1
|
Shi H, Gong C, Zheng M, Zhao Y, Liu Y, Ma L, Liu Z. Arsenic Enhances the Degradation of Middle-Chain Petroleum Hydrocarbons by Rhodococcus sp. 2021 Under Their Combined Pollution. Microorganisms 2024; 12:2279. [PMID: 39597668 PMCID: PMC11596221 DOI: 10.3390/microorganisms12112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The efficient and green remediation of petroleum hydrocarbon (PH) contamination has emerged as a viable strategy for environmental management. Here, we investigated the interaction between arsenic and PH degradation by Rhodococcus sp. 2021 under their combined pollution. The strain exhibited disparate responses to varying concentrations and valences of arsenic. The elevated concentration of arsenic (>100 mg/L) facilitated the degradation of PHs, and there was a positive correlation between arsenic-promoted degradation of PHs and their carbon-chain length. The degradation of PHs changed with arsenic conditions as follows: trivalent arsenic groups > pentavalent arsenic groups > arsenic-free groups (control). Arsenite and arsenate significantly promoted the gene expression of arsenic metabolism and alkane degrading. But unlike arsenite, arsenate also significantly promoted the gene expression of phosphate metabolism. And arsenite promoted the up-regulation of the expression of genes involved in the process of PHs oxidation and fatty acid oxidation. These results highlight the potential of Rhodococcus sp. 2021 in the remediation of combined total petroleum hydrocarbon (TPH) and heavy metal pollution, providing new insights into the green and sustainable bioremediation of combined pollution of organic matters such as PHs and heavy metals/heavy metal-like elements such as arsenic.
Collapse
Affiliation(s)
- Hongpeng Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chengyan Gong
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Meilin Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yinghao Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| | - Luyan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| | - Zhipei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| |
Collapse
|
2
|
Zhang X, Wu M, Zhang T, Gao H, Ou Y, Li M. Effects of biochar immobilization of Serratia sp. F4 OR414381 on bioremediation of petroleum contamination and bacterial community composition in loess soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134137. [PMID: 38555671 DOI: 10.1016/j.jhazmat.2024.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.
Collapse
Affiliation(s)
- Xuhong Zhang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
| | - Ting Zhang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Gao
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yawen Ou
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengqi Li
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
3
|
Skinner J, Delgado AG, Hyman M, Chu MYJ. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171667. [PMID: 38485017 DOI: 10.1016/j.scitotenv.2024.171667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In situ aerobic cometabolism of groundwater contaminants has been demonstrated to be a valuable bioremediation technology to treat many legacy and emerging contaminants in dilute plumes. Several well-designed and documented field studies have shown that this technology can concurrently treat multiple contaminants and reach very low cleanup goals. Fundamentally different from metabolism-based biodegradation of contaminants, microorganisms that cometabolically degrade contaminants do not obtain sufficient carbon and energy from the degradation process to support their growth and require an exogenous growth supporting primary substrate. Successful applications of aerobic cometabolic treatment therefore require special considerations beyond conventional in situ bioremediation, such as competitive inhibition between growth-supporting primary substrate(s) and contaminant non-growth substrates, toxic effects resulting from contaminant degradation, and differences in microbial population dynamics exhibited by biostimulated indigenous consortia versus bioaugmentation cultures. This article first provides a general review of microbiological factors that are likely to affect the rate of aerobic cometabolic biodegradation. We subsequently review fourteen well documented field-scale aerobic cometabolic bioremediation studies and summarize the underlying microbiological factors that may affect the performance observed in these field studies. The combination of microbiological and engineering principles gained from field testing leads to insights and recommendations on planning, design, and operation of an in situ aerobic cometabolic treatment system. With a vision of more aerobic cometabolic treatments being considered to tackle large, dilute plumes, we present several novel topics and future research directions that can potentially enhance technology development and foster success in implementing this technology for environmental restoration.
