1
|
Zhang Y, Jiang Y, Yu Z, Li Y, Zhang Z, Zheng F, Hu H, Yu G, Guo Z, Wu S, Shao W, Li H. Characterizing microglial heterogeneity in autophagy impairment of Paraquat-induced Parkinson's disease-like neurodegeneration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118364. [PMID: 40403688 DOI: 10.1016/j.ecoenv.2025.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/16/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative condition influenced by environmental elements, notably Paraquat (PQ), which is one of the known risk factors. Impaired autophagy is a critical factor in the pathogenesis of PD, yet the cellular heterogeneity related to autophagy in PD has not been thoroughly investigated. Here, we established a PQ-induced PD-like neurodegeneration model and found that PQ impairs autophagy during experimental PD progression. Using single-cell RNA sequencing (scRNA-seq), we elucidated the autophagy-related transcriptomic landscapes in this model, identifying microglia as the central cell type associated with PQ-induced autophagy across all brain cell types. Additionally, microglial subtypes in the PQ-exposed model exhibited significant heterogeneity in gene expression characteristics, biological functions, and roles in autophagic regulation. PQ exposure induced potential genetic transformations between microglial subtypes, which may further disrupt their immune response and energy metabolism regulation functions. Subsequently, we validated the identity transformation of microglia revealed by scRNA-seq in both in vivo and in vitro PQ exposure models. Moreover, we identified a specific microglial subtype primarily responsible for the autophagy-related changes observed in the PQ-exposed model. The expression of the autophagic subtype marker gene Inpp5d may contribute to the regulation of PQ-induced autophagic impairment in BV2 cells. This study generates the first scRNA-seq atlas of autophagy in the context of PQ exposure, highlighting the heterogeneity of microglial subtypes and identifying an autophagy-specific microglial subtype as a central mechanism in the pathology of PQ-induced PD-like neurodegeneration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yihua Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhen Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhiyu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
2
|
Vignon AN, Dudon G, Oliva G, Thirard S, Alenda UG, Brugoux A, Cazevieille C, Imbert J, Bellières C, Lehmann S, Crozet C, Torrent J, Bertaso F, Le Merrer J, Becker JAJ, Perrier V. Lifelong exposure to polystyrene-nanoplastics induces an attention-deficit hyperactivity disorder-like phenotype and impairs brain aging in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138640. [PMID: 40403375 DOI: 10.1016/j.jhazmat.2025.138640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
The accumulation of plastic waste in the environment, breaking down into micro- and nanoplastics, poses significant threats to ecosystem and human health. Plastic particles have been detected in human blood, urine, and placental tissue, indicating widespread exposure. While their long-term health impacts remain unclear, developing brains, especially in fetuses and children, may be vulnerable, potentially resulting in behavioral changes or neurodevelopmental disorders. This study explores the effects of chronic exposure to 23-nm polystyrene nanoplastics at 10 µg/day/kg in wild-type mice across life stages, using exposure levels reflective of human reality. Maternal exposure disrupted critical developmental milestones in pups. In adulthood, exposed mice exhibited Attention-Deficit Hyperactivity Disorder (ADHD)-like traits, including hyperactivity, increased risk-taking behaviors, and impaired motor learning and executive functions. In aging mice, exposure was associated with a lower epileptic threshold, with developing seizures. These behavioral changes were linked to altered gene and synaptic protein expression associated with ADHD and epilepsy. At the cellular level, lifelong nanoplastic exposure caused lysosomal dysfunctions and increased lipofuscin accumulation, indicative of accelerated brain aging. These findings align with the growing prevalence of ADHD and epilepsy in humans, particularly children and the elderly, emphasizing the urgent need to address plastic pollution and its health implications.
Collapse
Affiliation(s)
- Anaïs N Vignon
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Gaëlle Dudon
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Giulia Oliva
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Steeve Thirard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ugo G Alenda
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Agathe Brugoux
- UMR1253, Imaging Brain & Neuropsychiatry iBraiN, Université de Tours, INSERM, CNRS, Tours, France
| | - Chantal Cazevieille
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jacques Imbert
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Bellières
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvain Lehmann
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Carole Crozet
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Joan Torrent
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Federica Bertaso
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France; Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Le Merrer
- UMR1253, Imaging Brain & Neuropsychiatry iBraiN, Université de Tours, INSERM, CNRS, Tours, France
| | - Jérôme A J Becker
- UMR1253, Imaging Brain & Neuropsychiatry iBraiN, Université de Tours, INSERM, CNRS, Tours, France.
| | - Véronique Perrier
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
3
|
Lu X, Luo Q, Zhao J, Li M, Liu D. Revealing the underlying mechanisms of nanoplastics induces neuroinflammation: From transcriptomic analysis to in vivo and in vitro validation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118311. [PMID: 40367607 DOI: 10.1016/j.ecoenv.2025.118311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/24/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
With the widespread use of plastic products globally, the harmful impacts of nanoplastics (NPs) on human health are not to be underestimated. Although the NPs-induced neurotoxicity has already been affirmed, the related mechanisms are still not fully understood. Therefore, this study aims to reveal the underlying mechanisms of NPs-induced neurotoxicity. After mice were randomly divided into the control, low-dose polystyrene nanoplastics (PS-NPs-L, 10 mg/kg), middle-dose PS-NPs (PS-NPs-M, 20 mg/kg), and high-dose PS-NPs (PS-NPs-H, 50 mg/kg) groups, we discovered PS-NPs with a mean diameter of approximately 100 nm were accumulated in the brain of mice, induced anxiety-like behaviors and cognitive dysfunction, caused pathological injuries to the mice's prefrontal cortex tissue, and elevated the Iba1 and GFAP expression in the mice's prefrontal cortex tissue. After BV-2 cells were randomly divided into the control, PS-NPs-L (25 μg/mL), PS-NPs-M (50 μg/mL), and PS-NPs-H (75 μg/mL) groups, we discovered PS-NPs inhibited cell viability, arrested the cell cycle in the G2 phase, and enhanced apoptosis and the ROS level of BV-2 cells. The transcriptomic analysis based on mice's prefrontal cortex tissues screened four shared DEGs, namely Pbx3, Ecell, Crb1, and Ngb. The differentially expressed genes were enriched in multiple pathways, especially the positive regulation of NIK/NF-kappaB signaling. In vitro, PS-NPs also increased the mean fluorescence intensity of p65, TNF-α, and IL-1β of BV-2 cells. In vivo and in vitro, PS-NPs up-regulated the mRNA and protein expression levels of NF-κB, TNF-α, and IL-1β. Our studies affirmed that PS-NPs induced neuroinflammation by activating the NF-κB signaling to promote the release of TNF-α and IL-1β based on transcriptomic analysis as well as in vivo and in vitro validation.
Collapse
Affiliation(s)
- Xiaomei Lu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qinghua Luo
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jiahao Zhao
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ming Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dandan Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
Liu X, Huang C, Wang M, Hu L, Song Y, Jiang G. Single-Nucleus Transcriptomics Reveals Prenatal and Postnatal Pb Exposure-Induced Cell-Specific Neurotoxicity and Dysregulated Microglia-Neuron Communication in Mice Brain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40315482 DOI: 10.1021/acs.est.5c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Lead (Pb) is an environmental pollutant that has lasting effects on neurodevelopment. Children exhibit heightened sensitivity to Pb exposure compared to adults, and prenatal Pb exposure can harm the developing fetal nervous system. However, the specific regulatory effects of Pb across various developmental stages are not well understood. This study employed single-nucleus RNA sequencing (snRNA-seq) to analyze mice brains at different ages (2 and 8 weeks) following prenatal and postnatal Pb exposure. Blood lead level in exposed mice is comparable to those detected in human samples, implying its environmental implication. A total of 43,303 brain cells were sequenced for cell-specific analysis. Pb exposure was found to elevate the proportion of immature neurons in the brains of 2 week-old mice and to perturb neurodevelopment- and neural structure-related pathways within neurons. In 8 week-old mice, Pb primarily influenced pathways implicated in synaptic transmission, signal transduction, and learning and memory in both neurons and glial cells. The communication involving neurotransmitters glutamate and γ-aminobutyric acid (GABA), along with their receptors, was disrupted between neuron and microglia. Through the application of snRNA-seq, this study has demonstrated that the Pb-induced neurotoxicity is characterized by cellular heterogeneity and the disruption of neurotransmitter-related communication between microglia and neurons could be a critical factor in Pb-induced neurotoxicity.
Collapse
Affiliation(s)
- Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Mingyue Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Duraes ADS, Jiao EL, Zhang W. Effects of Nanoplastics on Lipid Membranes and Vice Versa: Insights from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2025; 129:3385-3395. [PMID: 39945548 DOI: 10.1021/acs.jpcb.4c08361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We compute the potential of mean force (PMF) between semicrystalline polyethylene (PE) nanoplastics (NPLs) and model POPC and DPPC bilayers, which approximate in vivo membranes, using atomistic simulations. Our work shows that atomistic resolution is required to characterize the NPL and lipid interactions. By analyzing the PMF, we demonstrate that the mechanical properties of membranes, rather than NPL semicrystalline morphologies, govern NPL-membrane interactions. Resistance to NPL penetration arises from the elastic energy of the membrane deformation. The flexible POPC membranes resist NPL translocation, and the brittle DPPC membranes fracture under stress. Using an elastic free energy model, we approximate effective repulsions between lipid membranes and NPLs of various sizes. Our mean first-passage time analysis shows that even small, bare NPLs cannot easily penetrate brittle lipid membranes via passive diffusion, even at high concentrations. However, eco-coronas or other mechanisms, such as endocytosis, may still facilitate the cellular uptake of NPLs and MPLs. While semicrystalline morphologies do not directly impact NPL translocation, they do influence NPL behavior within lipid membranes upon translocation. Semicrystalline NPLs remain intact within lipid membranes, whereas amorphous NPLs can dissolve into the hydrophobic core and alter the elastic properties of the membrane.
