1
|
Zhao W, Hou Y, Wei L, Wei W, Zhang K, Duan H, Ni BJ. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. WATER RESEARCH 2025; 274:123092. [PMID: 39787839 DOI: 10.1016/j.watres.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process. The results indicated that chlorination could induce genetic mutations and promote horizontal gene transfer through multiple pathways, including increased reactive oxygen species, enhanced membrane permeability, stimulation of the SOS response, and activation of efflux pumps. In addition, this work delves into significant discoveries regarding the factors affecting ARG transmission in drinking water, such as chlorine concentration, reaction time, disinfection byproducts, pipe materials, biofilms, and the water matrix. A series of effective strategies from water source to point-of-use were proposed aimed at mitigating ARGs transmission risks in the drinking water system. Finally, we address existing challenges and outline future research directions to overcome these bottlenecks. Overall, this review aims to advance our understanding of the role of chlorination in the dissemination of ARGs and to inspire innovative research ideas for optimizing disinfection techniques, minimizing the risks of antibiotic resistance transmission, and enhancing the safety of drinking water.
Collapse
Affiliation(s)
- Weixin Zhao
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanan Hou
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Zhang T, Zhou S, Cheng C, Yang Y, Yang D, Shi D, Li H, Yang Z, Chen T, Li J, Jin M. Metagenomic assembled genomes profile potential pathogens and antibiotic-resistant pathogens in an urban river. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118063. [PMID: 40107220 DOI: 10.1016/j.ecoenv.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The microbiological safety of urban rivers that flow through cities is crucial to local public health. However, detailed insights into the key characteristics of pathogens in urban rivers remain limited due to the lack of efficient high-throughput analysis tools. In this study, a comprehensive profiling of potential pathogens, antibiotic-resistant pathogens (ARPs), and multidrug-resistant pathogens (MDRPs) in the Hai River, which runs through the central city of Tianjin, was conducted using metagenomic assembled genome (MAG) analysis. Of the 436 recovered MAGs assigned to 430 species, 110 MAGs were identified as potential pathogens due to the presence of virulence factors (VFs), whereas 19 MAGs containing both antibiotic resistance genes (ARGs) and VFs, were classified as potential ARPs, predominantly belonging to the genera Kluyvera, Enterobacter, and Klebsiella. Notably, nine species of MDRPs, including Enterobacter kobei, Klebsiella pneumoniae, Morganella morganii, Kluyvera intermedia, Aeromonas salmonicida, Rahnella aceris, Hafnia paralvei, the unidentified species Sep. D_bin46, and Vibrio cholerae, exhibited resistance to multidrug, beta-lactam, polymyxin, bacitracin, tetracycline, other peptide antibiotics, macrolide-lincosamide-streptogramin, aminoglycoside, and chloramphenicol. The unknown pathogen Sep. D_bin46, classified under Aeromonas, showed resistance to both carbapenems and polymyxins. The strong co-occurrence of ARGs, VFs, and mobile genetic elements suggests a significant risk of ARGs and VFs transfers among MDRPs with last-resort ARGs (r > 0.8; p < 0.05). Interestingly, the sampling location significantly influenced the presence of pathogens, ARPs, and MDRPs carrying last-resort ARGs in the water. Notably, their abundance was lower downstream of the Hai River compared to upstream. This observation suggests that urban environmental sanitation facilities may be more effective in reducing contaminants as the river flows from upstream to downstream. Nevertheless, the presence of pathogens, ARPs, and MDRPs with last-resort ARGs in the water underscores the ongoing microbiological risks associated with urban surface water.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Chunyan Cheng
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Yang Yang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
3
|
Federigi I, Bonetta S, Tesauro M, De Giglio O, Oliveri Conti G, Atomsa NT, Bagordo F, Bonetta S, Consonni M, Diella G, Ferrante M, Grasso A, Macrì M, Montagna MT, Verani M, Carducci A. A systematic scoping review of antibiotic-resistance in drinking tap water. ENVIRONMENTAL RESEARCH 2024; 263:120075. [PMID: 39341535 DOI: 10.1016/j.envres.2024.120075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.
