1
|
Peña-Álvarez V, Asensio V, Baragaño D, Forján R, Peláez AI, Gallego JLR. Integrated landfarming strategy for remediation of HCH-contaminated soil: Synergistic effects of bioaugmentation, organic amendments, and nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137637. [PMID: 39983642 DOI: 10.1016/j.jhazmat.2025.137637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Hexachlorocyclohexane (HCH) isomers are toxic and persistent pollutants that pose serious risks to the environment and human health. Here we tested the capacity of various nature-based solutions to degrade HCH in contaminated soils of O Porriño area (Galicia, Spain). To this end, eight microcosms were established using combinations of tailor-made biostabilized organic amendments, nanoscale zero-valent iron (nZVI), and an autochthonous microbial inoculum. Throughout a 60-day experiment, we conducted HCH quantification, leachability tests, bacterial community analysis, and soil health assessment. Our results showed that landfarming alone achieved a reduction of up to 83 % in ∑HCH concentrations, demonstrating its cost-effectiveness, facilitated by the physical disruption of HCH aggregates and the presence of HCH-degrading bacteria as Sphingobium, Mesorhizobium and Cupriavidus. Organic amendments did not improve the HCH degradation rate of landfarming, but, notably, reduced HCH leachability and improved soil properties; the combination of the inoculum with the organic amendments revealed the same positive effects but a higher HCH depletion similar to that of landfarming. Thus, the synergistic effects of organic amending and inoculum in an integrated landfarming allows a reduction of the environmental risk and a potential long-term soil restoration, while a landfarming without amendments appear as a cost-effective option but only to reduce HCH contents. These findings aim to provide valuable insights into integrated approach for HCH large-scale landfarming remediation.
Collapse
Affiliation(s)
- Verónica Peña-Álvarez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | | | - Diego Baragaño
- Instituto Geológico y Minero de España (IGME-CSIC), Oviedo, Spain
| | - Rubén Forján
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain
| | - Ana Isabel Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain.
| |
Collapse
|
2
|
Liu H, Wu D, Wang W. A review of enhancement of chlorophenol bioremediation using synergistic effects between zero-valent iron and microorganisms. Biodegradation 2025; 36:47. [PMID: 40388055 DOI: 10.1007/s10532-025-10133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Chlorophenols (CPs) are a class of synthetic organic chemicals that are widely distributed in soil and groundwater, posing significant risks to human health and the environment due to persistence, acute toxicity, and potential carcinogenicity. Zero-valent iron (ZVI) has emerged as a promising remediation technique for CPs, but its efficacy is often hindered by surface passivation, non-target competition, and limited mobility in the subsurface. While CPs are inherently biodegradable, their high toxicity and the lack of functional enzymes in indigenous microbial systems restrict the effectiveness of bioremediation. Recently, a hybrid system integrating ZVI with microbial degradation draws increasingly research interests, paving out a new path for sustainable degradation of CPs. These systems leverage the synergistic interactions between ZVI and microorganisms to enhance CP biodegradation. This review provides a comprehensive analysis of the advancement. Key topics include the enhancement of electron transfer, alterations to microbial communities, mitigation of toxicity, and the interplay between other processes. Operation modes, ZVI dosage, and interactions with naturally occurring iron minerals, are also discussed in the context of applications in soil and groundwater remediation. Despite research efforts and successful implementations, critical knowledge gaps remain, particularly in regard to the characterization of microbial processes in natural systems, highlighting the need for future research.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
- Shanghai Jianke Environmental Technology Co., Ltd, Shanghai, 200032, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| | - Weishi Wang
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| |
Collapse
|
3
|
Leal-Duaso A, Salvatella L, Fraile JM. Physical-chemical transformations for the remediation and valorization of hexachlorocyclohexanes (HCHs) including lindane: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124262. [PMID: 39904237 DOI: 10.1016/j.jenvman.2025.124262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/28/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
The production of the former insecticide lindane (γ-HCH) resulted in the generation of vast quantities of hexachlorocyclohexanes (HCH) residues, creating one of the most significant environmental challenges related to persistent organic pollutants in the world. This contamination is present today in different scenarios, including stockpiles and highly concentrated mixed waste, contaminated surface soils, subsoil, and waters. In particular, Dense Non-Aqueous Phase Liquids (DNAPLs) represent challenging subsurface and groundwater contamination. This review provides a comprehensive and critical overview of the physical-chemical methodologies and remediation projects reported in the literature for addressing lindane contamination through separation, transformation, disposal, and valorization approaches. The available physicochemical techniques include dehydrochlorination, oxidation, reduction, substitution, isomerization, as well as electrochemical, photochemical, sonochemical, plasma, and other high energy treatments. Key aspects, such as advantages and limitations, remediation effectiveness, technological maturity, scalability, estimated costs, and applicability to different contamination scenarios are thoroughly analyzed for each method. The review culminates in a detailed comparison of these methodologies for various contamination contexts, providing valuable insights for the identification of optimal solutions to this global environmental challenge. In addition, the review assesses, for the first time, the potential for valorization of the products formed during HCH treatment or remediation. This aspect highlights the opportunity to transform HCH residues into higher value-added chemicals, thereby enhancing the circular economy of the remediation process. Finally, the integration of physicochemical methods with separation and biological tools offers a holistic perspective that underscores the importance of comprehensive strategies for addressing HCH contamination effectively and sustainably.