Collapse
Affiliation(s)
- Anderson D S Duraes
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Elaine L Jiao
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Wenlin Zhang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
6
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Bai H, Gu H, Zhou W, Shi G, Yan J, Su Y, Li W, Li Y, Zhong C, Zhao N, Huang X. PD-like pathogenesis induced by intestinal exposure to microplastics: An in vivo study of animal models to a public health survey. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136974. [PMID: 39752824 DOI: 10.1016/j.jhazmat.2024.136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 03/12/2025]
Abstract
With the increasing incidence of non-hereditary Parkinson's disease (PD), research into the involvement of specific environmental factors, in addition to aging, has become more prominent. The effects of microplastic exposure on public health have gained increased attention as it is known to cause a range of neurotoxic changes, some of which are similar to the pathological features of PD. We carried out low-dose microplastic exposure experiments on mice and Caenorhabditis elegans models and implemented a survey regarding the utilization of plastic products in the population. We found that low-dose microplastic exposure accelerated dopamine neuron degeneration and the onset of movement disorders in vivo, inducing a PD-like neuronal pathology through its effects on the intestinal mucosal barrier, immune barrier, and microbial barrier. Notably, non-penetrating microplastics facilitated neuroinflammation by triggering excessive reactive oxygen species production and a sustained UPRmt. Furthermore, our population survey demonstrated that inappropriate use was a major source of microplastics in the gastrointestinal tract. The high use of disposable plastic tableware, especially in those with definite microplastic exposure, was also associated with intestinal inflammatory symptoms. As a novel pollutant, microplastic exposure in vivo undoubtedly executes an important role in the degeneration of dopamine neurons, regardless of barrier penetration, which is a non-independent risk factor that cannot be ignored in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hua Bai
- School of Medicine, Yunnan University, Kunming 650091, China; School of Public Health, Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming 650500, China
| | - Huan Gu
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Guolin Shi
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Jinyuan Yan
- Center Laboratory of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Yanmei Su
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Wenhu Li
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Yixin Li
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Chidi Zhong
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China.
| | - Xiaowei Huang
- School of Medicine, Yunnan University, Kunming 650091, China.
| |
Collapse
|
8
|
Wang C, Lin K, Zhang Z, Pan Y, Miao Q, Han X, Zhang Z, Zhu P, Yang J, Peng Y, Yung KKL, Shi L, Zhang S. Adolescent exposure to micro/nanoplastics induces cognitive impairments in mice with neuronal morphological damage and multi-omic alterations. ENVIRONMENT INTERNATIONAL 2025; 197:109323. [PMID: 39954360 DOI: 10.1016/j.envint.2025.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Polystyrene micro/nanoplastics (MPs/NPs) are globally recognized environmental concerns due to their widespread pollution and detrimental effects on physiological functions. However, the neurotoxic effects and underlying mechanisms of MPs/NPs on brain function in adolescents remain incompletely understood. This study investigated the effects of polystyrene MPs/NPs on neurobehavioral function in adolescent mice, utilizing multi-omic analysis and molecular biology assays to explore potential mechanisms. Following oral exposure of MPs (5 μm) or NPs (0.5 μm) at 0.5 mg/day for 4 weeks, NPs induced more severe cognitive impairment in mice than MPs, as assessed by the Morris water maze and Y-maze tests. This impairment might be associated with the neuron loss and neurogenesis inhibition caused by NPs, while dendritic spine loss mediated by MPs in the hippocampus. Furthermore, analysis of hippocampal transcriptome and Western blotting indicated the potential involvement of the PI3K/AKT pathway in NPs-induced neurotoxicity. Meanwhile, exposure to NPs induced more pronounced disruptions in the hippocampal metabolome and gut microbiota, and strong correlations were observed between changes in hippocampal metabolites and gut bacteria. This study elucidated the toxicity mechanism of MPs and NPs in inducing cognitive impairment in adolescent mice, providing insights into their toxicological impacts and potential strategies for intervention.
Collapse
Affiliation(s)
- Chaoqun Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632 China; JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632 China; Guangdong Province Key Laboratory of Pharmacodymamic Constituents of TCM & New Drugs Research, Guangdong Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436 China
| | - Zhu Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Yan Pan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Qiuping Miao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632 China; JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632 China; Guangdong Province Key Laboratory of Pharmacodymamic Constituents of TCM & New Drugs Research, Guangdong Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Xiaohe Han
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632 China; JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632 China; Guangdong Province Key Laboratory of Pharmacodymamic Constituents of TCM & New Drugs Research, Guangdong Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Zhang Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436 China
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436 China
| | - Yinghui Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632 China; JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632 China; Guangdong Province Key Laboratory of Pharmacodymamic Constituents of TCM & New Drugs Research, Guangdong Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Ken Kin-Lam Yung
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China.
| | - Lei Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632 China; JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632 China; Guangdong Province Key Laboratory of Pharmacodymamic Constituents of TCM & New Drugs Research, Guangdong Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China.
| | - Shiqing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632 China; JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632 China; Guangdong Province Key Laboratory of Pharmacodymamic Constituents of TCM & New Drugs Research, Guangdong Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China.
| |
Collapse
|
9
|
Liang B, Huang X, Li Z, Huang Y, Deng Y, Chen X, Zhong Y, Yang X, Feng Y, Bai R, Fan B, Xian H, Li H, Tang S, Huang Z. Polystyrene nanoplastics trigger ferroptosis in Nrf2-deficient gut via ether phospholipid accumulation. ENVIRONMENT INTERNATIONAL 2025; 197:109367. [PMID: 40080957 DOI: 10.1016/j.envint.2025.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The widespread environmental presence of nanoplastics (NPs) raises significant concerns about their health impacts, particularly on the gastrointestinal system, as NPs are primarily ingested. While previous studies have linked NP-induced intestinal toxicity to oxidative stress and reactive oxygen species (ROS) accumulation, the specific mechanisms of cell death remain unclear. Here, we showed that environmentally relevant concentrations of polystyrene nanoplastics (PS-NPs) induced ferroptosis, a form of lipid peroxidation-driven cell death, in intestinal epithelial cells. Using intestinal epithelial-specific Nrf2-deficient mice (Nrf2fl/fl-VilCre+) and human intestinal epithelial Caco-2 cells, we demonstrated that Nrf2, a key oxidative stress regulator, play a protective role against PS-NP-induced ferroptosis. PS-NP exposure disrupted ether phospholipid metabolism, leading to the accumulation of polyunsaturated fatty acid-ether phospholipids and heightened lipid peroxidation in the intestines of Nrf2fl/fl-VilCre+ mice. This accumulation increased the susceptibility of intestinal epithelial cells to ferroptosis. Additionally, a high-fat diet further exacerbated this effect, suggesting that individuals with reduced NRF2 activity and poor dietary habits may be especially vulnerable to PS-NP-induced intestinal damage. Our findings offered new insights into the molecular mechanisms of NP-induced intestinal toxicity and underscored the health risks posed by environmental PS-NP exposure, particularly in populations with compromised antioxidant defenses.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shiyue Tang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Huang H, Hou J, Liao Y, Yu J, Xi B. Exposure to nanoplastics exacerbates light pollution hazards to mammalian. ENVIRONMENT INTERNATIONAL 2025; 197:109338. [PMID: 39983414 DOI: 10.1016/j.envint.2025.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Environmental light pollution adversely affects brain function, disturbing circadian rhythms and negatively impacting human health. Nanoplastics (NPs) pollution is pervasive in the human environment, and their minuscule size facilitates entry into the body, particularly invading brain and compromising its functionality. However, whether NPs infiltrate rhythm-regulated brain regions and disrupt circadian rhythms in organisms remains unclear. Our study demonstrates that exposure to NPs in mice perturbs normal circadian rhythms. Specifically, NPs invade the suprachiasmatic nucleus (SCN), affecting the circadian clock genes network and altering the regular oscillations of core clock genes. Exposure to NPs renders the intrinsic rhythms more susceptible to disruption by light pollution, resulting in more pronounced disorder to metabolism, immune regulation, and brain function. This work is the first to investigate the combined effects of ambient light pollution and NPs pollution on mammalian health, and our findings suggest that NPs amplify the health impacts of light pollution. These findings also highlight that efforts to mitigate human health risks from environmental pollutants should begin to consider the synergistic effects of various classes of pollutants.
Collapse
Affiliation(s)
- Haipeng Huang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Jiaqi Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yilie Liao
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Republic of Singapore
| | - Jing Yu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Liang X, Huang G, Wang Y, Andrikopoulos N, Tang H, Ding F, Li Y, Ke PC. Polystyrene Nanoplastics Hitch-Hike the Gut-Brain Axis to Exacerbate Parkinson's Pathology. ACS NANO 2025; 19:5475-5492. [PMID: 39883073 PMCID: PMC11917497 DOI: 10.1021/acsnano.4c13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis. Here we first examined the effect of enteric exposure to polystyrene nanoplastics on the peripheral and central pathogenesis of A53T, a representative αS mutant. Specifically, the polystyrene nanoplastics accelerated the amyloid aggregation of A53T αS, which subsequently elevated the in vitro production of glial activation biomarkers, cytokines, and reactive oxygen species and compromised mitochondrial and lysosomal membrane integrity, further shifting cellular metabolite profiles in association with PD pathophysiology. In vivo, coadministration of the polystyrene nanoplastics and A53T αS facilitated their synergistic gut-to-brain transmission in mice, leading to progressive impairment of physical and motor skills in resemblance to characteristic PD symptoms. This study provides insights into the response and vulnerability of Parkinson's gut-brain axis to polystyrene nanoplastics.
