the adsorption performances of Mg.HP was illustrated based on the determined steric and energetic factors. The computed CF and OM adsorption performances of CLF/HP during the saturation phases are 279.8 mg/g and 317.9 mg/g, respectively, which are significantly higher than the determined values using Mg/HP (143.4 mg/g (CF) and 145.3 mg/g (OM)). The steric analysis demonstrates a strong impact of the hybridization process on the reactivity of the surface of the composite. While CLF/HP reflects effective uptake site densities (Nm) of 93.3 mg/g (CF) and 135.3 mg/g (OM), the estimated values for Mg.HP are 51.2 mg/g (CF) and 46.11 mg/g (OM), which explain the reported enhancement in the adsorption performances of the composite. The capacity of each uptake site to be occupied with more than one molecule (n (CF) = 3-3.74 and n (OM) = 2.35-3.54) suggests multimolecular uptake. The energetic factors suggested physical mechanistic processes of spontaneous and exothermic behaviors either during the uptake of CF or OM.
Collapse
Affiliation(s)
- Xiaohui Sun
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China.
| | - Norhan Talha
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mostafa R Abukhadra
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
10
|
Ighalo JO, Chen Z, Ohoro CR, Oniye M, Igwegbe CA, Elimhingbovo I, Khongthaw B, Dulta K, Yap PS, Anastopoulos I. A review of remediation technologies for uranium-contaminated water. CHEMOSPHERE 2024; 352:141322. [PMID: 38296212 DOI: 10.1016/j.chemosphere.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000 Kazakhstan
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Isaiah Elimhingbovo
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostaki Campus, Arta 47100, Greece
| |
Collapse
|
11
|
Alali KT, Tan S, Zhu J, Liu J, Yu J, Liu Q, Wang J. High mechanical property and hydrophilic electrospun poly amidoxime/poly acrylonitrile composite nanofibrous mats for extraction uranium from seawater. CHEMOSPHERE 2024; 351:141191. [PMID: 38218238 DOI: 10.1016/j.chemosphere.2024.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Seawater reserves about 4.5 billion tons of uranium, if properly extracted, could be a sustainable green energy resource for hundreds of years, alternating its limited terrestrial ore and reducing the CO2 emitted from fossil fuels. The current seawater uranium adsorbents suffer neither economically viable nor adsorption efficiency, requiring more development to harvest satisfactorily uranium from seawater. Amidoxime-based fibrous adsorbents are the most promising adsorbents of seawater uranium due to abundant chelating sites. However, they suffer from severe shrinkage and stiffness once they dry, losing porous architecture and mechanical properties. Herein, an economical and scalable two-nozzle electrospinning technology was applied to produce poly amidoxime nanofibers (PAO NFs) supported by Poly acrylonitrile nanofibers (PAN NFs) as composite PAO/PAN nanofibrous mats with high structure stability. These PAO/PAN mats, with rapid wettability and excellent mechanical strength, show promising uranium adsorption capacities of 369.8 mg/g at seawater pH level, much higher than PAO and PAN NFs. The uranium adsorption capacity of the PAO/PAN mat reached 5.16 mg/g after 7 days of circulating (10 ppm uranium) spiked natural seawater. Importantly, the composite mat maintained its fibrous structure after five adsorption-desorption cycles with more than 80 % of its adsorption capacity, confirming its recyclability and stability. Therefore, the composite PAO/PAN mat fulfills the basic requirements for effectively and economically trapping uranium from seawater, which could be a matrix for further development.
Collapse
Affiliation(s)
- Khaled Tawfik Alali
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Sichao Tan
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, China.
| | - Jiahui Zhu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
12
|
Wu W, Wang J. High efficiency adsorption of uranium by magnesia-silica-fluoride co-doped hydroxyapatite. CHEMOSPHERE 2024; 352:141398. [PMID: 38342147 DOI: 10.1016/j.chemosphere.2024.141398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Hydroxyapatite has a high affinity to uranium, and element doping can effectively improve its adsorption performance. In this study, magnesia-silica-fluoride co-doped hydroxyapatite composite was prepared by hydrothermal method, and the effect of single-phase and multiphase doping on the structure and properties of the composites was investigated. The results showed that the specific surface area of Mg-Si-F-nHA composites increased by 63.01% after doping. Comparing with nHA, U(VI) adsorption capacity of Si-nHA, Mg-Si-nHA and Mg-Si-F-nHA composites increased by 13.01%, 17.39% and 22.03%, respectively. The adsorption capacity of Mg-Si-F-nHA composite reached 1286.76 mg/g. Adsorbent dosage and pH obviously affected U(VI) adsorption, and the experimental data can be fitted well by PSO and Sips models. The physicochemical characterization before and after adsorption suggested that complexation, ion exchange and precipitation participated in uranium adsorption. In conclusion, different elements doping can effectively improve the uranium adsorption properties of hydroxyapatite composites.