Collapse
Affiliation(s)
- Ileana Federigi
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy; Coordinated Research Center "EpiSoMI", University of Milan, Via Carlo Pascal 36, 20133, Milan, Italy.
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Nebiyu Tariku Atomsa
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy, Italy.
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy.
| | - Giusy Diella
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Marco Verani
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| |
Collapse
|
4
|
Zhang M, Liu J, Zhang W, Feng M, Yu X, Ye C. Neglected contributors to the transmission of bacterial antibiotic resistance in drinking water: Extracellular antibiotic resistance genes and the natural transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175970. [PMID: 39241883 DOI: 10.1016/j.scitotenv.2024.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Collapse
Affiliation(s)
- Menglu Zhang
- Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou 350117, China; College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China.
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Yang J, Zhang X, Xu Z, Wang X. Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:436. [PMID: 39316241 DOI: 10.1007/s10653-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
6
|
Wei Y, Wu H, Zhang X, Liang Y, Shi D, Wang L, Li H, Yu H, Yang D, Zhou S, Chen T, Yang Z, Li J, Jin M. Comparative analysis of chlorine-resistant bacteria after chlorination and chloramination in drinking water treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134075. [PMID: 38508114 DOI: 10.1016/j.jhazmat.2024.134075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Chlorine-resistant bacteria (CRB) in drinking water treatment plants (DWTPs) jeopardize water quality and pose a potential risk to human health. However, the specific response of CRB to chlorination and chloramination remains uncharacterized. Therefore, we analyzed 16 S rRNA sequencing data from water samples before and after chlorination and chloramination taken between January and December 2020. Proteobacteria and Firmicutes dominated all finished water samples. After chloramination, Acinetobacter, Pseudomonas, Methylobacterium, Ralstonia, and Sphingomonas were the dominant CRB, whereas Ralstonia, Bacillus, Acinetobacter, Pseudomonas, and Enterococcus were prevalent after chlorination. Over 75% of the CRB e.g. Acinetobacter, Pseudomonas, Bacillus, and Enterococcus were shared between the chlorination and chloramination, involving potentially pathogens, such as Acinetobacter baumannii and Pseudomonas aeruginosa. Notably, certain genera such as Faecalibacterium, Geobacter, and Megasphaera were enriched as strong CRB after chloramination, whereas Vogesella, Flavobacterium, Thalassolituus, Pseudoalteromonas, and others were enriched after chlorination according to LEfSe analysis. The shared CRB correlated with temperature, pH, and turbidity, displaying a seasonal pattern with varying sensitivity to chlorination and chloramination in cold and warm seasons. These findings enhance our knowledge of the drinking water microbiome and microbial health risks, thus enabling better infectious disease control through enhanced disinfection strategies in DWTPs.
Collapse
Affiliation(s)
- Yijun Wei
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Haiyan Wu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Xudong Zhang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin 300240, China
| | - Yongbing Liang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Lin Wang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin 300240, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Hongling Yu
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin 300240, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
7
|
Zhou Z, Lin Z, Shuai X, Achi C, Chen H. Antibiotic resistance genes alterations in murine guts microbiome are associated with different types of drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133422. [PMID: 38183944 DOI: 10.1016/j.jhazmat.2023.133422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants threatening public health and commonly found in drinking water. However, the effect of different types of drinking water on ARG alterations in the gut microbiome is unclear. This study examines this issue in murine models in three phases (phase I: acclimation using ddH2O; phase II: treatment using different types of water, i.e. river water (RW), tap water (TW) and commercial bottled water (CBW); and phase III: recovery using ddH2O) using high-throughput qPCR and 16S rRNA amplicon sequencing. Results reveal that exposure to different types of drinking water could lead to significant changes in the gut microbiome, mobile genetic elements (MGEs), and ARGs. In phase II, treatment of RW and TW significantly increased the abundance of aminoglycoside and tetracycline resistance genes in mice guts (P < 0.01). In the recovery phase, consuming distilled water was found to restore ARG profiles to a certain extent in mice guts. Procrustes, network, redundancy and variation partitioning analysis indicated that ARG alterations in mice guts might relate to MGEs and bacterial communities. Our work suggests that the type of drinking water consumed may play a crucial role in shaping ARGs in gut microbiomes, emphasizing the urgent need for access to clean drinking water to mitigate the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zejun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China.