Collapse
Affiliation(s)
- Xiufang Liang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Engineering Mechanics, Hohai University, Nanjing 211100, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
12
|
Kim DY, Park MK, Yang HW, Woo SY, Jung HH, Son DS, Choi BY, Suh SW. Effects of Microplastic Accumulation on Neuronal Death After Global Cerebral Ischemia. Cells 2025; 14:241. [PMID: 39996714 PMCID: PMC11853503 DOI: 10.3390/cells14040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Brain ischemia, a condition in which the brain is deprived of blood flow, can lead to a stroke due to blocked or unstable blood vessels. Global cerebral ischemia (GCI), characterized by an interruption in blood flow, deprives the brain of oxygen and nutrients, producing reactive oxygen species (ROS) that trigger cell death, which kills nerve cells. Microplastics (MPs), tiny environmental pollutants, can enter the human body through contaminated food, water, disposable items, cosmetics, and more. Once in the brain, MPs can increase neuroinflammation by overstimulating inflammatory factors such as microglia. MPs can also damage neurons by scratching myelin and microtubules, slowing signal transduction, causing cognitive impairment, and leading to neuronal death. Furthermore, microtubule damage may result in the release of phosphorylated tau proteins, potentially linked to Alzheimer's disease. We hypothesized that MPs could exacerbate neuroinflammation and microtubule destruction after GCI, leading to increased neuronal death. To test this hypothesis, we administered MPs (0.5 µm) orally at a dose of 50 mg/kg before and after inducing GCI. Staining techniques such as Fluoro-Jade B (FJB), ionized calcium-binding adaptor molecule 1 (Iba-1), cluster of differentiation 68 (CD68), myelin basic protein (MBP), and microtubule-associated protein 2 (MAP2) were used, along with Western blot analysis for interleukin-6 (IL-6), TNF-α, tau-5, and phospho-tau (S396) to evaluate the effects of MPs on neuronal cell death, neuroinflammation, and microtubule destruction. The results showed that MP accumulation significantly increased neuroinflammation, microtubule disruption, and neuronal cell death in the GCI-MP group compared to the GCI-vehicle group. Therefore, this study suggests that MP accumulation in daily life may contribute to the exacerbation of the disease, potentially leading to severe neuronal cell death after GCI.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Hyun Wook Yang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Seo Young Woo
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Hyun Ho Jung
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Dae-Soon Son
- Division of Data Science, Data Science Convergence Research Center, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Bo Young Choi
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea;
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| |
Collapse
|
13
|
Sun J, Peng S, Yang Q, Yang J, Dai Y, Xing L. Microplastics/nanoplastics and neurological health: An overview of neurological defects and mechanisms. Toxicology 2025; 511:154030. [PMID: 39653181 DOI: 10.1016/j.tox.2024.154030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The widespread use of plastic products worldwide has brought about serious environmental issues. In natural environments, it's difficult for plastic products to degrade completely, and so they exist in the form of micro/nanoplastics (M/NPs), which have become a new type of pollutant. Prolonged exposure to M/NPs can lead to a series of health problems in humans, particularly toxicity to the nervous system, with consequences including neurodevelopmental abnormalities, neuronal death, neurological inflammation, and neurodegenerative diseases. Although direct evidence from humans is still limited, model organisms and organoids serve as powerful tools to provide important insights. This article summarizes the effects of M/NPs on the nervous system, focusing on cognitive function, neural development, and neuronal death. Mechanisms such as neurotransmitter synthesis and release, inflammatory responses, oxidative stress, the gut-brain axis, and the liver-brain axis are covered. The neurotoxicity induced by M/NPs may exacerbate or directly trigger neurodegenerative diseases and neurodevelopmental disorders. We particularly emphasize potential therapeutic agents that may counteract the neurotoxic effects induced by M/NPs, highlighting a novel future research direction. In summary, this paper cites evidence and provides mechanistic perspectives on the effects of M/NPs on neurological health, providing clues for eliminating M/NP hazards to human health in the future.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Qiongxia Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Jiawei Yang
- Department of Neurology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226000, China
| | - Yanfei Dai
- Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
14
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
15
|
Wang L, Ma JQ, Song LJ, Qu XP, Zhang Y, Fan HM, Wang C, Zheng LL, Gao GD, Qu Y, Shen LL, Liu B. Comprehensive multi-omics, behavioral and morphological analysis of the hazards of nano-plastics in mice with internal carotid artery occlusion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117711. [PMID: 39799923 DOI: 10.1016/j.ecoenv.2025.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Accumulation of nanoplastics (NPs) poses a severe threat to the homeostasis of the internal environment in patients with chronic diseases. The effects of NP contamination on health in chronically ill populations must urgently be elucidated. In this study, NPs injected via the tail vein were distributed in the brain and internal organs in a mouse model of chronic internal carotid occlusion. Mice with chronic internal carotid artery occlusion exposed to NPs showed behavioral abnormalities, such as depression and anxiety, thus indicating detrimental effects of NPs on the brain. Subsequently, we used proteomics and metabolomics to analyze the specific mechanisms underlying the damaging effects of NP deposition in the brain. The findings helped explain the differences in the underlying biochemical responses at the microscopic level in mice after NP exposure. The NPs not only accumulated in the brain and caused pathologic damage, but also contributed to accelerating atherosclerosis in the mouse model of internal carotid artery occlusion. This work confirms the risk of NPs in a model of internal carotid artery occlusion and elucidates the mechanism underlying this harm; moreover, it provides theoretical support for developing strategies to decrease microplastic intake in patients with internal carotid artery occlusion.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| | - Jia-Qi Ma
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| | - Li-Jia Song
- Department of Pediatrics, Tangdu Hospital, Airforce Military Medical University, Xi'an, China.
| | - Xiao-Peng Qu
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| | - Yue Zhang
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| | - Hai-Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| | - Long-Long Zheng
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China. zhenglong--
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| | - Liang-Liang Shen
- Department of Biochemistry and Molecular Biology, Basic Medical Science Academy, Airforce Military Medical University, Xi'an, China.
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Kaur M, Sharma A, John P, Bhatnagar P. Manifestation of polystyrene microplastic accumulation in brain with emphasis on morphometric and histopathological changes in limbic areas of Swiss albino mice. Neurotoxicology 2024; 105:231-246. [PMID: 39427724 DOI: 10.1016/j.neuro.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The widespread problem of microplastic (MP) contamination is becoming a major threat to the globe. Although most of the research to date has concentrated on the physiological impacts of MPs exposure, a relatively new field of study is beginning to examine its effects on the behaviour and limbic regions of the brain. In this study, exposure to polystyrene MPs (PS-MPs) for acute and sub-chronic durations negatively affected cognition and induced anxiety-like behaviour in mice. PS-MPs were detected in vital organs of mice, including the brain, which induced neurobehavioural and pathological changes in the limbic system. Furthermore, morphometric analysis revealed a significant decrease in the total cell count in the Dentate Gyrus (DG) and Cornu Ammonis (CA) regions of the hippocampus. Signs of neuronal injury and dystrophic changes were observed in the cortex, amygdala, and hypothalamus, potentially affecting anxiety and fear responses. Our study thus provides insight into the effect of PS-MPs on the neurobiology of the brain's limbic system and related behavioural alterations.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Placheril John
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
17
|
Wu Y, Li Z, Shi L, Zhu Y, Wang Y, Yan N, Yang Y, He S, Li J. Effects of leachate from disposable plastic takeout containers on the cardiovascular system after thermal contact. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117383. [PMID: 39591733 DOI: 10.1016/j.ecoenv.2024.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The study investigated the cardiovascular effects of daily exposure to plastic products by simulating the oral heat exposure mode of disposable plastic takeout containers (DPTC) commonly used in society. Questionnaires were used to randomly choose 3179 people in order to examine any possible correlation between the frequency of plastic exposure and the risk of cardiovascular diseases (CVD). Additionally, Sprague-Dawley(SD) rats consumed leachate from DPTC exposed to boiling water for 1 minute,5 minutes and 15 minutes respectively, over three months. After intervention, fecal samples were taken for microbiota and metabolomics analysis, and rat cardiac tissue was studied by staining and electron microscopy. Serum parameters were tested to analyze cardiovascular system changes. The population-based plastic exposure questionnaire data revealed that high-frequency exposure to plastics is significantly associated with an increased risk of congestive heart failure, with an odds ratio of 1.13 (95 % CI: 1.03-1.24). Rat fecal analysis revealed that β diversity and composition of gut microbiota in experimental groups were changed. Inflammatory cell infiltration, mitochondrial swelling, and serum indicators of oxidative stress and inflammation were significantly elevated in the myocardium, without temporal differences observed. The study shows plastic exposure as a significant CVD risk factor regardless of duration. It leads to changes in myocardial tissue, gut microbiota, and metabolites, all closely tied to CVD.
Collapse
Affiliation(s)
- Yueping Wu
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Zhuoyuan Li
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Liping Shi
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Yongbin Zhu
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Yanrong Wang
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Ning Yan
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Yue Yang
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shulan He
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Jiangping Li
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
18
|
Kang H, Huang D, Zhang W, Wang J, Liu Z, Wang Z, Jiang G, Gao A. Pulmonary Flora-Derived Lipopolysaccharide Mediates Lung-Brain Axis through Activating Microglia Involved in Polystyrene Microplastic-Induced Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404966. [PMID: 39499619 DOI: 10.1002/advs.202404966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Indexed: 11/07/2024]
Abstract
Microplastics (MPs) have been detected in the atmospheric and the human respiratory system, indicating that the respiratory tract is a significant exposure route for MPs. However, the effect of inhaled MPs on cognitive function has not been adequately studied. Here, a C57BL/6 J mouse model of inhalation exposure to polystyrene MPs (PS-MPs, 5 µm, 60 d) is established by intratracheal instillation. Interestingly, in vivo fluorescence imaging and transmission electron microscopy reveal that PS-MPs do not accumulate in the brain. However, behavioral experiments shows that cognitive function of mice is impaired, accompanied by histopathological damage of lung and brain tissue. Transcriptomic studies in hippocampal and lung tissue have demonstrated key neuroplasticity factors as well as cognitive deficits linked to lung injury, respectively. Mechanistically, the lung-brain axis plays a central role in PS-MPs-induced neurological damage, as demonstrated by pulmonary flora transplantation, lipopolysaccharide (LPS) intervention, and cell co-culture experiments. Together, inhalation of PS-MPs reduces cognitive function by altering the composition of pulmonary flora to produce more LPS and promoting M1 polarization of microglia, which provides new insights into the mechanism of nerve damage caused by inhaled MPs and also sheds new light on the prevention of neurotoxicity of environmental pollutants.