Collapse
Affiliation(s)
- Wenjun Wu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Wang T, Cao W, Dong K, Li H, Wang D, Xu Y. Hydroxyapatite and its composite in heavy metal decontamination: Adsorption mechanisms, challenges, and future perspective. CHEMOSPHERE 2024; 352:141367. [PMID: 38331264 DOI: 10.1016/j.chemosphere.2024.141367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Nanohydroxyapatite (n-HAP), recognized by its peculiar crystal architecture and distinctive attributes showcased the underlying potential in adsorbing heavy metal ions (HMI). In this paper, the intrinsic mechanism of HMI adsorption by n-HAP was first revealed. Subsequently, the selectivity and competitiveness of n-HAP for HMI in a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, n-HAP was further categorized according to its morphological dimensions, and its adsorption properties and intrinsic mechanisms were investigated based on these different morphologies. It was shown that although n-HAP has excellent adsorption capacity and cost-effectiveness, its application is often challenging to realize due to its inherent fragility and agglomeration, the technical problems required for its handling, and the difficulty of recycling. Finally, to address these issues, this paper discusses the tendency of n-HAP and its hybridized/modified materials to adsorb HMI as well as the limitations of their applications. By summarizing the limitations and future directions of hybridization/modification HAP in the field of HMI contamination abatement, this paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Kun Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| |
Collapse
|
14
|
Sharma M, Sharma P, Janu VC, Gupta R. Evaluation of Adsorptive Capture and Release Efficiency of MNPs-SA@Cu MOF Composite Beads Toward U(VI) and Th(IV) Ions from an Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:541-553. [PMID: 38109877 DOI: 10.1021/acs.langmuir.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Effluent from nuclear power plants, rocks, and minerals contains hazardous radionuclides that adversely affect human health and seriously threaten the environment. To address this issue, simple, economic, and sustainable magnetite nanoparticle loaded sodium alginate copper metal-organic framework composite beads (MNPs-SA@Cu MOF composite beads) have been designed, and their performance has been evaluated under varying conditions of pH, time, adsorbent dose, and initial concentration and have been studied by batch adsorption studies for optimizing the adsorption conditions. In this work, MNPs-SA@Cu MOF composite beads have been prepared in situ for the adsorptive removal of uranium [U(VI)] and thorium [Th(IV)] ions from an aqueous solution. The synthesized MNPs-SA@Cu MOF composite beads were characterized by model analytical techniques like Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, Brunauer-Emmett-Teller, and thermal gravimetric analysis. Here, 6 mg of adsorbent with 10 mL of 50 mg/L uranium and thorium ion solution at pH 5 was capable of removing the U(VI) and Th(IV) ions with 99.9 and 97.7% removal efficiencies, respectively. The obtained results showed that the adsorption behavior of the adsorbent for U(VI) and Th(IV) follows pseudo-second-order kinetics, and Langmuir isotherm fitted well with a maximum adsorption capacity of 454.54 and 434.78 mg/g, respectively. The adsorption mechanism indicated that electrostatic interaction and hydrogen bonding are the main driving forces for removing the U(VI) and Th(IV) ions. It can be reused for up to 10 adsorption-desorption cycles with minimal loss of removal efficiency. The easy synthesis method of MNPs-SA@Cu MOF composite beads and the high removal efficiency of U(VI) and Th(IV) ions reveal that they can potentially treat radionuclide waste effectively.
Collapse
Affiliation(s)
- Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Vikash Chandra Janu
- Defence Research and Development Organization Jodhpur, Jodhpur 342011, India
| | - Ragini Gupta
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
15
|
Shafiq F, Liu C, Zhou H, Chen H, Yu S, Qiao W. Stearic acid-modified hollow hydroxyapatite particles with enhanced hydrophobicity for oil adsorption from oil spills. CHEMOSPHERE 2024; 348:140651. [PMID: 37995975 DOI: 10.1016/j.chemosphere.2023.140651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Oil spills lead to a substantial depletion of aquatic biodiversity. The mitigation of an oil spill can entail considerable financial outlays, give rise to consequential environmental impacts, and present formidable operational complexities. In this research, hollow hydroxyapatite particles with enhanced oil adsorption characteristics were prepared by surface modification with stearic acid. Peanut and vacuum pump oils were used to imitate oil spills and conduct adsorption tests. The 50% stearic acid-modified hydroxyapatite (Sa/HAP) adsorbent showed superior hydrophobic properties with respect to water contact angle data. Adsorption isotherm analysis revealed that the adsorption processes of peanut and vacuum pump oils matched well with the Sips isotherm model, with regression coefficients of 0.992 and 0.996, respectively. The oil adsorption by the modified hydroxyapatite (HAP) adsorbent was found to be 9.85 g·g-1 for peanut oil and 12.13 g·g-1 for vacuum pump oil. Furthermore, the adsorption kinetics performance was determined by chemical interaction, whereas the adsorption equilibrium capacities were 8.97 g·g-1 and 11.41 g·g-1, respectively. Recycling of the spent adsorbent was performed with toluene stripping. The synthesized oil-adsorbents were analyzed by SEM, FTIR, XRD, contact angle, and TGA analyses. Hence, the efficacy of the Sa/HAP material as a potential adsorbent for the purification of oil-contaminated water was established, attributed to its commendable oil adsorption capability.
Collapse
Affiliation(s)
- Farishta Shafiq
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
16
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Potentiality of chitosan hybridized magnesium doped-hydroxyapatite (CH/Mg·HAP) for enhanced carrying of oxaliplatin: loading, release, kinetics, and cytotoxicity. NEW J CHEM 2024; 48:15008-15024. [DOI: 10.1039/d4nj02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Magnesium-enriched hydroxyapatite was synthesized and integrated with chitosan, forming a bio-compatible biocomposite (CH/Mg·HAP) to be applied as a carrier of oxaliplatin (OXN) with enhanced loading, release, and therapeutic activities.