| |
Collapse
|
8
|
Ye C, Chen C, Zhang K, Feng M, Yu X. Solar/periodate inhibits ARGs transformation by degradation of DNA without damaging cell membrane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122766. [PMID: 37865329 DOI: 10.1016/j.envpol.2023.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Antibiotic-resistant bacterial infections are a growing global threat to public health. Chlorine-based water disinfection and some advanced oxidation processes significantly increase the risk of ARGs release and transmission in the aquatic environment. Therefore, it is critical to develop or optimize disinfection methods to reduce the conversion and transmission of ARGs in natural water. This study investigated whether the solar/periodate (PI) system inhibited the natural transmission of ARGs and its mechanism. The results showed that solar/PI systems could effectively inhibit the propagation of ARGs in two simulated natural transformation systems, up to more than 100 times. By characterizing the cellular process of bacteria treated by the solar/PI system, we found that the solar/PI system could directly cause damage to DNA bases and its dual effect with almost no damage to the bacterial cell membrane, which was the main reason why this technology could inhibit natural transformation processes. Specifically, the inhibition effect of solar/PI on bacteria did not result in enhanced membrane permeability under appropriate PI dosage (<200 μM), which greatly reduced the risk of secondary contamination of eARGs released by traditional disinfection. Our findings could help improve existing disinfection strategies to ensure that antibiotic resistance is not spread in the natural water environment.
Collapse
Affiliation(s)
- Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Chenlan Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Yang Y, Zhou J, Shi D, Yang Z, Zhou S, Yang D, Chen T, Li J, Li H, Jin M. Landscape of antibiotic resistance genes and bacterial communities in groundwater on the Tibetan Plateau, and distinguishing their difference with low-altitude counterparts. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132300. [PMID: 37595466 DOI: 10.1016/j.jhazmat.2023.132300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Groundwater is a vital source of drinking water for Tibetans. Antibiotic resistance genes (ARGs) and bacterial communities in groundwater on the Tibetan Plateau remain unclear. Furthermore, the characterization of their differences between high-altitude and low-altitude groundwater is still unrevealed. Herein, 32 groundwater samples were collected on the plateau, and intra- and extracellular ARGs (iARGs and eARGs), and bacterial communities were characterised through qPCR assays to 19 ARGs and 16S rRNA sequencing. It showed top four abundant intra- and extracellular last-resort ARGs (LARGs) were blaOXA-48, mcr-1, vanA, and vanB, whereas dominant common ARGs (CARGs) were tetA and ermB, respectively. CARGs had higher abundances than LARGs, and iARGs were more frequently detected than eARGs. Proteobacteria, an invasive resident phylum, and Firmicutes dominated eDNA release. Network analysis revealed all observed LARGs co-occurred with pathogenic and non-pathogenic bacteria. Community diversity was significantly associated with longitude and elevation, while nitrate correlated with ARGs. Comparative analysis demonstrated eARG frequencies and abundances were higher at high altitudes than at low altitudes. Additionally, Acinetobacter and Pseudomonas specifically dominated at high altitudes. This study reveals the widespread prevalence of ARGs, particularly LARGs, in groundwater on the less-disturbed Tibetan Plateau and underlines the potential risks associated with the LARG-carrying bacteria. ENVIRONMENTAL IMPLICATION: Antibiotic resistance genes (ARGs), which are defined as emerging environmental contaminants, are becoming a global concern due to their ability to confer antibiotic resistance to pathogens. Our findings highlight the prevalence of ARGs, particularly LARGs, in groundwater on the Tibetan Plateau, and the possibility that naturally-occurring pathogenic and non-pathogenic bacteria carry multiple LARGs. In addition, we further reveal differences in the distribution of ARGs and bacterial community between high-altitude and low-altitude groundwater. Collectively, our findings offer an important insight into the potential public risks related to groundwater on the Tibetan Plateau.