Collapse
Affiliation(s)
- Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
19
|
Huo S, Li B, Du J, Zhang X, Song M, Li Y. Neurotoxic effects of perinatal exposure to Bisphenol F on offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124932. [PMID: 39260543 DOI: 10.1016/j.envpol.2024.124932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bisphenols constitute a diverse group of endocrine-disrupting chemicals (EDCs) that impact hormone activity. Bisphenol F (BPF) is commonly used as a substitute for Bisphenol A (BPA). The disruption of the immune system by EDCs during embryonic brain development has been suggested as a plausible factor to neurodevelopmental disorders. We investigated the neurotoxic effects of perinatal exposure to BPF on offspring mice. Female mice were exposed to BPF through their drinking water on day 0.5 of pregnancy, and this exposure continued until the offspring mice were weaned, throughout the perinatal period. Our findings revealed that exposure to BPF hindered both growth and neurodevelopment in offspring mice, with a more pronounced effect observed in males. Additionally, transcriptomic analysis was conducted on the brains of male offspring mice exposed to high doses of BPF. In summary, our study indicates that perinatal exposure to BPF results in neurodevelopmental impairments in male offspring mice, linked to oxidative stress, inflammatory responses, and immune dysregulation. These findings underscore that BPF may not be a safe substitute for BPA. Thus, there is a pressing need to reevaluate the current regulation of BPF.
Collapse
Affiliation(s)
- Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Shi L, Feng Y, Wang J, Xiao R, Wang L, Tian P, Jin X, Zhao J, Wang G. Innovative mechanisms of micro- and nanoplastic-induced brain injury: Emphasis on the microbiota-gut-brain axis. Life Sci 2024; 357:123107. [PMID: 39369844 DOI: 10.1016/j.lfs.2024.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging environmental pollutants, infiltrate marine, terrestrial, and freshwater systems via diverse pathways, culminating in their accumulation in the human body through food chain transmission, posing potential health risks. Researches have demonstrated that MNPs disrupt gut microbiota equilibrium and compromise intestinal barrier integrity, as well as traverse the blood-brain barrier, leading to brain damage. Moreover, the complex interaction between the gut and the nervous system, facilitated by the "gut-brain axis," indicates an additional pathway for MNPs-induced brain damage. This has intensified scientific interest in the intercommunication between MNPs and the gut-brain axis. While existing studies have documented microbial imbalances and metabolic disruptions subsequent to MNPs exposure, the precise mechanisms by which the microbiota-gut-brain axis contributes to MNPs-induced central nervous system damage remain unclear. This review synthesizes current knowledge on the microbiota-gut-brain axis, elucidating the pathogenesis of MNPs-induced gut microbiota dysbiosis and its consequent brain injury. It emphasizes the complex interrelation between MNPs and the microbiota-gut-brain axis, advocating for the gut microbiota as a novel therapeutic target to alleviate MNP-induced brain harm.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Jialiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing People's Hospital, Jiangsu, Wuxi 214200, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| |
Collapse
|
21
|
Casella C, Ballaz SJ. Genotoxic and neurotoxic potential of intracellular nanoplastics: A review. J Appl Toxicol 2024; 44:1657-1678. [PMID: 38494651 DOI: 10.1002/jat.4598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Plastic waste comprises polymers of different chemicals that disintegrate into nanoplastic particles (NPLs) of 1-100-nm size, thereby littering the environment and posing a threat to wildlife and human health. Research on NPL contamination has up to now focused on the ecotoxicology effects of the pollution rather than the health risks. This review aimed to speculate about the possible properties of carcinogenic and neurotoxic NPL as pollutants. Given their low-dimensional size and high surface size ratio, NPLs can easily penetrate biological membranes to cause functional and structural damage in cells. Once inside the cell, NPLs can interrupt the autophagy flux of cellular debris, alter proteostasis, provoke mitochondrial dysfunctions, and induce endoplasmic reticulum stress. Harmful metabolic and biological processes induced by NPLs include oxidative stress (OS), ROS generation, and pro-inflammatory reactions. Depending on the cell cycle status, NPLs may direct DNA damage, tumorigenesis, and lately carcinogenesis in tissues with high self-renewal capabilities like epithelia. In cells able to live the longest like neurons, NPLs could trigger neurodegeneration by promoting toxic proteinaceous aggregates, OS, and chronic inflammation. NPL genotoxicity and neurotoxicity are discussed based on the gathered evidence, when available, within the context of the intracellular uptake of these newcomer nanoparticles. In summary, this review explains how the risk evaluation of NPL pollution for human health may benefit from accurately monitoring NPL toxicokinetics and toxicodynamics at the intracellular resolution level.
Collapse
Affiliation(s)
- Claudio Casella
- Department Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
22
|
Sim HH, Shiwakoti S, Lee JH, Lee IY, Ok Y, Lim HK, Ko JY, Oak MH. 2,7-Phloroglucinol-6,6'-bieckol from Ecklonia cava ameliorates nanoplastics-induced premature endothelial senescence and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175007. [PMID: 39053557 DOI: 10.1016/j.scitotenv.2024.175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs), plastic particles ranging from 1 to 100 nm are ubiquitous environmental pollutants infiltrating ecosystems. Their small size and widespread use in various products raise concerns for human health, particularly their association with cardiovascular diseases (CVD). NPs can enter the human body through multiple routes, causing oxidative stress, and leading to the senescence and dysfunction of endothelial cells (ECs). Although there are potential natural compounds for treating CVD, there is limited research on preventing CVD induced by NPs. This study investigates the efficacy of Ecklonia cava extract (ECE) in preventing NPs-induced premature vascular senescence and dysfunction. Exposure of porcine coronary arteries (PCAs) and porcine coronary ECs to NPs, either alone or in combination with ECE, demonstrated that ECE mitigates senescence-associated β-galactosidase (SA-β-gal) activity induced by NPs, thus preventing premature endothelial senescence. ECE also improved NPs-induced vascular dysfunction. The identified active ingredient in Ecklonia cava, 2,7'-Phloroglucinol-6,6'-bieckol (PHB), a phlorotannin, proved to be pivotal in these protective effects. PHB treatment ameliorated SA-β-gal activity, reduced oxidative stress, restored cell proliferation, and decreased the expression of cell cycle regulatory proteins such as p53, p21, p16, and angiotensin type 1 receptor (AT1), well known triggers for EC senescence. Moreover, PHB also improved NPs-induced vascular dysfunction by upregulating endothelial nitric oxide synthase (eNOS) expression and restoring endothelium-dependent vasorelaxation. In conclusion, Ecklonia cava and its active ingredient, PHB, exhibit potential as therapeutic agents against NPs-induced premature EC senescence and dysfunction, indicating a protective effect against environmental pollutants-induced CVDs associated with vascular dysfunction.
Collapse
Affiliation(s)
- Hwan-Hee Sim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Ji-Hyeok Lee
- Division of Commercialization Support, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - In-Young Lee
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Yejoo Ok
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Han-Kyu Lim
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
23
|
Zhang Y, Jiang Y, Li Y, Yu Z, Lin X, Zheng F, Hu H, Shao W, Yu G, Guo Z, Wu S, Li H. Brain single-cell transcriptomics highlights comorbidity-related cell type-specific changes of Parkinson's disease with major depressive disorder after paraquat exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117193. [PMID: 39413649 DOI: 10.1016/j.ecoenv.2024.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Paraquat (PQ), a commonly used herbicide, is a potent environmental neurotoxin associated with Parkinson's disease (PD) and major depressive disorder (MDD). While the involvement of various brain cell types in the etiology of each disorder is well recognized, the specific cell subtypes implicated in the comorbidity of PD and MDD, especially under PQ neurotoxicity, remain poorly understood. In this study, we used single-cell RNA sequencing (scRNA-seq) to analyze brain tissues from mice with PQ-induced PD with MDD. By integrating genomic data with scRNA-seq profiles, we identified differences in cellular heterogeneity related to the pathogenesis of PD and MDD under PQ exposure. Our analysis of risk enrichment in genes with cell type-specific expression patterns revealed that astrocytes are predominantly linked to the comorbidity of PQ-induced PD and MDD. Furthermore, we identified a specific astrocyte subtype that plays a major role in the comorbidity-related changes observed in PQ-induced PD and MDD. This subtype appears to interact with and potentially transform into MDD-specific and PD-specific subtypes. Additionally, pathways related to chemical synaptic function and neuro-projection development were involved in all key stages of PD and MDD co-occurrence. We also identified RNF7 and MTCH2 as shared diagnostic hub genes for PD and MDD, which changed significantly in astrocytes following PQ exposure. These genes may serve as potential markers for astrocyte-specific prognostic diagnosis of PQ-induced PD with MDD. In summary, this study provides the first scRNA-seq profile of comorbidity in a PQ-exposed model. It highlights the heterogeneity of astrocytes in comorbidity and elucidates potential mechanisms underlying the co-occurrence of PD and MDD. These findings emphasize the need for further research into the pathogenesis of PD comorbid with MDD and offer novel insights into PQ neurotoxicity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yihua Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhen Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
24
|
Li T, Bian B, Ji R, Zhu X, Wo X, Song Q, Li Z, Wang F, Jia Y. Polyethylene Terephthalate Microplastic Exposure Induced Reproductive Toxicity Through Oxidative Stress and p38 Signaling Pathway Activation in Male Mice. TOXICS 2024; 12:779. [PMID: 39590959 PMCID: PMC11598153 DOI: 10.3390/toxics12110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Polyethylene terephthalate (PET) is a type of polymer plastic that is often used to make plastic bags, bottles, and clothes. However, the waste of such plastic products is decomposed into microplastics (MPs), which are plastic fragments smaller than 5 mm, by various external forces such as wind, UV radiation, mechanical wear, and biodegradation. PET MPs have been widely detected in the environment and human tissue samples; however, the toxicity and mechanism of PET MPs in mammals are still unclear. In this study, we investigated the male reproductive toxicity of PET MPs and their underlying mechanism. A total of 80 male mice were orally exposed to 0.01, 0.1, and 1 mg/d of PET MPs (with a diameter of 1 μm) for 42 days. The results showed that 1 μm PET MPs induced different degrees of pathological damage to testicular tissues, decreased sperm quality, and increased the apoptosis of spermatogenic cells via oxidative stress and p38 signaling pathway activation. To further illustrate and verify the mechanistic pathway, oxidative stress was antagonized using N-acetylcysteine (NAC), and the activation of the p38 signaling pathway was blocked using SB203580. The results revealed that the male reproductive injury effects after exposure to PET MPs were significantly ameliorated. Specifically, the testicular tissue lesions were relieved, the sperm quality improved, and the apoptosis of spermatogenic cells decreased. These results demonstrated that PET MP exposure induced male reproductive toxicity through oxidative stress and the p38 signaling pathway. This study provides new insights into the reproductive toxicity of MPs in males, as well as valuable references for public health protection strategies.