Collapse
Affiliation(s)
- May N. Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I. Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
17
|
Sheng L, Zhang H, Ma J, Ding D. Preparation of core-shell composite materials capable of slowly releasing phosphate and their remediation performance of uranium-contaminated groundwater. CHEMOSPHERE 2023; 344:140160. [PMID: 37716562 DOI: 10.1016/j.chemosphere.2023.140160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Acid in-situ leach uranium mining significantly alters the geochemistry of the ore zone, and leaves uranium, residual acid, as well as other potential contaminants in groundwater, which bring harm to human health and ecological environment. Many investigators have been trying to propose remediation strategies for the uranium-contaminated groundwater. Phosphate is an effective immobilization reagent of uranium in the groundwater. However, direct injection of phosphate tends to quickly form precipitates, resulting in fast blockage of the seepage passages in the ore zone around the injection holes and hindering its diffusion. In this paper, HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA with core-shell structures were prepared. Their slow-release of phosphate, the effects of pH, contact time, initial uranium concentration, and coexisting ions on their removal rate and efficiency of uranium, and their function of remediating uranium-contaminated groundwater were investigated. It was found that the increase of SA content in the outer layer of HAP@SiO2-600@25SA and HAP@SiO2-600@75SA resulted in the slow release rate of phosphate, decreasing the removal rate of uranium. The adsorption capacities of HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA from the aqueous solution at pH = 3.0 and 303 K were up to 582.6, 558.5, and 507.3 mg g-1, respectively. In addition, the materials showed excellent uranium removal performance in experiments where multiple ions coexisted. For actual acidic uranium-contaminated groundwater, HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA effectively increased the pH from 2.75 to 4.40, 3.87, and 3.72, respectively, and decreased the uranium concentration from 5.12 to 0.0062, 0.0065, and 0.0058 mg L-1, respectively. The FT-IR, XRD, TEM and XPS characterizations were performed to further clarify the uranium removal mechanism, and it was found that the elimination of U(VI) was ascribed to dissolution-precipitation, adsorption and ion exchange. The results show that the core-shell composite material capable of slowly releasing phosphate is effective in remediating uranium-contaminated groundwater.
Collapse
Affiliation(s)
- Liangbing Sheng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China
| | - Jianhong Ma
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China.
| |
Collapse
|
18
|
Xiong W, Liu H, Yang S, Liu Y, Fu T. Biomimetic synthesis of polydopamine-graphene oxide/hydroxyapatite for efficient and fast uranium(VI) capture from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114569-114581. [PMID: 37861826 DOI: 10.1007/s11356-023-30321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
A novel and efficient mesoporous nano-absorbent for U(VI) removal was developed through an environment-friendly route by inducing the biomimetic mineralization of hydroxyapatite (HAP) on the bioinspired surface of polydopamine-graphene oxide (PDA-GO). PDA-GO/HAP exhibited the greatly rapid and efficient U(VI) removal within 2 min, and much higher U(VI) adsorption capacity of 433.07 mg·g-1 than that of GO and PDA-GO. The enhanced adsorption capacity was mainly attributed to the synergistic effect of O-H, -C=N-, and PO43- functional groups and the incorporation of uranyl ions by the formation of a new phase (chernikovite, H2(UO2)2(PO4)2·8H2O). The adsorption process of U(VI) fitted well with pseudo-second-order kinetic and Langmuir isotherm model. Moreover, PDA-GO/HAP showed a high U(VI) adsorption capacity in a broad range of pH values and owned good thermal stability. PDA-GO/HAP with various excellent properties made it a greatly promising adsorbent for extracting uranium. Our work developed a good strategy for constructing fast and efficient uranium-adsorptive biomimetic materials.
Collapse
Affiliation(s)
- Weijie Xiong
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Hongjuan Liu
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
| | - Shiming Yang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Tianyu Fu
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| |
Collapse
|
19
|
Xiong J, Chen J, Li S, Cao J, Luo L, Duan X, Gao Q, Tong X, Luo F. pH-Dependent Dual-Mode Detection toward Uranium by a Zinc-Tetraphenylethylene Fluorescent Metal-Organic Framework. Inorg Chem 2023; 62:17634-17640. [PMID: 37682028 DOI: 10.1021/acs.inorgchem.3c02150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
An interpenetrated tetraphenylethylene-based fluorescent metal-organic framework (ECUT-180) with exceptional sensitivity, excellent selectivity, and fast response (less than 30 s) toward uranium was successfully prepared. Especially, in the prescence of uranyl, ECUT-180 displays significant fluorescence turn-on under pH 2-3, while fluorescence turn-off under pH 4-8. The corresponding detection limits were determined to be 2.92 ppb at pH 2 and 0.86 ppb at pH 8, both of which are lower than the average uranium content (3.3 ppb) in seawater. Mechanism investigation reveals that the fluorescence enhancement on the strong acid condition can be assigned to uranium adsorption, while the quenching is caused by the resonance energy transfer.
Collapse
Affiliation(s)
- Jianbo Xiong
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jie Chen
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Shunqing Li
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jian Cao
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Le Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Xiongbin Duan
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Qiang Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xiaolan Tong
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
20
|
Okasha AT, Abdel-Khalek AA, Rudayni HA, Al Zoubi W, Alfassam HE, Allam AA, Abukhadra MR. Synthesis and characterization of Mg-hydroxyapatite and its cellulose hybridized structure as enhanced bio-carrier of oxaliplatin drug; equilibrium and release kinetics. RSC Adv 2023; 13:30151-30167. [PMID: 37849691 PMCID: PMC10577681 DOI: 10.1039/d3ra04268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg HAP) was synthesized and hybridized with cellulose fibers, producing a safe biocomposite (CF/Mg HAP) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy drug during the treatment stages of colorectal cancer. The qualifications of CF/Mg HAP as a carrier for OXPN were followed based on loading, release, and cytotoxicity as compared to Mg HAP. The CF/Mg HAP composite exhibits a notably higher OXPN encapsulation capacity (256.2 mg g-1) than the Mg HAP phase (148.9 mg g-1). The OXPN encapsulation process into CF/Mg HAP displays the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 178.58 mg g-1) as compared to pure Mg HAP (Nm = 69.39 mg g-1). Also, the capacity of each site was enhanced to be loaded by 2 OXPN molecules (n = 1.43) in a vertical orientation. The OXPN encapsulation energy into CF/Mg HAP (<40 kJ mol-1) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CF/Mg HAP exhibit slow and controlled properties for about 100 h, either at pH 5.5 or pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/Mg HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (21.82% cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.85% cell viability).