Collapse
Affiliation(s)
- Justin Skinner
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA; Andrews Engineering, Inc., 3300 Ginger Creek Drive, Springfield, IL 62711, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Thomas Hall 4545, 112 Derieux Place, Raleigh, NC 27607, USA
| | - Min-Ying Jacob Chu
- Haley & Aldrich Inc., 400 E Van Buren St, Ste 545, Phoenix, AZ 85004, USA.
| |
Collapse
|
4
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Wang S, Guo S. Effects of soil organic carbon metabolism on electro-bioremediation of petroleum-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132180. [PMID: 37527589 DOI: 10.1016/j.jhazmat.2023.132180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Soil organic carbon (SOC) potentially interacts with microbial metabolism and may affect the degradation of petroleum-derived carbon (PDC) in the electro-bioremediation of petroleum-contaminated soil. This study evaluated the interactions among organic carbon, soil properties, and microbial communities to explore the role of SOC during the electro-bioremediation process. The results showed that petroleum degradation exerted superposition and synergistic electrokinetic and bioremediation effects, as exemplified by the EB and EB-PR tests, owing to the maintenance and enhancement of SOC utilization (P/S value), respectively. The highest P/S value (2.0-2.4) was found in the electrochemical oxidation zone due to low SOC consumption. In the biological oxidation zones, electric stimulation enhanced the degradation of PDC and SOC, with higher average P/S values than those of the Bio test. Soil pH, Eh, inorganic ions, and bioavailable petroleum fractions were the main factors reshaping the microbial communities. SOC metabolism effectively buffered the stress of environmental factors and pollutants while maintaining functional bacterial abundance, microbial alpha diversity, and community similarity, thus saving the weakened PDC biodegradation efficiency in the EB and EB-PR tests. The study of the effect of SOC metabolism on petroleum biodegradation contributes to the development of sustainable low-carbon electro-bioremediation technology.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
7
|
Chen B, Xu J, Lu H, Zhu L. Remediation of benzo[a]pyrene contaminated soils by moderate chemical oxidation coupled with microbial degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161801. [PMID: 36739024 DOI: 10.1016/j.scitotenv.2023.161801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical oxidation is a promising technology for the remediation of organics-contaminated soils. However, residual oxidants and transformation products have adverse effects on microbial activities. This work aimed at moderate chemical oxidation coupled with microbial degradation (MOMD) for the removal of benzo[a]pyrene (BaP) by optimizing the type and dosage of oxidants. Potassium permanganate (KMnO4), Fe2+ + sodium persulfate (Fe2+ + PS), Fenton's reagent (Fe2+ + H2O2), and hydrogen peroxide (H2O2) were compared for BaP removal from loam clay and sandy soils. Overall, the removal efficiency of BaP by a moderate dose of oxidant coupled indigenous microorganism was slightly lower than that by a high dose of relevant oxidant. The contributions of microbial degradation to the total removal of BaP varied for different oxidants and soils. The removal efficiency of BaP from loam clay sandy soil by a moderate dose of KMnO4 (25 mmol/L) was 94.3 ± 1.1 % and 92.5 ± 1.8 %, respectively, which were both relatively higher than those under other conditions. The indirect carbon footprint yielded by the moderate dose of oxidants was 39.2-72.8 % less than that by the complete oxidation. A moderate dose of oxidants also reduced disturbances to soil pH and OC. The microbial communities after MOMD treatment were dominated by Burkholderiaceae, Enterobacteriaceae, Alicyclobacillaceae, and Oxalobacteraceae. These dominant microorganisms promoted the removal of BaP through the expression of polycyclic aromatic hydrocarbon-ring hydroxylated dioxygenase gene. Compared with complete chemical oxidation, MOMD is also a promising technique with the utilization of indigenous microorganism for remediating BaP-contaminated soils.