Collapse
Affiliation(s)
- Alejandro Leal-Duaso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain.
| | - Luis Salvatella
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - José M Fraile
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain.
| |
Collapse
|
4
|
Wu C, Hang S, Li F, Wu Y, Yi S, Liu X, Chen M, Ge F, Tian J, Zhang M, Zhang D. DNA-stable isotope probing and metagenomics reveal Fe(II) oxidation by core microflora in microoxic rhizospheric habitats to mitigate the accumulation of cadmium and phenanthrene in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125012. [PMID: 39313124 DOI: 10.1016/j.envpol.2024.125012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Rice rhizosphere soil-porewater microdomains exist within an iron (Fe)-rich microoxic habitat during paddy soil flooding. However, the response mechanisms of core microflora in this habitat to Fe(II)-oxidation-mediated cadmium (Cd) and phenanthrene (Phen) remain unclear. Using gel-stabilized gradient systems to replicate the microoxic conditions in the rice rhizosphere porewater, we found that microaerophilic rhizobacteria drove Fe(II) oxidation to yield iron oxides, thereby reducing the Cd and Phen contents in the rhizosphere porewater and rice (Cd and Phen decreased by 15.9%-78.0% and 10.1%-37.4%, respectively). However, co-exposure to Cd and Phen resulted in a greater reduction in the Cd uptake and a greater increase in the Phen uptake in rice as compared to those in the Cd or Phen treatments, possibly attributing to the cation-π interactions between Cd and Phen, as well as competition between the adsorption sites on the roots. The elevation of Cd-tolerant genes and Phen-degradation genes in biogenic cell-mineral aggregates unveiled the survival strategies of rhizobacteria with respect to Cd and Phen in the microoxic habitat. Potential Cd-tolerant rhizobacteria (e.g., Pandoraea and Comamonas) and Phen-degradation rhizobacteria (e.g., Pseudoxanthobacter) were identified through the DNA-SIP and 16S rRNA gene amplicon sequencing. Metagenomic analysis further confirmed that these core microbes harbor Cd-tolerant, Phen-degradation, and Fe(II) oxidation genes, supporting their metabolic potential for Cd and/or Phen in the microoxic habitat of the rice rhizosphere. These findings suggest the potential mechanism and ecological significance of core rhizospheric microbial-driven Fe(II) oxidation in mitigating the bioavailability of Cd and Phen in paddy soil during flooding.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Sicheng Hang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China.
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Xingang Liu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Mingjie Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
5
|
Lin M, Pan C, Qian C, Tang F, Zhao S, Guo J, Zhang Y, Song J, Rittmann BE. Core taxa, co-occurrence pattern, diversity, and metabolic pathways contributing to robust anaerobic biodegradation of chlorophenol. ENVIRONMENTAL RESEARCH 2024; 241:117591. [PMID: 37926226 DOI: 10.1016/j.envres.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 μM to 180 μM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 μM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.
Collapse
Affiliation(s)
- Ming Lin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenhui Pan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenyi Qian
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Fei Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Siwen Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jun Guo
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200238, PR China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jiaxiu Song
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
6
|
Zhang Z, Zhou Z, Liu X, Zhang H, Xu H, Lin C, He M, Ouyang W. Mechanochemical remediation of lindane-contaminated soils assisted by CaO: Performance, mechanism and overall assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131985. [PMID: 37413802 DOI: 10.1016/j.jhazmat.2023.131985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Soil contamination caused by persistent organic pollutants (POPs) has been a worldwide concern for decades. With lindane-contaminated soil as the target, a mechanochemical method assisted by CaO was comprehensively evaluated in terms of its remediation performance, degradation mechanism and overall assessment. The mechanochemical degradation performance of lindane in cinnamon soil or kaolin was determined under different additives, lindane concentrations and milling conditions. 2,2-Diphenyl-1-(2,4,6-trinitrophenyl) hydrazinyl free radical (DPPH•) and electron spin resonance (ESR) tests evidenced that the degradation of lindane in soil was caused mainly by the mechanical activation of CaO to produce free electrons (e-) and the alkalinity of the generated Ca(OH)2. Dehydrochlorination or dechlorination by elimination, alkaline hydrolysis, hydrogenolysis and the subsequent carbonization were the main degradation pathways of lindane in soil. The main final products included monochlorobenzene, carbon substances and methane. The mechanochemical method with CaO was proved to also efficiently degrade lindane in three other soils and other hexachlorocyclohexane isomers and POPs in soil. The soil properties and soil toxicity after remediation were assessed. This work presents a relatively clear discussion of various aspects of the mechanochemical remediation of lindane-contaminated soil assisted by CaO.