Collapse
Affiliation(s)
- Alaa T Okasha
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed A Abdel-Khalek
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Haifa E Alfassam
- Princess Nourah Bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
21
|
Abukhadra MR, Okasha AT, Al Othman SI, Alfassam HE, Alenazi NA, AlHammadi AA, Allam AA. Synthesis and Characterization of Mg-Hydroxyapatite and Its β-Cyclodextrin Composite as Enhanced Bio-Carrier of 5-Fluorouracil Drug; Equilibrium and Release Kinetics. ACS OMEGA 2023; 8:30247-30261. [PMID: 37636978 PMCID: PMC10448682 DOI: 10.1021/acsomega.3c02982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg·HAP) was integrated in composite with β-cyclodextrin producing a safe biocomposite (β-CD/HAP) as an enhanced delivery structure of traditional 5-fluorouracil (5-FU) chemotherapy during the treatment stages of colorectal cancer cells. The qualifications of β-CD/HAP as a carrier for 5-FU were followed based on the loading, release, and cytotoxicity as compared to Mg·HAP. β-CD/HAP composite exhibits notably higher 5-FU encapsulation capacity (272.3 mg/g) than Mg·HAP phase (164.9 mg/g). The 5-FU encapsulation processes into β-CD/HAP display the isotherm behavior of the Freundlich model (R2 = 0.99) and kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the β-CD integration steps (Nm = 61.2 mg/g) as compared to pure Mg·HAP (Nm = 42.4 mg/g). Also, the capacity of each site was enhanced to be loaded by 5 of 5-FU molecules (n = 4.45) in a vertical orientation. The 5-FU encapsulation energy into β-CD/HAP (<40 kJ/mol) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The 5-FU release profiles of β-CD/HAP exhibit slow and controlled properties for about 80 h either in gastric fluid (pH 1.2) or in intestinal fluid (pH 7.4). The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and complex erosion/diffusion release mechanism. The free β-CD/HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (33.62% cell viability) and its 5-FU-loaded product shows a strong cytotoxic effect (2.91% cell viability).
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef City 62511, Egypt
| | - Alaa T. Okasha
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni Suef City 62514, Egypt
| | - Sarah I. Al Othman
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Haifa E. Alfassam
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Noof A. Alenazi
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali A. AlHammadi
- Chemical
Engineering Department, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separations, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| |
Collapse
|
22
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. Functionally-designed floatable amino-modified ZnLa layered double hydroxides/cellulose acetate beads for tetracycline removal: Performance and mechanism. Carbohydr Polym 2023; 311:120752. [PMID: 37028855 DOI: 10.1016/j.carbpol.2023.120752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
23
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. An ultralight and flexible nanofibrillated cellulose/chitosan aerogel for efficient chromium removal: Adsorption-reduction process and mechanism. CHEMOSPHERE 2023; 329:138622. [PMID: 37037357 DOI: 10.1016/j.chemosphere.2023.138622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Heavy metals in water are critical global environmental problems. In particular, the anionic heavy metal chromium (Cr) has carcinogenic and genotoxic risks on human health. To this end, an ultralight and flexible nanofibrillated cellulose (NFC)/chitosan (CS) aerogel was developed only by freeze-drying combined with physical thermal cross-linking for efficient one step co-removal of Cr(VI) and Cr(III). The maximum adsorption capacity of Cr(VI) and total Cr calculated according to the Langmuir model was 197.33 and 134.12 mg/g, respectively. Even in the presence of competing soluble organics, anions and oil contaminants, the resulting NFC/CS-5 aerogels showed excellent selectivity. The aerogel exhibited outstanding mechanical integrity, remaining intact after 17 compressions in air and underwater. Meanwhile, after 5 adsorption-desorption cycles, the aerogel was easy to regenerate and maintained a high regeneration efficiency of 80.25%. Importantly, self-assembled NFC/CS-5 aerogel filter connected with the peristaltic pump could purify 752 mL of industrial wastewater with Cr(VI) pre-concentration capacity of 49.71 mg/g. XPS and FT-IR verified that electrostatic interactions, reduction and complexation acted as the main driving forces for the adsorption process. Moreover, such aerogel possessed broad application prospects for alleviating heavy metal pollution in agriculture.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
24
|
Arkas M, Giannakopoulos K, Favvas EP, Papageorgiou S, Theodorakopoulos GV, Giannoulatou A, Vardavoulias M, Giannakoudakis DA, Triantafyllidis KS, Georgiou E, Pashalidis I. Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111794. [PMID: 37299697 DOI: 10.3390/nano13111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.
Collapse
Affiliation(s)
- Michael Arkas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Konstantinos Giannakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Evangelos P Favvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Sergios Papageorgiou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - George V Theodorakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Artemis Giannoulatou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | | | | | | | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
25
|
Cao M, Peng Q, Wang Y, Luo G, Feng L, Zhao S, Yuan Y, Wang N. High-efficiency uranium extraction from seawater by low-cost natural protein hydrogel. Int J Biol Macromol 2023; 242:124792. [PMID: 37169051 DOI: 10.1016/j.ijbiomac.2023.124792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Utilization of uranium resource in seawater are highly possible to meet the growth demands for the sustainable development of nuclear energy industry. Bio-adsorbents exhibit high performance in terms of adsorption selectivity, equilibrium speed, and environmental friendliness, while the high fabrication cost hinders their practical application. In this study, a low-cost soy protein isolate (SPI) is used to fabricate adsorbent named SPI hydrogel for uranium extraction. This is the first report on applying bio-adsorbents derived from low-cost natural proteins for uranium extraction. The SPI hydrogel showed high uranium adsorption capacity of 53.94 mg g-1 in simulated nuclear wastewater and 5.29 mg g-1 is achieved in natural seawater, which is higher than all currently available adsorbents based on non-modified natural biomolecules. The amino and oxygen-containing groups are identified as the functional groups for uranyl binding by providing four oxygen and two nitrogen atoms to form equatorial coordination with uranyl, which guarantees the high binding selectivity and affinity to uranyl ions. The low cost for accessing the raw material together with the environmental friendliness, high salt tolerance, high uranium adsorption ability, and high selectivity to uranium, make SPI hydrogel a promising adsorbent for uranium extraction from seawater and nuclear wastewater.