Collapse
Affiliation(s)
- Tianyang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Bohao Bian
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021000, China; (B.B.); (X.W.); (Q.S.)
| | - Rihao Ji
- School of Public Health, Baotou Medical College, Baotou 014000, China;
| | - Xiuwen Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Xiaohui Wo
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021000, China; (B.B.); (X.W.); (Q.S.)
| | - Qiankun Song
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021000, China; (B.B.); (X.W.); (Q.S.)
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Yuqiao Jia
- School of Public Health, Baotou Medical College, Baotou 014000, China;
| |
Collapse
|
25
|
Tao M, Wang C, Zheng Z, Gao W, Chen Q, Xu M, Zhu W, Xu L, Han X, Guo X, Liu Y. Nanoplastics exposure-induced mitochondrial dysfunction contributes to disrupted stem cell differentiation in human cerebral organoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117063. [PMID: 39299213 DOI: 10.1016/j.ecoenv.2024.117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.
Collapse
Affiliation(s)
- Mengdan Tao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Can Wang
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhilong Zheng
- Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing 211166, China
| | - Weiwei Gao
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xing Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing 211166, China.
| | - Yan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
26
|
Hou X, Liang F, Li J, Yang Y, Wang C, Qi T, Sheng W. Mapping cell diversity in human sporadic cerebral cavernous malformations. Gene 2024; 924:148605. [PMID: 38788816 DOI: 10.1016/j.gene.2024.148605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Cerebral cavernous malformation (CCM) is a low-flow, bleeding-prone vascular disease that can cause cerebral hemorrhage, seizure and neurological deficits. Its inheritance mode includes sporadic or autosomal dominant inheritance with incomplete penetrance, namely sporadic CCM (SCCM) and familial CCM. SCCM is featured by single lesion and single affection in a family. Among CCM patients especially SCCM, the pathogenesis of the corresponding phenotypes and pathological features or candidate genes have not been fully elucidated yet. METHODS Here, we performed in-depth single-cell RNA sequencing (scRNA-Seq) and bulk assay for transposase-accessible chromatin sequencing (ATAC-Seq) in SCCM and control patients. Further validation was conducted for the gene of interest using qPCR and RNA in situ hybridization (RNA FISH) techniques to provide further atlas and evidence for SCCM generative process. RESULTS We identified six cell types in the SCCM and control vessels and found that the expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 were up-regulated in SCCM tissues. Among the six cell types, we found that compared with control conditions, PVT1 showed a rising peak which followed the pseudo-time axis in endothelial cell clusters of SCCM samples, while showed an increasing trend in smooth muscle cell clusters of SCCM samples. Further experiments indicated that, compared with the control vessels, PVT1 exhibited significantly elevated expression in SCCM samples. CONCLUSION In SCCM conditions, We found that in the process of development from control to lesion conditions, PVT1 showed a rising peak in endothelial cells and showed an increasing trend in smooth muscle cells at the same time. Overall, there was a significantly elevated expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 in SCCM specimens compared to control samples.
Collapse
Affiliation(s)
- Xiaocan Hou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Feng Liang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yibing Yang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Tiewei Qi
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Shi J, Yu X, Zhao J, Wang T, Li N, Yu J, Yao L. Integrated transcriptomics and metabolomics reveal the mechanism of polystyrene nanoplastics toxicity to mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116925. [PMID: 39191138 DOI: 10.1016/j.ecoenv.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Microplastic (MP) are an emerging environmental pollutant, which has toxic effects on organisms, and it has received extensive attention currently. Studying the transcriptomic and metabolic responses of mice to nanoplastic-contaminated water is critical for understanding molecular-level toxicity of nanoplastics (NPs), but there are few studies on this topic. To analyze the effects of different concentrations of polystyrene (PS) nanoplastic-contaminated water on mice at the transcriptome and metabolism of spleens to study the molecular toxicity. Here, testing of histopathology of spleen of female mice was performed after drinking water containing 0.1 μm PS-NPs (1 mg/mL and 50 mg/mL) at different concentrations for 49 days, respectively. The spleen tissue samples were subjected to metabolome and transcriptome sequencing. Four differentially expressed genes were randomly chosen for qRT-PCR to confirm the correctness of transcriptome sequencing. Common Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that a large number of differential genes and differential metabolites mainly focused on immune, inflammation, neurodegenerative disease, cardiovascular disease, nervous, etc. in the organism systems module; lipid, amino acid, taurine and hypotaurine metabolisms, etc. in the metabolism module; signaling translation, signaling molecules and interaction, and neuroactive ligand-receptor interaction, etc. in the environmental information processing. The results showed that pathway analysis at transcriptome and metabolome levels confirmed that the immune system of mice was affected after drinking water contaminated with polystyrene nanoplastics.
Collapse
Affiliation(s)
- Jianzhou Shi
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; The Shennong Laboratory, Zhengzhou 450046, China.
| | - Xianyi Yu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China.
| | - Jinbing Zhao
- School of Life Science, Nanyang Normal University, Nanyang 473061, China.
| | - Tiejun Wang
- Nanyang Vocational College of Agriculture, Nanyang 473000, China.
| | - Na Li
- School of Life Science, Nanyang Normal University, Nanyang 473061, China.
| | - Jinran Yu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China.
| | - Lunguang Yao
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, Nanyang, Henan Province, China; Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang 473061, China.
| |
Collapse
|
28
|
Sun M, Zhang M, Di F, Bai W, Sun J, Zhang M, Sun J, Li M, Liang X. Polystyrene nanoplastics induced learning and memory impairments in mice by damaging the glymphatic system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116874. [PMID: 39153278 DOI: 10.1016/j.ecoenv.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The excessive usage of nanoplastics (NPs) has posed a serious threat to the ecological environment and human health, which can enter the brain and then result in neurotoxicity. However, research on the neurotoxic effects of NPs based on different exposure routes and modifications of functional groups is lacking. In this study, the neurotoxicity induced by NPs was studied using polystyrene nanoplastics (PS-NPs) of different modifications (PS, PS-COOH, and PS-NH2). It was found that PS-NH2 through intranasal administration (INA) exposure route exhibited the greatest accumulation in the mice brain after exposure for 7 days. After the mice were exposed to PS-NH2 by INA means for 28 days, the exploratory ability and spatial learning ability were obviously damaged in a dose-dependent manner. Further analysis indicated that these damages induced by PS-NH2 were closely related to the decreased ability of glymphatic system to clear β-amyloid (Aβ) and phosphorylated Tau (P-Tau) proteins, which was ascribed to the loss of aquaporin-4 (AQP4) polarization in the astrocytic endfeet. Moreover, the loss of AQP4 polarization might be regulated by the NF-κB pathway. Our current study establishes the connection between the neurotoxicity induced by PS-NPs and the glymphatic system dysfunction for the first time, which will contribute to future research on the neurotoxicity of NPs.
Collapse
Affiliation(s)
- Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fanglin Di
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weijie Bai
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Mingkun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jinlong Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Xue Liang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
29
|
Zhong Y, Feng Y, Huang Y, Wang B, Shi W, Liang B, Li Z, Zhang B, Du J, Xiu J, Yang X, Huang Z. Polystyrene nanoplastics accelerate atherosclerosis: Unraveling the impact on smooth muscle cells through KIF15-mediated migration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116983. [PMID: 39232293 DOI: 10.1016/j.ecoenv.2024.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Microplastics and nanoplastics (MNPs) originating from plastic pollution pose potential threats to cardiovascular health, with prior studies linking MNPs to atherosclerosis. Our earlier research elucidated how nanoplastics enhance macrophages' phagocytic activity, leading to the formation of foam cells and an elevated risk of atherosclerosis. However, the specific influence of MNPs on smooth muscle cells (SMCs) in the context of MNP-induced atherosclerosis remains poorly understood. In this study, ApoE knockout (ApoE-/-) male mice with a high-fat diet were orally exposed to environmentally realistic concentrations of 2.5-250 mg/kg polystyrene nanoplastics (PS-NPs, 50 nm) for consecutive 19 weeks. Cardiovascular toxicity was comprehensively assessed through histopathological, transcriptomic, and proteomic analyses, while mechanisms underlying this toxicity were explored through in vitro studies. Herein, hematoxylin and eosin staining revealed accelerated atherosclerotic plaque development in ApoE-/- mice exposed to PS-NPs. Multi-omics analysis identified kinesin family member 15 (KIF15) as a pivotal target molecule. Both in vitro and in vivo experiments affirmed the specific upregulation of KIF15 in mouse aortic SMCs exposed to PS-NPs. Furthermore, in vitro experiments demonstrated that PS-NPs can promote the migration ability of MOVAS cells. Knockdown of Kif15 revealed its role in reducing MOVAS cell migration, with subsequent exposure to PS-NPs reversing the increased migration ability. This suggests that PS-NPs promote SMC migration by upregulating KIF15, and the migration of SMCs is closely associated with atherosclerosis outcomes. This study significantly advances our understanding of MNP-induced cardiovascular toxicity, providing valuable insights for risk assessment of human MNP exposure.