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Agriculture & Forest University, Lin'an, Zhejiang 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Hou Z, Zhou Q, Mo F, Kang W, Ouyang S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161402. [PMID: 36638996 DOI: 10.1016/j.scitotenv.2023.161402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Yavuz B, Januszewski B, Chen T, Delgado AG, Westerhoff P, Rittmann B. Using radish (Raphanus lativus L.) germination to establish a benchmark dose for the toxicity of ozonated-petroleum byproducts in soil. CHEMOSPHERE 2023; 313:137382. [PMID: 36442677 DOI: 10.1016/j.chemosphere.2022.137382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The concentration-response relationship between the germination outcome of radish (Raphanus lativus L.) and ozonated petroleum residuals was determined experimentally. The outcomes were used to produce an ecological risk assessment model to predict the extra risk of adverse outcomes based on the concentration of ozonated residuals. A test soil with low organic matter (0.5% w/w) was mixed with raw crude oil, artificially weathered, and treated at three doses of ozone (O3) gas (5 g, 10 g, and 40 g O3 per 600 g of soil). Total petroleum hydrocarbons (TPH) and produced dissolved organic carbon (DOC) were measured. TREATMENT categories (control, petroleum, petroleum + 5 g O3, petroleum + 10 g O3, and petroleum + 40 g O3) were then used to create a dilution series using different proportions of the test soil and a commercially available potting mix (∼75% w/w organic matter) to evaluate the effects of background organic matter (b-ORGANIC) in conjunction with TPH and DOC. Multivariable logistic regression was performed on the adverse germination outcome as a function of TPH, DOC, TREATMENT, and b-ORGANIC. The parameters controlling germination were the continuous variable DOC and the categorical variables TREATMENT and b-ORGANIC. Radish germination was strongly harmed by DOC from ozonation, but DOC's ecotoxicity decreased with increasing O3 dose and the presence of b-ORGANIC beyond 10% (w/w). We used the germination outcome of radish to produce a logistic regression model that computes margins of DOC (± std. error) that create 10%, 25%, and 50% extra risk of adverse germination effects.
Collapse
Affiliation(s)
- Burcu Yavuz
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA.
| | - Brielle Januszewski
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave (Room 501), New Haven, CT, 06511, USA
| | - Tengfei Chen
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; Geosyntec Consultants, Inc., 11811 N Tatum Blvd, Suite P186, Phoenix, AZ, 85028, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, 650 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA
| |
Collapse
|
10
|
Biosurfactant Production from the Biodegradation of n-Paraffins, Isoprenoids and Aromatic Hydrocarbons from Crude Petroleum by Yarrowia lipolytica IMUFRJ 50682. FERMENTATION 2022. [DOI: 10.3390/fermentation9010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Yarrowia lipolytica is a unique, strictly aerobic yeast with the ability to degrade efficiently hydrophobic substrates. In the present work, we evaluated the degrading potential of Yarrowia lipolytica IMUFRJ 50682, isolated from tropical estuarine water in Rio de Janeiro (Brazil), and the possible biomolecules produced during this process. To investigate which crude oil compounds are degraded by Y. lipolytica IMUFRJ 50682, this microorganism was grown in a medium containing Marlim petroleum (19 °API, American Petroleum Institute gravity) at 28 °C and 160 rpm for 5 days. The residual petroleum was submitted to gas chromatograph-mass spectrometric analysis (GC-MS). The chromatographic fingerprints of the residual petroleum were compared with the abiotic control test incubated in the same conditions. Y. lipolytica assimilates high molecular weight hydrocarbons, such as n-alkanes (C11-C19), isoprenoids (pristane and phytane), aromatics with two or three aromatics rings (naphthalene, methylnaphthalenes, dimethylnaphthalenes, trimethylnaphthalenes, phenanthrene, methylphenanthrenes, dimethylphenanthrenes, anthracene). This strain was also capable of consuming more complex hydrocarbons, such as tricyclic terpanes. During this biodegradation, the emulsification index of the culture medium increased significantly, showing that biosurfactant molecules can be produced from this process. Therefore, Y. lipolytica IMUFRJ 50682 showed to be a potential crude oil degrading yeast, which can be used for bioremediation processes and simultaneously produce bioproducts of commercial interest.