Collapse
Affiliation(s)
- Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Yue Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guangsheng Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Shilei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
26
|
Yan Y, Du M, Jing L, Zhang X, Li Q, Yang J. Green synthesized hydroxyapatite for efficient immobilization of cadmium in weakly alkaline environment. ENVIRONMENTAL RESEARCH 2023; 223:115445. [PMID: 36758915 DOI: 10.1016/j.envres.2023.115445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The development of cost-effective passivators for the remediation of heavy metal-contaminated soils has been a research hotspot and an unsolved challenge. Herein, a novel hydroxyapatite (GSCH) was synthesized by co-precipitating distiller effluent-derived Ca with (NH4)2HPO4 using straw-derived dissolved organic matter (S-DOM) as the dispersant. Batch adsorption experiments and soil incubation tests were performed to assess the immobilization efficiency of GSCH for Cd in weakly alkaline environments. As a result, GSCH showed an excellent adsorption efficiency to Cd with a maximum adsorption amount of ∼222 mg g-1, which was fairly competitive compared to other similar previously materials reported. The kinetic data indicated that the adsorption of Cd on GSCH was a chemical and irreversible process, while the thermodynamic data revealed a spontaneous (ΔG° < 0) and endothermic (ΔH° > 0) adsorption process. Based on mechanism analysis, both physisorption (e.g., electrostatic attraction and pore filling) and chemisorption (e.g., ion exchange and complexation) were responsible for Cd adsorption on GSCH. Particularly, the incorporated S-DOM and hydroxyapatite phase in GSCH acted synergistically in the adsorption process. The incubation results showed that GSCH application could significantly reduce the bioavailability, phytoavailability and bioaccessibility of Cd in soil by 48.4%-57.8%, 20.4%-28.6% and 12.6%-24.0%, respectively. Moreover, GSCH application also improved soil bacterial communities and enhanced soil nutrient availability. Overall, this is the first study to demonstrate the potential application value of GSCH in Cd immobilization, providing promising insights into the development of green and cost-effective hydroxyapatite-based passivators for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Yubo Yan
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Meng Du
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Liquan Jing
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Jianjun Yang
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
27
|
Jiao GJ, Ma J, Hu J, Wang X, Sun R. Hierarchical build-up of vertically oriented lignin-based aerogel for photothermally assisted uranium uptake and recovery from acidic wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130988. [PMID: 36860059 DOI: 10.1016/j.jhazmat.2023.130988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Developing the lignin-based functional materials for uranium uptake is extremely attractive, but challenging due to the complex structure, poor solubility and reactivity of lignin. Herein, a novel phosphorylated lignin (LP)/sodium alginate/ carboxylated carbon nanotube (CCNT) composite aerogel (LP@AC) with vertically oriented lamellar configuration was created for efficient uranium uptake from acidic wastewater. The successful phosphorylation of lignin by a facile solvent-free mechanochemical method achieved more than six-times enhancement in U(VI) uptake capacity of lignin. While, the incorporation of CCNT not only increased the specific surface area of LP@AC, but also improved its mechanical strength as a reinforcing phase. More importantly, the synergies between LP and CCNT components endowed LP@AC with an excellent photothermal performance, resulting in a local heat environment on LP@AC and further boosting the U(VI) uptake. Consequently, the light irradiated LP@AC exhibited an ultrahigh U(VI) uptake capacity (1308.87 mg g-1), 61.26% higher than that under dark condition, excellent adsorptive selectivity and reusability. After exposure to 10 L of simulated wastewater, above 98.21% of U(VI) ions could be rapidly captured by LP@AC under light irradiation, revealing the tremendous feasibility in industrial application. The electrostatic attraction and coordination interaction were considered as the main mechanism for U(VI) uptake.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
28
|
Li MX, Li W, Xiong YS, Lu HQ, Li H, Li K. Preparation of quaternary ammonium-functionalized metal-organic framework/chitosan composite aerogel with outstanding scavenging of melanoidin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
29
|
Verma R, Mishra SR, Gadore V, Ahmaruzzaman M. Hydroxyapatite-based composites: Excellent materials for environmental remediation and biomedical applications. Adv Colloid Interface Sci 2023; 315:102890. [PMID: 37054653 DOI: 10.1016/j.cis.2023.102890] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Given their unique characteristics and properties, Hydroxyapatite (HAp) nanomaterials and nanocomposites have been used in diverse advanced catalytic technologies and in the field of biomedicine, such as drug and protein carriers. This paper examines the structure and properties of the manufactured HAp as well as a variety of synthesis methods, including hydrothermal, microwave-assisted, co-precipitation, sol-gel, and solid-state approaches. Additionally, the benefits and drawbacks of various synthesis techniques and ways to get around them to spur more research are also covered. This literature discusses the various applications, including photocatalytic degradation, adsorptions, and protein and drug carriers. The photocatalytic activity is mainly focused on single-phase, doped-phase, and multi-phase HAp, while the adsorption of dyes, heavy metals, and emerging pollutants by HAp are discussed in the manuscript. Furthermore, the use of HAp in treating bone disorders, drug carriers, and protein carriers is also conferred. In light of this, the development of HAp-based nanocomposites will inspire the next generation of chemists to improve upon and create stable nanoparticles and nanocomposites capable of successfully addressing major environmental concerns. This overview's conclusion offers potential directions for future study into HAp synthesis and its numerous applications.