Collapse
Affiliation(s)
- Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bo Wang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenting Shi
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingli Zhang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiancheng Xiu
- State Key Laboratory of Organ Failure Research Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
30
|
Liang B, Deng Y, Huang Y, Zhong Y, Li Z, Du J, Ye R, Feng Y, Bai R, Fan B, Chen X, Huang X, Yang X, Xian H, Yang X, Huang Z. Fragile Guts Make Fragile Brains: Intestinal Epithelial Nrf2 Deficiency Exacerbates Neurotoxicity Induced by Polystyrene Nanoplastics. ACS NANO 2024; 18:24044-24059. [PMID: 39158845 DOI: 10.1021/acsnano.4c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Oral ingestion is the primary route for human exposure to nanoplastics, making the gastrointestinal tract one of the first and most impacted organs. Given the presence of the gut-brain axis, a crucial concern arises regarding the potential impact of intestinal damage on the neurotoxic effects of nanoplastics (NPs). The intricate mechanisms underlying NP-induced neurotoxicity through the microbiome-gut-brain axis necessitate further investigation. To address this, we used mice specifically engineered with nuclear factor erythroid-derived 2-related factor 2 (Nrf2) deficiency in their intestines, a strain whose intestines are particularly susceptible to polystyrene NPs (PS-NPs). We conducted a 28-day repeated-dose oral toxicity study with 2.5 and 250 mg/kg of 50 nm PS-NPs in these mice. Our study delineated how PS-NP exposure caused gut microbiota dysbiosis, characterized by Mycoplasma and Coriobacteriaceae proliferation, resulting in increased levels of interleukin 17C (IL-17C) production in the intestines. The surplus IL-17C permeated the brain via the bloodstream, triggering inflammation and brain damage. Our investigation elucidated a direct correlation between intestinal health and neurological outcomes in the context of PS-NP exposure. Susceptible mice with fragile guts exhibited heightened neurotoxicity induced by PS-NPs. This phenomenon was attributed to the elevated abundance of microbiota associated with IL-17C production in the intestines of these mice, such as Mesorhizobium and Lwoffii, provoked by PS-NPs. Neurotoxicity was alleviated by in vivo treatment with anti-IL-17C-neutralizing antibodies or antibiotics. These findings advanced our comprehension of the regulatory mechanisms governing the gut-brain axis in PS-NP-induced neurotoxicity and underscored the critical importance of maintaining intestinal health to mitigate the neurotoxic effects of PS-NPs.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
31
|
Subramanian D, Ponnusamy Manogaran G, Dharmadurai D. A systematic review on the impact of micro-nanoplastics on human health: Potential modulation of epigenetic mechanisms and identification of biomarkers. CHEMOSPHERE 2024; 363:142986. [PMID: 39094707 DOI: 10.1016/j.chemosphere.2024.142986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Epigenetic-mediated modifications, induced by adverse environmental conditions, significantly alter an organism's physiological mechanisms. Even after elimination of the stimulus, these epigenetic modifications can be inherited through mitosis, thereby triggering transgenerational epigenetics. Plastics, with their versatile properties, are indispensable in various aspects of daily life. However, due to mismanagement, plastics have become so ubiquitous in the environment that no ecosystem on Earth is free from micro-nanoplastics (MNPs). This situation has raised profound concerns regarding their potential impact on human health. Recently, both in vivo animal and in vitro human cellular models have shown the potential to identify the harmful effects of MNPs at the genome level. The emerging epigenetic impact of MNP exposure is characterized by short-term alterations in chromatin remodelling and miRNA modulation. However, to understand long-term epigenetic changes and potential transgenerational effects, substantial and more environmentally realistic exposure studies are needed. In the current review, the intricate epigenetic responses, including the NHL-2-EKL-1, NDK-1-KSR1/2, and WRT-3-ASP-2 cascades, wnt-signalling, and TGF- β signalling, established in model organisms such as C. elegans, mice, and human cell lines upon exposure to MNPs, were systematically examined. This comprehensive analysis aimed to predict human pathways by identifying human homologs using databases and algorithms. We are confident that various parallel miRNA pathways, specifically the KSR-ERK-MAPK pathway, FOXO-Insulin cascade, and GPX3-HIF-α in humans, may be influenced by MNP exposure. This influence may lead to disruptions in key metabolic and immune pathways, including glucose balance, apoptosis, cell proliferation, and angiogenesis. Therefore, we believe that these genes and pathways could serve as potential biomarkers for future studies. Additionally, this review emphasizes the origin, dispersion, and distribution of plastics, providing valuable insights into the complex relationship between plastics and human health while elaborating on the epigenetic impacts.
Collapse
Affiliation(s)
- Darshini Subramanian
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| | | | - Dhanasekaran Dharmadurai
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
32
|
Tian L, Zhang Y, Chen J, Liu X, Nie H, Li K, Liu H, Lai W, Shi Y, Xi Z, Lin B. Effects of nanoplastic exposure during pregnancy and lactation on neurodevelopment of rat offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134800. [PMID: 38850955 DOI: 10.1016/j.jhazmat.2024.134800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Microplastics have emerged as a prominent global environmental contaminant, and they have been found in both human placenta and breast milk. However, the potential effects and mechanisms of maternal exposure to microplastics at various gestational stages on offspring neurodevelopment remain poorly understood. This investigation delves into the potential neurodevelopmental ramifications of maternal exposure to polystyrene nanoplastics (PS-NPs) during distinct phases of pregnancy and lactation. Targeted metabolomics shows that co-exposure during both pregnancy and lactation primarily engendered alterations in monoamine neurotransmitters within the cortex and amino acid neurotransmitters within the hippocampus. After prenatal exposure to PS-NPs, fetal rats showed appreciably diminished cortical thickness and heightened cortical cell proliferation. However, this exposure did not affect the neurodifferentiation of radial glial cells and intermediate progenitor cells. In addition, offspring are accompanied by disordered neocortical migration, typified by escalated superficial layer neurons proliferation and reduced deep layer neurons populations. Moreover, the hippocampal synapses showed significantly widened synaptic clefts and diminished postsynaptic density. Consequently, PS-NPs culminated in deficits in anxiolytic-like behaviors and spatial memory in adolescent offspring, aligning with concurrent neurotransmitter and synaptic alterations. In conclusion, this study elucidates the sensitive windows of early-life nanoplastic exposure and the consequential impact on offspring neurodevelopment.
Collapse
Affiliation(s)
- Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yaping Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Jiang Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health, North China University of Science and Technology, Tangshan 063200, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
33
|
Kaushik A, Singh A, Kumar Gupta V, Mishra YK. Nano/micro-plastic, an invisible threat getting into the brain. CHEMOSPHERE 2024; 361:142380. [PMID: 38763401 DOI: 10.1016/j.chemosphere.2024.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Due to weather and working/operational conditions, plastic degradation produces toxic and non-biodegradable nano and microplastics (N/M-Ps, ranging from 10 nm to 5 mm), and over time these N/M-Ps have integrated with the human cycle through ingestion and inhalation. These N/M-Ps, as serious emerging pollutants, are causing considerable adverse health issues due to up-taken by the cells, tissue, and organs, including the brain. It has been proven that N/M-Ps can cross the blood-brain barrier (via olfactory and blood vessels) and affect the secretion of neuroinflammatory (cytokine and chemokine), transporters, and receptor markers. Neurotoxicity, neuroinflammation, and brain injury, which may result in such scenarios are a serious concern and may cause brain disorders. However, the related pathways and pathogenesis are not well-explored but are the focus of upcoming emerging research. Therefore, as a focus of this editorial, well-organized multidisciplinary research is required to explore associated pathways and pathogenesis, leading to brain mapping and nano-enabled therapeutics in acute and chronic N/M - Ps exposure.
Collapse
Affiliation(s)
- Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA.
| | - Avtar Singh
- Research and Development, Molekule Inc., 3802 Spectrum Blvd., Tampa, FL, 33612, USA.
| | - V Kumar Gupta
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.
| |
Collapse
|
34
|
He J, Xiong S, Zhou W, Qiu H, Rao Y, Liu Y, Shen G, Zhao P, Chen G, Li J. Long-term polystyrene nanoparticles exposure reduces electroretinal responses and exacerbates retinal degeneration induced by light exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134586. [PMID: 38776811 DOI: 10.1016/j.jhazmat.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.
Collapse
Affiliation(s)
- Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China.
| |
Collapse
|
35
|
Zou L, Xu X, Wang Y, Lin F, Zhang C, Liu R, Hou X, Wang J, Jiang X, Zhang Q, Li L. Neonatal Exposure to Polystyrene Nanoplastics Impairs Microglia-Mediated Synaptic Pruning and Causes Social Behavioral Defects in Adulthood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11945-11957. [PMID: 38917348 DOI: 10.1021/acs.est.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The increasing prevalence and persistence of nanoplastics (NPs) have become critical environmental concerns. These particles have the potential to enter the food chain and accumulate in living organisms, which exerts their adverse effects on human health. The release of nanoparticles from feeding bottles raises concerns about potential health issues, especially for newborns exposed to NPs at the neonatal stage. In this study, we examined the impacts of neonatal exposure to polystyrene nanoplastics (PS-NPs) on neurodevelopment. Our study demonstrates that exposure to PS-NPs in newborn mice impairs microglial autophagic function and energy metabolism, leading to the disruption of microglia-mediated synaptic pruning during early neurodevelopment. These mice subsequently develop social behavioral defects in adulthood, suggesting the long-lasting effects of neonatal PS-NP exposure on brain development and behavior. Together, these data provide insights into the mechanism by which PS-NPs affect early neurodevelopment, thus emphasizing the crucial need to address plastic pollution globally.