Collapse
Affiliation(s)
- Yidi Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jiake Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
10
|
Ke Y, Sun W, Jing Z, Zhao Z, Xie S. Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city. J Environ Sci (China) 2023; 127:714-725. [PMID: 36522100 DOI: 10.1016/j.jes.2022.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue for drinking water safety. However, the seasonal variation of ARGs in drinking water distribution systems (DWDS) is still unclear. This work revealed the tempo-spatial changes of microbial community, ARGs, mobile genetic elements (MGEs) co-occurring with ARGs, ARG hosts in DWDS bulk water by means of metagenome assembly. The microbial community and antibiotic resistome varied with sampling season and site. Temperature, ammonia, chlorite and total plate count (TPC) drove the variations of microbial community structure. Moreover, environmental parameters (total organic carbon (TOC), chlorite, TPC and hardness) shifted antibiotic resistome. ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn, which might be attributed to detached pipe biofilm. In particular, ARG-bacitracin and plasmid were the predominant ARG and MGE, respectively. ARG hosts changed with season and site and were more diverse in summer and autumn. In winter and spring, Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community. In addition, in summer and autumn, high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone (0.4 km from the water treatment plant). Compared with MGEs, microbial community had a greater contribution to the variation of antibiotic resistome. This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Li H, Yu H, Liang Y, Zhang X, Yang D, Wang L, Shi D, Chen T, Zhou S, Yin J, Yang Z, Li J, Jin M. Extended chloramination significantly enriched intracellular antibiotic resistance genes in drinking water treatment plants. WATER RESEARCH 2023; 232:119689. [PMID: 36739658 DOI: 10.1016/j.watres.2023.119689] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Chloramination and chlorination are both strong barriers that prevent the transmission of potential pathogens to humans through drinking water. However, the comparative effects of chloramination and chlorination on the occurrence of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) remain unknown. Herein, the antibiotic resistome in water before and after chloramination or chlorination was analyzed through metagenomic sequencing and then verified through quantitative real-time polymerase chain reaction (qPCR). After the treatment of 90 min, chloramination led to higher enrichment of the total relative abundance of intracellular ARGs (iARGs) in water than chlorination, whereas chlorination facilitated the release of more extracellular ARGs (eARGs) than chloramination. According to redundancy and Pearson's analyses, the total concentration of the observed iARGs in the finished water exhibited a strong positive correlation with ammonium nitrogen (NH4+-N) concentration, presenting a linear upward trend with an increase in the NH4+-N concentration. This indicated that NH4+-N is a crucial driving factor for iARG accumulation during chloramination. iARG enrichment ceases if the duration of chloramination is shortened to 40 min, suggesting that shortening the duration would be a better strategy for controlling iARG enrichment in drinking water. These findings emphasized the potential risk of antibiotic resistance after extended chloramination, shedding light on the control of transmission of antibiotic-resistant bacteria through water by optimizing disinfection procedures in DWTPs.