Collapse
|
30
|
Ioannidis I, Pashalidis I, Raptopoulos G, Paraskevopoulou P. Radioactivity/Radionuclide (U-232 and Am-241) Removal from Waters by Polyurea-Crosslinked Alginate Aerogels in the Sub-Picomolar Concentration Range. Gels 2023; 9:gels9030211. [PMID: 36975660 PMCID: PMC10048139 DOI: 10.3390/gels9030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The removal of radionuclide/radioactivity from laboratory and environmental water samples under ambient conditions was investigated via batch-type experiments using polyurea-crosslinked calcium alginate (X-alginate) aerogels. Water samples were contaminated with traces of U-232 and Am-241. The removal efficiency of the material depends strongly on the solution pH; it is above 80% for both radionuclides in acidic solutions (pH 4), while it decreases at about 40% for Am-241 and 25% for U-232 in alkaline solutions (pH 9). This is directly associated with the presence of the radionuclide species in each case; the cationic species UO22+ and Am3+ prevail at pH 4, and the anionic species UO2(CO3)34– and Am(CO3)2− prevail at pH 9. Adsorption on X-alginate aerogels is realized by coordination of cationic species on carboxylate groups (replacing Ca2+) or other functional groups, i.e., –NH and/or –OH. In environmental water samples, i.e., ground water, wastewater and seawater, which are alkaline (pH around 8), the removal efficiency for Am-241 is significantly higher (45–60%) compared to that for U-232 (25–30%). The distribution coefficients (Kd) obtained for the sorption of Am-241 and U-232 by X-alginate aerogels are around 105 L/kg, even in environmental water samples, indicating a strong sorption affinity of the aerogel material for the radionuclides. The latter, along with their stability in aqueous environments, make X-alginate aerogels attractive candidates for the treatment of radioactive contaminated waters. To the best of our knowledge, this is the first study on the removal of americium from waters using aerogels and the first investigation of adsorption efficiency of an aerogel material at the sub-picomolar concentration range.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia Cy-1678, Cyprus
| | - Ioannis Pashalidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia Cy-1678, Cyprus
- Correspondence: (I.P.); (P.P.)
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (I.P.); (P.P.)
| |
Collapse
|
31
|
Remediation of uranium(VI)-containing wastewater based on a novel graphene oxide/hydroxyapatite membrane. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
32
|
Georgiou E, Raptopoulos G, Anastopoulos I, Giannakoudakis DA, Arkas M, Paraskevopoulou P, Pashalidis I. Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents-A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020363. [PMID: 36678117 PMCID: PMC9866664 DOI: 10.3390/nano13020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/12/2023]
Abstract
Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg−1 (2088 g kg−1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.
Collapse
Affiliation(s)
- Efthalia Georgiou
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100 Arta, Greece
| | | | - Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15771 Athens, Greece
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Pashalidis
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| |
Collapse
|
33
|
Zhang D, Liu L, Zhao B, Wang X, Pang H, Yu S. Highly efficient extraction of uranium from seawater by polyamide and amidoxime co-functionalized MXene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120826. [PMID: 36493939 DOI: 10.1016/j.envpol.2022.120826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Uranium mainly exists in the form of uranyl carbonate in seawater. [UO2(CO3)3]4- has strong stability, which increases the difficulty of uranium extraction from seawater. Meanwhile, the complex marine environment, a large number of coexisting competing ions and biological pollution are all non-negligible disturbing factors. Herein, we introduced amidoxime (AO) groups into the surface of Ti3C2 and grafted polyamides (PA) by a simple one-step hydrothermal method to produce an efficient seawater uranium extraction adsorbent Ti3C2-AO-PA. Owing to the amidoxime groups, the material was highly selective for uranium. And the large number of amino groups in the polyamides gave it ideal resistance to biofouling. The possibility of Ti3C2-AO-PA as an adsorbent for uranium extraction from seawater was confirmed by various characterization techniques, numerous adsorption batch experiments, simulated seawater experiments and antibacterial performance tests. It was demonstrated that the uptake of [UO2(CO3)3]4- by Ti3C2-AO-PA showed fast reaction kinetics (about 120 min), brilliant absorption capacity (81.1 mg·g-1 at pH 8.3), significant high selectivity (32.8 mg-U/g-Ads) and outstanding anti-biological contamination performance (92.9% antibacterial rate). XPS and DFT further indicated that the high extraction ability of Ti3C2-AO-PA for uranium was mainly attributed to the strong complexation of AO and -NH2 with [UO2(CO3)3]4-. These conclusions showed that Ti3C2-AO-PA not only had an ideal application prospect for uranium extraction from seawater, but also provided an available strategy for rapid and selective uranium adsorption from real seawater.
Collapse
Affiliation(s)
- Di Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Bing Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Hongwei Pang
- Beijing Beitou Eco-environment Co., Ltd., PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
34
|
Jiao GJ, Ma J, Zhang J, Zhai S, Sun R. Efficient extraction of uranium from seawater by reticular polyamidoxime-functionalized oriented holocellulose bundles. Carbohydr Polym 2023; 300:120244. [DOI: 10.1016/j.carbpol.2022.120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
35
|
Huang S, Chen C, Zhao Z, Jia L, Zhang Y. In situ synthesis of magnesium-doped hydroxyapatite aerogel for highly efficient U(VI) separation with ultra high adsorption capacity and excellent recyclability. CHEMOSPHERE 2023; 312:137226. [PMID: 36372341 DOI: 10.1016/j.chemosphere.2022.137226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Mg-doped HAP aerogel (MHAPA) was firstly in situ prepared via freeze-drying-calcination technology to capture U(VI). The U(VI) removal capacity by MHAPA even arrived 2685.6 mg g-1, which was about 2 times over purchased HAP, illustrating that the incorporation of Mg ions could greatly enhance the U(VI) removal capacity. Compared with HAP, MHAPA also showed better anti-ion interference ability and dynamic removal performances. In comparison with other HAP-based adsorbents, MHAPA possessed good recyclability and its desorption rate was up to 93.4% in the first cycle. The excellent U(VI) removal performances of MHAPA might be owing to its low crystallinity and grain size, fast ion exchange rate and partial ionization under acidic conditions, which would accelerate the process of electrostatic attraction, ion-exchange, and complexation to immobilize U(VI). To sum up, the prepared MHAPA was expected to be an environmentally friendly, recyclable and effective adsorbent to immobilize U(VI) in actual wastewater.