Collapse
Affiliation(s)
- Le Zou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuelan Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - FeiFan Lin
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| | - Rui Liu
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoyu Hou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jin Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, Jiangsu 210008, China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| | - Qipeng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liang Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| |
Collapse
|
36
|
Liang B, Deng Y, Zhong Y, Chen X, Huang Y, Li Z, Huang X, Yang X, Du J, Ye R, Xian H, Feng Y, Bai R, Fan B, Yang X, Huang Z. Gastrointestinal Incomplete Degradation Exacerbates Neurotoxic Effects of PLA Microplastics via Oligomer Nanoplastics Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401009. [PMID: 38751156 PMCID: PMC11267364 DOI: 10.1002/advs.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/06/2024] [Indexed: 07/25/2024]
Abstract
Biodegradable plastics, hailed for their environmental friendliness, may pose unforeseen risks as they undergo gastrointestinal degradation, forming oligomer nanoplastics. Despite this, the influence of gastrointestinal degradation on the potential human toxicity of biodegradable plastics remains poorly understood. To this end, the impact of the murine in vivo digestive system is investigated on the biotransformation, biodistribution, and toxicity of PLA polymer and PLA oligomer MPs. Through a 28-day repeated oral gavage study in mice, it is revealed that PLA polymer and oligomer microplastics undergo incomplete and complete degradation, respectively, in the gastrointestinal tract. Incompletely degraded PLA polymer microplastics transform into oligomer nanoplastics, heightening bioavailability and toxicity, thereby exacerbating overall toxic effects. Conversely, complete degradation of PLA oligomer microplastics reduces bioavailability and mitigates toxicity, offering a potential avenue for toxicity reduction. Additionally, the study illuminates shared targets and toxicity mechanisms in Parkinson's disease-like neurotoxicity induced by both PLA polymer and PLA oligomer microplastics. This involves the upregulation of MICU3 in midbrains, leading to neuronal mitochondrial calcium overload. Notably, neurotoxicity is mitigated by inhibiting mitochondrial calcium influx with MCU-i4 or facilitating mitochondrial calcium efflux with DBcAMP in mice. These findings enhance the understanding of the toxicological implications of biodegradable microplastics on human health.
Collapse
Affiliation(s)
- Boxuan Liang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Southern Medical UniversityDongguan523059China
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Xiaoqing Chen
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Xiyun Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Xiaohong Yang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Bingchi Fan
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchResearch Center for Food safety and HealthSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchDepartment of Toxicology, School of Public HealthSouthern Medical UniversityGuangzhou510515China
- Department of Cardiovascular SurgeryZhujiang Hospital, Southern Medical UniversityGuangzhou510280China
| |
Collapse
|
37
|
Li Z, Xian H, Ye R, Zhong Y, Liang B, Huang Y, Dai M, Guo J, Tang S, Ren X, Bai R, Feng Y, Deng Y, Yang X, Chen D, Yang Z, Huang Z. Gender-specific effects of polystyrene nanoplastic exposure on triclosan-induced reproductive toxicity in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172876. [PMID: 38692326 DOI: 10.1016/j.scitotenv.2024.172876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Nanoplastics (NPs) and triclosan (TCS) are ubiquitous emerging environmental contaminants detected in human samples. While the reproductive toxicity of TCS alone has been studied, its combined effects with NPs remain unclear. Herein, we employed Fourier transform infrared spectroscopy and dynamic light scattering to characterize the coexposure of polystyrene nanoplastics (PS-NPs, 50 nm) with TCS. Then, adult zebrafish were exposed to TCS at environmentally relevant concentrations (0.361-48.2 μg/L), with or without PS-NPs (1.0 mg/L) for 21 days. TCS biodistribution in zebrafish tissues was investigated using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Reproductive toxicity was assessed through gonadal histopathology, fertility tests, changes in steroid hormone synthesis and gene expression within the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptomics and proteomics were applied to explore the underlying mechanisms. The results showed that PS-NPs could adsorb TCS, thus altering the PS-NPs' physical characteristics. Our observations revealed that coexposure with PS-NPs reduced TCS levels in the ovaries, livers, and brains of female zebrafish. Conversely, in males, coexposure with PS-NPs increased TCS levels in the testes and livers, while decreasing them in the brain. We found that co-exposure mitigated TCS-induced ovary development inhibition while exacerbated TCS-induced spermatogenesis suppression, resulting in increased embryonic mortality and larval malformations. This co-exposure influenced the expression of genes linked to steroid hormone synthesis (cyp11a1, hsd17β, cyp19a1) and attenuated the TCS-decreased estradiol (E2) in females. Conversely, testosterone levels were suppressed, and E2 levels were elevated due to the upregulation of specific genes (cyp11a1, hsd3β, cyp19a1) in males. Finally, the integrated analysis of transcriptomics and proteomics suggested that the aqp12-dctn2 pathway was involved in PS-NPs' attenuation of TCS-induced reproductive toxicity in females, while the pck2-katnal1 pathway played a role in PS-NPs' exacerbation of TCS-induced reproductive toxicity in males. Collectively, PS-NPs altered TCS-induced reproductive toxicity by disrupting the HPGL axis, with gender-specific effects.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Department of Biology, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
38
|
Chen T, Lin Q, Gong C, Zhao H, Peng R. Research Progress on Micro (Nano)Plastics Exposure-Induced miRNA-Mediated Biotoxicity. TOXICS 2024; 12:475. [PMID: 39058127 PMCID: PMC11280978 DOI: 10.3390/toxics12070475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Micro- and nano-plastics (MNPs) are ubiquitously distributed in the environment, infiltrate organisms through multiple pathways, and accumulate, thus posing potential threats to human health. MNP exposure elicits changes in microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby precipitating immune, neurological, and other toxic effects. The investigation of MNP exposure and its effect on miRNA expression has garnered increasing attention. Following MNP exposure, circRNAs serve as miRNA sponges by modulating gene expression, while lncRNAs function as competing endogenous RNAs (ceRNAs) by fine-tuning target gene expression and consequently impacting protein translation and physiological processes in cells. Dysregulated miRNA expression mediates mitochondrial dysfunction, inflammation, and oxidative stress, thereby increasing the risk of neurodegenerative diseases, cardiovascular diseases, and cancer. This tract, blood, urine, feces, placenta, and review delves into the biotoxicity arising from dysregulated miRNA expression due to MNP exposure and addresses the challenges encountered in this field. This study provides novel insights into the connections between MNPs and disease risk.
Collapse
Affiliation(s)
| | | | | | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (T.C.); (Q.L.); (C.G.)
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (T.C.); (Q.L.); (C.G.)
| |
Collapse
|
39
|
Zhang Y, Tian L, Chen J, Liu X, Li K, Liu H, Lai W, Shi Y, Lin B, Xi Z. Selective bioaccumulation of polystyrene nanoplastics in fetal rat brain and damage to myelin development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116393. [PMID: 38714083 DOI: 10.1016/j.ecoenv.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.
Collapse
Affiliation(s)
- Yaping Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jiang Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health, North China University of Science and Technology, Tangshan 063200, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
40
|
Li C, Chen X, Du Z, Geng X, Li M, Yang X, Bo C, Jia Q, Yu G, Shi L. Inhibiting ferroptosis in brain microvascular endothelial cells: A potential strategy to mitigate polystyrene nanoplastics‒induced blood‒brain barrier dysfunction. ENVIRONMENTAL RESEARCH 2024; 250:118506. [PMID: 38387496 DOI: 10.1016/j.envres.2024.118506] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Polystyrene nanoplastics (PS-NPs), a group of ubiquitous pollutants, may injure the central nervous system through the blood‒brain barrier (BBB). However, whether exposure to PS-NPs contributes to BBB disruption and the underlying mechanisms are still unclear. In vivo, we found that PS-NPs (25 mg/kg BW) could significantly increase BBB permeability in mice and downregulate the distribution of the tight junction-associated protein zona occludens 1 (ZO-1) in brain microvascular endothelial cells (BMECs). Using an in vitro BBB model, exposure to PS-NPs significantly reduced the transendothelial electrical resistance and altered ZO-1 expression and distribution in a dose-dependent manner. RNA-seq analysis and functional investigations were used to investigate the molecular pathways involved in the response to PS-NPs. The results revealed that the ferroptosis and glutathione metabolism signaling pathways were related to the disruption of the BBB model caused by the PS-NPs. PS-NPs treatment promoted ferroptosis in bEnd.3 cells by inducing disordered glutathione metabolism in addition to Fe2+ and lipid peroxide accumulation, while suppressing ferroptosis with ferrostatin-1 (Fer-1) suppressed ferroptosis-related changes in bEnd.3 cells subjected to PS-NPs. Importantly, Fer-1 alleviated the decrease in ZO-1 expression in bEnd.3 cells and the exacerbation of BBB damage induced by PS-NPs. Collectively, our findings suggest that inhibiting ferroptosis in BMECs may serve as a potential therapeutic target against BBB disruption induced by PS-NPs exposure.
Collapse
Affiliation(s)
- Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Xiao Geng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China.