Collapse
|
11
|
Meinel M, Delgado AG, Ilhan ZE, Aguero ML, Aguiar S, Krajmalnik-Brown R, Torres CI. Organic carbon metabolism is a main determinant of hydrogen demand and dynamics in anaerobic soils. CHEMOSPHERE 2022; 303:134877. [PMID: 35577129 DOI: 10.1016/j.chemosphere.2022.134877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen (H2) is a crucial electron donor for many processes in the environment including nitrate-, sulfate- and, iron-reduction, homoacetogenesis, and methanogenesis, and is a major determinant of microbial competition and metabolic pathways in groundwater, sediments, and soils. Despite the importance of H2 for many microbial processes in the environment, the total H2 consuming capacity (or H2 demand) of soils is generally unknown. Using soil microcosms with added H2, the aims of this study were 1) to measure the H2 demand of geochemically diverse soils and 2) to define the processes leading to this demand. Study results documented a large range of H2 demand in soil (0.034-1.2 millielectron equivalents H2 g-1 soil). The measured H2 demand greatly exceeded the theoretical demand predicted based on measured concentrations of common electron acceptors initially present in a library of 15 soils. While methanogenesis accounted for the largest fraction of H2 demand, humic acid reduction and acetogenesis were also significant contributing H2-consuming processes. Much of the H2 demand could be attributed to CO2 produced during incubation from fermentation and/or acetoclastic methanogenesis. The soil initial total organic carbon showed the strongest correlation to H2 demand. Besides external additions, H2 was likely generated or cycled in the microcosms. Apart from fermentative H2 production, carboxylate elongation to produce C4-C7 fatty acids may have accounted for additional H2 production in these soils. Many of these processes, especially the organic carbon contribution is underestimated in microbial models for H2 consumption in natural soil ecosystems or during bioremediation of contaminants in soils.
Collapse
Affiliation(s)
- Megan Meinel
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Anca G Delgado
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Zehra Esra Ilhan
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA
| | - Marisol Luna Aguero
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Samuel Aguiar
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Biodesign Center for Health Through Microbiomes, 1001 S McAllister Ave, Tempe, AZ, USA.
| | - César I Torres
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School for Engineering of Matter, Transport & Energy, 1001 S McAllister Ave, Tempe, AZ, USA.
| |
Collapse
|
12
|
Li Y, Wei M, Yu B, Liu L, Xue Q. Thermal desorption optimization for the remediation of hydrocarbon-contaminated soils by a self-built sustainability evaluation tool. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129156. [PMID: 35596989 DOI: 10.1016/j.jhazmat.2022.129156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Current thermal desorption practices of hydrocarbon-contaminated soils focus on remediation efficiency and cost, with little systematic assessment of the reuse value of treated soils. This study evaluated various integrated indices of treatment cost and reuse of treated soils at three desorption temperatures. Various typical engineering and ecological characteristics closely related to soil reusability were selected to analyze the changes in various treated soils, including shear strength, Atterberg limits, particle size distribution, permeability, soil carbon, and soil biomass. A sustainability evaluation tool was developed for the greener disposal of hazardous soils considering both the treatment cost and reuse indices. Such an evaluation led to the conclusion that the contaminated soils treated at 350 °C generated the highest soil reusability with an excellent remediation efficiency. The sensitivity analysis confirmed that the tool had better stability in a common situation where the weight of the remediation cost was heavier than the soil reusability. Meanwhile, published data were input into the tool to validate its applicability under different scenarios. The results were consistent with the qualitative assessment of the literature. The tool can quantitatively select a more sustainable desorption method for the disposal and reuse of hazardous soils.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei province Key Laboratory of contaminated sludge and soil science and Engineering, Wuhan, 430071, China
| | - Mingli Wei
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing 214200, China
| | - Bowei Yu
- Specialist Laboratory, Alliance Geotechnical Pty Ltd, 2147, Australia
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei province Key Laboratory of contaminated sludge and soil science and Engineering, Wuhan, 430071, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei province Key Laboratory of contaminated sludge and soil science and Engineering, Wuhan, 430071, China
| |
Collapse
|