Collapse
Affiliation(s)
- Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Congcong Chen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhibo Zhao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
36
|
Liu Y, Xu Z, Xia C, Hu B, Zeng W, Zhu Y. Extremely effective removal of U(VI) from aqueous solution by 3D flower-like calcium phosphate synthesized using mussel shells and rice bran. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Cui C, Yang M, Zhai J, Bai W, Dai L, Liu L, Jiang S, Wang W, Ren E, Cheng C, Guo R. Bamboo cellulose-derived activated carbon aerogel with controllable mesoporous structure as an effective adsorbent for tetracycline hydrochloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12558-12570. [PMID: 36112282 DOI: 10.1007/s11356-022-22926-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Activated carbon has been widespread applied in the removal of pollutants in wastewater. However, many biomass-derived activated carbon suffer from the challenge of controllable pore size regulation, hindering their efficient adsorption of pollutants. Herein, bamboo-derived activated carbon aerogel (BACA) has been successfully prepared through KOH high-temperature activation of cellulose aerogel which was prepared using cellulose extracted from bamboo. Bamboo cellulose aerogel provides sufficient reaction sites for KOH, which is conducive to the formation of a mass of mesoporous structures on the pore walls of the activated carbon aerogel. The optimal BACA adsorbent shows high specific surface area (2503.80 m2/g), and maximum adsorption capability for tetracycline hydrochloride (TCH) reaches 863.8 mg/g at 30 ℃. The removal efficiencies of TCH are 100% and 98.4% at 40 ℃ when the initial concentrations are 500 and 700 mg/L, respectively. Adsorption kinetics and isotherm indicate that the adsorption of BACA for TCH is monolayer adsorption based on chemical adsorption. Spontaneous and endothermic adsorption processes are proved by adsorption thermodynamic studies. Additionally, coexisting ions have insignificant effect on TCH adsorption, and the BACA sample displays excellent adsorption property for five reuse cycles with a removal efficiency of 80.95%, indicating the outstanding adsorption capacity of BACA in practical application. The excellent adsorption performance provides BACA with a promising perspective to remove TCH from wastewater, and the prepared method of BACA can be widely extended to other biomass materials.
Collapse
Affiliation(s)
- Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Mengyuan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Jianyu Zhai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Wenhao Bai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Lanling Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Li Liu
- College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Weijie Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Cheng Cheng
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China.
| |
Collapse
|
38
|
Design and synthesis of a novel bifunctional polymer with malonamide and carboxyl group for highly selective separation of uranium (VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Sun Z, Meng C, Zhang S, Na B, Zou S, He Y. One-pot hydrolysis/amidoximation and self-assembly to polyamidoxime-based composite hydrogels for high-efficiency uranium capture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Tang J, Lei Y, Nie X, Gao Z, Pan N, Li X, Zou H, Li L. Rapid and highly selective capture of U(VI) from water by copper phosphate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Watanabe T, Guilhen SN, Marumo JT, de Souza RP, de Araujo LG. Uranium biosorption by hydroxyapatite and bone meal: evaluation of process variables through experimental design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79816-79829. [PMID: 34816347 DOI: 10.1007/s11356-021-17551-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Biosorption has been examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. Nevertheless, the evaluation of the role of process variables by experimental design on the use of hydroxyapatite and bone meal as biosorbents for uranium has not yet been previously addressed. In this study, the effects of adsorbent dosage (M), initial uranium concentrations ([U]0), and solution pH were investigated, using a two-level factorial design and response surface analysis. The experiments were performed in batch, with [U]0 of 100 and 500 mg L-1, pH 3 and 5, and adsorbent/uranium solution ratios of 5 and 15 g L-1. Contact time was fixed at 24 h. Removal rates were higher than 88%, with a maximum of 99% in optimized conditions. [U]0 and M were found to be the most influential variables in U removal in terms of adsorption capacity (q). The experiments revealed that bone meal holds higher adsorption capacity (49.87 mg g-1) and achieved the highest uranium removal (~ 100%) when compared to hydroxyapatite (q = 49.20 mg g-1, removal = 98.5%). The highest value of q for both biomaterials was obtained for [U]0 = 500 mg L-1, pH 3, and M = 5 g L-1. Concerning the removal percentage, bone meal achieved the best performance for [U]0 = 500 mg L-1, pH 3, and M = 15 g L-1. Further experiments were made with real radioactive waste, resulting in a high uranium adsorption capacity for both materials, with 22.11 mg g-1 for hydroxyapatite and 22.08 mg g-1 for bone meal, achieving uranium removal efficiencies higher than 99%.
Collapse
Affiliation(s)
- Tamires Watanabe
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil
| | - Sabine Neusatz Guilhen
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil
| | - Júlio Takehiro Marumo
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil
| | - Rodrigo Papai de Souza
- Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT), Av. Prof. Almeida Prado, SP, São Paulo, 532 - 05508-901, Brazil
| | - Leandro Goulart de Araujo
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil.
| |
Collapse
|
42
|
Wang Z, Zhu G, Wang Q, Ding K, Tong Y, Gao C. Preparation of hollow granules as micro-adsorber for uranium extraction from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Yu J, Zhang H, Liu Q, Zhu J, Yu J, Sun G, Li R, Wang J. A high-flux antibacterial poly(amidoxime)-polyacrylonitrile blend membrane for highly efficient uranium extraction from seawater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129735. [PMID: 35988484 DOI: 10.1016/j.jhazmat.2022.129735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Uranium is an important fuel for nuclear power, with 4.5 billion tons of it stored in the oceans, 1,000 times more than on land. Polymer membrane materials are widely used in the marine resources fields, due to their convenient collection, good separation and can work continuously. Herein, a poly(amidoxime)-polyacrylonitrile blend membrane (PCP) with high flux, excellent antibacterial properties and uranium adsorption performance has been prepared by using the phase inversion method, and the prepared membrane was used for highly efficient uranium extraction from seawater. In static adsorption experiments, the PCP membrane reached adsorption equilibrium after 48 h, and the adsorption capacity was 303.89 mg/g (C0 =50 mg/L). In dynamic adsorption experiments, it was found that the lower flow rate and higher number of membrane layers were favorable for dynamic adsorption. In addition, the water flux of the PCP membrane was 7.4 times higher than that of the PAN membrane. The adsorption mechanism can be attributed to the chelation between amino and hydroxyl groups in CS, amidoxime group in poly(amidoxime) and uranyl ions. The simple preparation process coupled with the excellent adsorption performance indicated that the PCP membrane would be a promising material for the uranium extraction from seawater.