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China; Shandong Mental Health Center, Ji'nan, Shandong, 250014, China.
| | - Liang Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China.
| |
Collapse
|
41
|
Liu Y, Cao Y, Li H, Liu H, Bi L, Chen Q, Peng R. A systematic review of microplastics emissions in kitchens: Understanding the links with diseases in daily life. ENVIRONMENT INTERNATIONAL 2024; 188:108740. [PMID: 38749117 DOI: 10.1016/j.envint.2024.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
The intensification of microplastics (MPs) pollution has emerged as a formidable environmental challenge, with profound global implications. The pervasive presence of MPs across a multitude of environmental mediums, such as the atmosphere, soil, and oceans, extends to commonplace items, culminating in widespread human ingestion and accumulation via channels like food, water, and air. In the domestic realm, kitchens have become significant epicenters for MPs pollution. A plethora of kitchen utensils, encompassing coated non-stick pans, plastic cutting boards, and disposable utensils, are known to release substantial quantities of MPs particles in everyday use, which can then be ingested alongside food. This paper conducts a thorough examination of contemporary research addressing the release of MPs from kitchen utensils during usage and focuses on the health risks associated with MPs ingestion, as well as the myriad factors influencing the release of MPs in kitchen utensils. Leveraging the insights derived from this analysis, this paper proposes a series of strategic recommendations and measures targeted at mitigating the production of MPs in kitchen settings. These initiatives are designed not solely to diminish the release of MPs but also to enhance public awareness regarding this pressing environmental concern. By adopting more informed practices in kitchens, we can significantly contribute to the reduction of the environmental burden of MPs pollution, thus safeguarding both human health and the ecological system.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
42
|
Kaur M, Sharma A, Bhatnagar P. Vertebrate response to microplastics, nanoplastics and co-exposed contaminants: Assessing accumulation, toxicity, behaviour, physiology, and molecular changes. Toxicol Lett 2024; 396:48-69. [PMID: 38677566 DOI: 10.1016/j.toxlet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pollution from microplastics (MPs) and nanoplastics (NPs) has gained significant public attention and has become a serious environmental problem worldwide. This review critically investigates MPs/NPs' ability to pass through biological barriers in vertebrate models and accumulate in various organs, including the brain. After accumulation, these particles can alter individuals' behaviour and exhibit toxic effects by inducing oxidative stress or eliciting an inflammatory response. One major concern is the possibility of transgenerational harm, in which toxic consequences are displayed in offspring who are not directly exposed to MPs/NPs. Due to their large and marked surface hydrophobicity, these particles can easily absorb and concentrate various environmental pollutants, which may increase their toxicity to individuals and subsequent generations. This review systematically provides an analysis of recent studies related to the toxic effects of MPs/NPs, highlighting the intricate interplay between co-contaminants in vitro and in vivo. We further delve into mechanisms of MPs/NPs-induced toxicity and provide an overview of potential therapeutic approaches to lessen the negative effects of these MPs/NPs. The review also emphasizes the urgency of future studies to examine the long-term effects of chronic exposure to MPs/NPs and their size- and type-specific hazardous dynamics, and devising approaches to safeguard the affected organisms.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
43
|
Paing YMM, Eom Y, Song GB, Kim B, Choi MG, Hong S, Lee SH. Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171681. [PMID: 38490422 DOI: 10.1016/j.scitotenv.2024.171681] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 μg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gyeong Bae Song
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bokyung Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Gil Choi
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
44
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
45
|
Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. Neurotoxicities induced by micro/nanoplastics: A review focusing on the risks of neurological diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134054. [PMID: 38503214 DOI: 10.1016/j.jhazmat.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Pollution of micro/nano-plastics (MPs/NPs) is ubiquitously prevalent in the environment, leading to an unavoidable exposure of the human body. Despite the protection of the blood-brain barrier, MPs/NPs can be transferred and accumulated in the brain, which subsequently exert negative effects on the brain. Nevertheless, the potential neurodevelopmental and/or neurodegenerative risks of MPs/NPs remain largely unexplored. In this review, we provide a systematic overview of recent studies related to the neurotoxicity of MPs/NPs. It covers the environmental hazards and human exposure pathways, translocation and distribution into the brain, the neurotoxic effects, and the possible mechanisms of environmental MPs/NPs. MPs/NPs are widely found in different environment matrices, including air, water, soil, and human food. Ambient MPs/NPs can enter the human body by ingestion, inhalation and dermal contact, then be transferred into the brain via the blood circulation and nerve pathways. When MPs/NPs are present in the brain, they can initiate a series of molecular or cellular reactions that may harm the blood-brain barrier, cause oxidative stress, trigger inflammatory responses, affect acetylcholinesterase activity, lead to mitochondrial dysfunction, and impair autophagy. This can result in abnormal protein folding, loss of neurons, disruptions in neurotransmitters, and unusual behaviours, ultimately contributing to the initiation and progression of neurodegenerative changes and neurodevelopmental abnormalities. Key challenges and further research directions are also proposed in this review as more studies are needed to focus on the potential neurotoxicity of MPs/NPs under realistic conditions.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
47
|
Wang H, Qiao C, Gao Y, Geng Y, Niu F, Yang R, Wang Z, Jiang W, Sun H. The adverse effects of developmental exposure to polystyrene nanoparticles on cognitive function in weaning rats and the protective role of trihydroxy phenolacetone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123632. [PMID: 38460594 DOI: 10.1016/j.envpol.2024.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Polystyrene nanoplastic(PS-NP) can originate from sources such as plastic waste and industrial wastewater and have been shown to have deleterious effects on abnormal neurobehaviors. However, evidence regarding the health impacts, biological mechanisms, and treatment strategies underlying developmental exposure to low dose PS-NP is still lacking. This study aimed to fill this knowledge gap by administering low doses of PS-NP(50 and 100 μg/L) to weaning rats for 4 consecutive weeks. Behavioral and morphological experiments were performed to evaluate hippocampal damage, and transcriptomics and Assay for Transposase Accessible Chromatin with hight-throughput sequencing(ATAC) analyses were conducted to identify potential key targets. Additionally, Connectivity Map(CMap) database, Limited proteolysis-mass spectrometry(LiP-SMap), and molecular-protein docking were used to examine potential phytochemicals with therapeutic effects on key targets. The results indicated that developmental exposure to PS-NP can induce hippocampal impairment and aberrant neurobehaviors in adulthood. Multi-omics analyses consistently showed that apoptosis-related signaling pathways were sensitive to PS-NP exposure, and mitogen-activated protein kinase 3(Mapk3) was identified as the core gene by the gene network, which was further validated in vitro experiments. The CMap database provided a series of phytochemicals that might regulate Mapk3 expression, and trihydroxy-phenolacetone(THP) was found to have directly binding sites with Mapk3 through LiP-SMap and molecular docking analysis. Furthermore, THP administration could significantly alleviate apoptosis induced by PS-NP exposure in primary hippocampal cells through down-regulation of Mapk3. These findings suggested that developmental exposure to PS-NP has adverse effects on cognitive function and that THP can alleviate these effects by directly binding to Mapk3.
Collapse
Affiliation(s)
- Hang Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China; National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Conghui Qiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Yang Gao
- Cosmetics Technology Center, Chinese Academy of Inspection and Quarantine, No.11 Rong Hua South Road, Economic-Technological Development Area, Beijing, 100176, China
| | - Yiding Geng
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Fengru Niu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Ruiming Yang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Zheng Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongru Sun
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
48
|
Ma Y, Xu D, Wan Z, Wei Z, Chen Z, Wang Y, Han X, Chen Y. Exposure to different surface-modified polystyrene nanoparticles caused anxiety, depression, and social deficit in mice via damaging mitochondria in neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170739. [PMID: 38340854 DOI: 10.1016/j.scitotenv.2024.170739] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nanoplastics (NPs) are unavoidable hazardous materials that result from the human production and use of plastics. While there is evidence that NPs can bioaccumulate in the brain, no enough research regarding the pathways by which NPs reach the brain was conducted, and it is also urgently needed to evaluate the health threat to the nervous system. Here, we observed accumulation of polystyrene nanoplastics (PS-NPs) with different surface modifications (PS, PS-COOH, and PS-NH2) in mouse brains. Further studies showed that PS-NPs disrupted the tight junctions between endothelial cells and transport into endothelial cells via the endocytosis and macropinocytosis pathways. Additionally, NPs exposure induced a series of alternations in behavioral tests, including anxiety- and depression-like changes and impaired social interaction performance. Further results identified that NPs could be internalized into neurons and localized in the mitochondria, bringing about mitochondrial dysfunction and a concurrent decline of ATP production, which might be associated with abnormal animal behaviors. The findings provide novel insights into the neurotoxicity of NPs and provide a basis for the formulation of policy on plastic production and usage by relevant government agencies.
Collapse
Affiliation(s)
- Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zicheng Wan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Ziyang Wei
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zining Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuheng Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
49
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
50
|
Liang X, Andrikopoulos N, Tang H, Wang Y, Ding F, Ke PC. Nanoplastic Stimulates the Amyloidogenesis of Parkinson's Alpha-Synuclein NACore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308753. [PMID: 37988678 PMCID: PMC10994764 DOI: 10.1002/smll.202308753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Environmental plastic wastes are potential health hazards due to their prevalence as well as their versatility in initiating physical, chemical, and biological interactions and transformations. Indeed, recent research has implicated the adverse effects of micro- and nano-plastics, including their neurotoxicity, yet how plastic particulates may impact the aggregation pathway and toxicity of amyloid proteins pertinent to the pathologies of neurological diseases remains unknown. Here, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) is employed to reveal the polymorphic oligomerization of NACore, a surrogate of alpha-synuclein that is associated with the pathogenesis of Parkinson's disease. These data indicate that the production rate and population of the NACore oligomers are modulated by their exposure to a polystyrene nanoplastic, and these cellular assays further reveal an elevated NACore toxicity in microglial cells elicited by the nanoplastic. These simulations confirm that the nanoplastic-NACore association is promoted by their hydrophobic interactions. These findings are corroborated by an impairment in zebrafish hatching, survival, and development in vivo upon their embryonic exposure to the nanoplastic. Together, this study has uncovered the dynamics and mechanism of amyloidogenesis elevated by a nanoplastic trigger, shedding a new light on the neurological burden of plastic pollution.
Collapse
Affiliation(s)
- Xiufang Liang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Yue Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|