Collapse
Affiliation(s)
- Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Hongling Yu
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin, 300240, China
| | - Yongbing Liang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xudong Zhang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin, 300240, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Lin Wang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin, 300240, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
12
|
Zhang M, Wang Y, Bai M, Jiang H, Cui R, Lin K, Tan C, Gao C, Zhang C. Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158572. [PMID: 36075417 DOI: 10.1016/j.scitotenv.2022.158572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Bai
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Hairong Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruoqi Cui
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaizong Lin
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chaohong Tan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Cuiling Gao
- Shandong Institute of Product Quality Inspection, Testing Technology Lab of Material Safety, Jinan 250102, China
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| |
Collapse
|
13
|
An Overview of the Impact of Pharmaceuticals on Aquatic Microbial Communities. Antibiotics (Basel) 2022; 11:antibiotics11121700. [PMID: 36551357 PMCID: PMC9774725 DOI: 10.3390/antibiotics11121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pharmaceuticals are present as pollutants in several ecosystems worldwide. Despite the reduced concentrations at which they are detected, their negative impact on natural biota constitutes a global concern. The consequences of pharmaceuticals' presence in water sources and food have been evaluated with a higher detail for human health. However, although most of the pharmaceuticals detected in the environment had not been designed to act against microorganisms, it is of utmost importance to understand their impact on the environmental native microbiota. Microbial communities can suffer serious consequences from the presence of pharmaceuticals as pollutants in the environment, which may directly impact public health and ecosystem equilibrium. Among this class of pollutants, the ones that have been studied in more detail are antibiotics. This work aims to provide an overview of the impacts of different pharmaceuticals on environmental biofilms, more specifically in biofilms from aquatic ecosystems and engineered water systems. The alterations caused in the biofilm function and characteristics, as well as bacteria antimicrobial tolerance and consequently the associated risks for public health, are also reviewed. Despite the information already available on this topic, the need for additional data urges the assessment of emerging pollutants on microbial communities and the potential public health impacts.
Collapse
|
14
|
Yang Y, Dai D, Jin W, Huang Y, Zhang Y, Chen Y, Wang W, Lin W, Chen X, Zhang J, Wang H, Zhang H, Teng L. Microbiota and metabolites alterations in proximal and distal gastric cancer patients. J Transl Med 2022; 20:439. [PMID: 36180919 PMCID: PMC9524040 DOI: 10.1186/s12967-022-03650-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background Globally, gastric cancer is the third most common cancer and the third leading cause of cancer death. Proximal and distal gastric cancers have distinct clinical and biological behaviors. The microbial composition and metabolic differences in proximal and distal gastric cancers have not been fully studied and discussed. Methods In this study, the gastric microbiome of 13 proximal gastric cancer tissues, 16 distal gastric cancer tissues, and their matched non-tumor tissues were characterized using 16S rRNA amplicon sequencing. Additionally, 10 proximal gastric cancer tissues, 11 distal gastric cancer tissues, and their matched non-tumor tissues were assessed by untargeted metabolomics. Results There was no significant difference in microbial diversity and richness between the proximal and distal gastric cancer tissues. At the genus level, the abundance of Rikenellaceae_RC9_gut_group, Porphyromonas, Catonella, Proteus, Oribacterium, and Moraxella were significantly increased in Proximal T, whereas that of Methylobacterium_Methylorubrum was significantly increased in Distal T. The untargeted metabolomics analysis revealed 30 discriminative metabolites between Distal T and Distal N. In contrast, there were only 4 discriminative metabolites between Proximal T and Proximal N. In distal gastric cancer, different metabolites were scattered through multiple pathway, including the sphingolipid signaling pathway, arginine biosynthesis, protein digestion and absorption, alanine, aspartate and, glutamate metabolism, etc.In proximal gastric cancer, differential microbial metabolites were mainly related to hormone metabolism. Conclusion Methylobacterium-Methylorubrum was significantly increased in Distal T, positively correlated with cancer-promoting metabolites, and negatively correlated with cancer-inhibiting metabolites. Rikenellaceae_RC_gut_group was significantly increased in Proximal T and positively correlated with cancer-promoting metabolites. Further studies regarding the functions of the above-mentioned microorganisms and metabolites were warranted as the results may reveal the different mechanisms underlying the occurrence and development of proximal and distal gastric cancers and provide a basis for future treatments. Importance First, the differences in microbial composition and metabolites between the proximal and distal gastric cancers were described; then, the correlation between microbiota and metabolites was preliminarily discussed. These microbes and metabolites deserve further investigations as they may reveal the different mechanisms involved in the occurrence and development of proximal and distal gastric cancers and provide a basis for future treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03650-x.