Collapse
Affiliation(s)
- Jiaqi Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China.
| |
Collapse
|
44
|
Xiong T, Jia L, Li Q, Zhang Y, Zhu W. Highly efficient adsorptive extraction of uranium from wastewater by novel kaolin aerogel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156916. [PMID: 35753449 DOI: 10.1016/j.scitotenv.2022.156916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
An environment-friendly, low-cost and efficient kaolin aerogel adsorbent (named as KLA) was synthesized via a freeze-drying-calcination method to solve the defect of low uranium removal rate for kaolin (KL). The removal rate of uranium on KLA reached 90.6 %, which was much higher than that of KL (69.2 %) (C0 = 10 mg L-1, t = 24 h, pH = 5.0, T = 298 K and m/V = 1.0 g L-1). The uranium removal behavior on KLA was satisfied with Pseudo-second-order and Langmuir model, which meant that the uranium ions were immobilized on the surface of KLA via chemical reaction. Meanwhile, high temperature was in favor of the removal of uranium on KLA, indicating that the removal process was a spontaneous endothermic reaction. Compared with KL, KLA also presented better cycle ability and its removal rate of uranium was up to 80.5 % after three cycles, which was still higher than that of KL at the first cycle (74.5 %). On basis of the results of SEM, XRD, FT-IR and XPS, it could be concluded that uranium ions were adsorbed by KLA via complexation. Hence, KLA could be regarded as a feasible candidate for the removal of uranium from aqueous solution.
Collapse
Affiliation(s)
- Ting Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qichen Li
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
45
|
Xiong T, Jia L, Li Q, Zhang Y, Zhu W. Efficient removal of uranium by hydroxyapatite modified kaolin aerogel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Li Q, Xiong T, Liao J, Zhang Y. Explorations on efficient extraction of uranium with porous coal fly ash aerogels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156365. [PMID: 35640754 DOI: 10.1016/j.scitotenv.2022.156365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In order to explore a suitable uranium adsorbent with the advantages of low-cost, recyclability and high efficiency, porous coal fly ash aerogels with different size of coal fly ash were synthesized. Among them, PCFAA-1250 (prepared with 1250 mesh coal fly ash (CFA)) showed better adsorption performance and the maximum adsorption efficiency even approached 96.5% (C0 = 10 mg L-1, m/V = 1.0 g L-1, T = 298 K, t = 24 h and pH = 3.0), which was higher than most of previous adsorbents. Langmuir and pseudo-second-order models were more likely to be used to determine the removal behavior of uranium on PCFAA, illustrating that the adsorption reaction was uniform chemisorption. Meanwhile, the adsorption process on PCFAA was spontaneous. Notably, the desorption efficiencies of all of PCFAA were more than 80% after five cycles, which suggested that PCFAA possessed good recyclability, especially PCFAA-1250. Besides, the adsorption mechanism was further revealed via XPS and the uranium ions were immobilized on the surface of adsorbents through complexation. Based on above conclusions, it could be concluded that PCFAA-1250 had the potential to be a candidate for the extraction of uranium from wastewater.
Collapse
Affiliation(s)
- Qichen Li
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ting Xiong
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
47
|
An efficient and high-capacity porous functionalized-membranes for uranium recovery from wastewater. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Cai Y, Zhang Y, Lv Z, Zhang S, Gao F, Fang M, Kong M, Liu P, Tan X, Hu B, Wang X. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. APPLIED CATALYSIS B: ENVIRONMENTAL 2022; 310:121343. [DOI: doi.org/10.1016/j.apcatb.2022.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
49
|
Xiong T, Li Q, Li K, Zhang Y, Zhu W. Construction of novel magnesium oxide aerogel for highly efficient separation of uranium(VI) from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
50
|
Zhao L, Wang S, Zhuang H, Lu B, Sun L, Wang G, Qiu J. Facile synthesis of low-cost MnPO 4 with hollow grape-like clusters for rapid removal uranium from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128894. [PMID: 35447534 DOI: 10.1016/j.jhazmat.2022.128894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In order to deal with the environmental resource problems caused by nuclear pollution and uranium mine wastewater, it is particularly important to develop uranium removal adsorbent materials with low cost, high efficiency and controllable rapid preparation. In this work, the hollow grape-like manganese phosphate clusters (h-MnPO4) were synthesized in 4 h by in-situ etching without template at room temperature, which can quickly and effectively remove uranium ions from wastewater. Due to the reasonable hollow structure, more effective adsorption sites are exposed. The obtained sample h-MnPO4-200 reaches adsorption equilibrium in 1 h and can remove 97.20% uranyl ions (initial concentration is 100 mg L-1). Under the condition of 25 ℃ and pH= 4, the maximum adsorption capacity of h-MnPO4-200 for uranium was 751.88 mg g-1. The FT-IR, XPS and XRD analysis showed that -OH and PO43- groups played a key role in the adsorption process. Thanks to the synergistic adsorption mechanism of surface complexation and dissolution-precipitation, h-MnPO4-200 maintained a high removal rate in the presence of competitive anions and cations. In a word, h-MnPO4-200 can be rapidly synthesized through a facile and low-cost method and has a great application prospect in the practical emergency treatment of uranium-containing wastewater.
Collapse
Affiliation(s)
- Lin Zhao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China; College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shiyong Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Haohong Zhuang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Bing Lu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Lingna Sun
- College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Gang Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|