Collapse
Affiliation(s)
- Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Daofeng Dai
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Jin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingzi Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wankun Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wu Lin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
15
|
Yang Y, Li H, Wei Y, Chen Z, Chen T, Liang Y, Yin J, Yang D, Yang Z, Shi D, Zhou S, Wang H, Li J, Jin M. Comprehensive insights into profiles and bacterial sources of intracellular and extracellular antibiotic resistance genes in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119541. [PMID: 35623567 DOI: 10.1016/j.envpol.2022.119541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs), especially last-resort ARGs (LARGs), are receiving extensive attention as emerging environmental contaminants in groundwater. However, their prevalent intracellular and extracellular patterns and bacterial sources in groundwater remain unclear. Herein, groundwater samples were collected in Tianjin, and characterized based on the profiles of intracellular ARGs (iARGs) and extracellular ARGs (eARGs), as well as the resident bacterial communities and extracellular DNA (eDNA)-releasing bacterial communities. The quantitative real-time PCR assays showed that eARGs presented fewer subtypes than iARGs and generally displayed lower detection frequencies than the corresponding iARGs. Similarly, LARGs exhibited lower detection frequencies than common ARGs, but the total abundance showed no significant differences between them. Genes vanA and blaVIM were the observed dominant LARGs, and aadA was the observed common ARG independent of location inside or outside the bacteria. Furthermore, the top 10 phyla showed much difference between the main eDNA-releasing bacteria and the dominant resident bacteria. Proteobacteria was the predominant resident bacterial phyla while dominating the source of eDNA in groundwater. Despite representing a minor portion of the abundance in the resident bacteria, Actinobacteriota, Acidobacteriota, and Chloroflex surprisingly accounted for a large majority of eDNA release. Co-occurrence patterns among persistent ARGs, the resident bacteria, and eDNA-releasing bacteria revealed that the dominant common iARG aadA and intracellular LARGs blaVIM and vanA had significant positive correlations with Methylobacterium_Methylorubrum and Shewanella. Meanwhile, the dominant extracellular LARG blaVIM may be released by bacteria belonging to at least five genera, including Ellin6067, Bifidobacterium, Blautia, Veillonella, and Dechloromonas. Collectively, the findings of this study extend our understanding regarding the distribution of ARGs and their bacterial sources in groundwater, and indicate the serious pollution of LARGs in groundwater, which poses potential risks to public health.
Collapse
Affiliation(s)
- Yidi Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Yijun Wei
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhengshan Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Yongbing Liang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Huaran Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
16
|
Chen J, Gao M, Zhao Y, Guo L, Jin C, Ji J, She Z. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 358:127401. [PMID: 35660456 DOI: 10.1016/j.biortech.2022.127401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the removal of nitrogen and sulfamethoxazole (SMX), and the microbial communities in a partially saturated vertical flow constructed wetland (PS-VFCW) fed with synthetic mariculture wastewater operated at different saturated zone depths (SZDs), i.e. 51, 70, and 60 cm. Removal efficiencies were 99.8%-100.0% for COD, 34.1%-100.0% for NH4+-N, 67.8%-97.3% for total inorganic nitrogen (TIN), and 29.8%-57.2% for SMX. Excellent nitrification performance was achieved at the SZDs of 51 and 60 cm. Denitrification performed well at 70 and 60 cm SZDs. The highest TIN removal efficiency (97.3%) was achieved as the SZD was 60 cm. SMX removal was significantly influenced by SZD and was promoted by higher SZD. The removal of organics, nitrogen, and SMX mainly occurred in the unsaturated zone. Ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, and SMX-degrading bacteria were detected in the unsaturated and saturated zones, and showed an increasing trend in abundance along the depth.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| |
Collapse
|
17
|
Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals (Basel) 2022; 15:ph15040393. [PMID: 35455389 PMCID: PMC9029892 DOI: 10.3390/ph15040393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.
Collapse
|