Collapse
Affiliation(s)
- Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; North China Power Engineering CO., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hengpu Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Semerád J, Lhotský O, Filipová A, Urban O, Šírová K, Boháčková J, Komárek M, Cajthaml T. Remedial trial of sequential anoxic/oxic chemico-biological treatment for decontamination of extreme hexachlorocyclohexane concentrations in polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130199. [PMID: 36279651 DOI: 10.1016/j.jhazmat.2022.130199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
During production of γ-hexachlorocyclohexane (γ-HCH), thousands of tons of other isomers were synthesized as byproducts, and after dumping represent sources of contamination for the environment. Several microbes have the potential for aerobic and anaerobic degradation of HCHs, and zero-valent iron is an effective remediation agent for abiotic dechlorination of HCHs, whereas the combination of the processes has not yet been explored. In this study, a sequence of anoxic/oxic chemico-biological treatments for the degradation of HCHs in a real extremely contaminated soil (10-30 g/kg) was applied. Approximately 1500 kg of the soil was employed, and various combinations of reducing and oxygen-releasing chemicals were used for setting up the aerobic and anaerobic phases. The best results were obtained with mZVI/nZVI, grass cuttings, and oxygen-releasing compounds. In this case, 80 % removal of HCHs was achieved in 129 days, and 98 % degradation was achieved after 1106 days. The analysis of HCHs and their transformation products proved active degradation when slight accumulation of the transformation product during the anaerobic phase was followed by aerobic degradation. The results document that switching between aerobic and anaerobic phases, together with the addition of grass, also created suitable conditions for the biodegradation of HCHs and monochlorobenzene/benzene by microbes.
Collapse
Affiliation(s)
- Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Ondřej Lhotský
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Dekonta a.s., Dřetovice 109, CZ-27342 Stehelčeves, Czech Republic
| | - Alena Filipová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Ondřej Urban
- Dekonta a.s., Dřetovice 109, CZ-27342 Stehelčeves, Czech Republic
| | - Kateřina Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Jana Boháčková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague - Suchdol, CZ-165 00, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic.
| |
Collapse
|
8
|
Zhu M, Liu Y, Xu J, He Y. Compound-specific stable isotope analysis for characterization of the transformation of γ-HCH induced by biochar. CHEMOSPHERE 2023; 314:137729. [PMID: 36603676 DOI: 10.1016/j.chemosphere.2022.137729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The role of biochar as the redox catalyst in the removal of reductive pollutants from soil and water system has been extensively studied recently, but there is still a lack of qualitative description of its specific mechanisms in redox processes. In this study, the mechanism of biochar in the transformation process of γ-HCH under anoxic condition was revealed by the compound-specific isotope analysis. The concentration and carbon isotopic composition (δ13C) of γ-HCH were detected in the treatments with different initial concentrations of γ-HCH and biochar materials with different redox properties and varied doses. The surface functional groups and electrochemical properties of biochar before and after the reaction were also characterized. The addition amount of biochar could affect the reduction of γ-HCH concentration, which were 59.1%, 34.6% and 22.4% in treatments with the addition of 5%, 1% and 0.2% biochar, respectively. Meanwhile, the δ13C value of γ-HCH also increased from -26.6 ± 0.2‰ to -23.8 ± 0.2‰ with the addition amount of biochar, especially in the treatment with 5% biochar. As evidenced by X-ray diffraction analysis and electrochemical analysis, biochar promoted the adsorption and transformation of γ-HCH simultaneously, and the oxygen-containing functional groups on the surface of biochar played an important role in the redox process. The isotopic fractionation value (εC) of γ-HCH transformation by biochar was first reported as -3.4 ± 0.4‰. The results will enable the quantitative description of the transformation degree of organic pollutants induced by biochar, and provide a new approach for evaluating the in-situ remediation effects of biochar in a complex environment.
Collapse
Affiliation(s)
- Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Shao P, Chen Y, Gu D, Zeng J, Zhang S, Wu Y, Lin X. Resistance and resilience of soil bacterial community to zero-valent iron disposal of lindane contamination. CHEMOSPHERE 2022; 306:135612. [PMID: 35817188 DOI: 10.1016/j.chemosphere.2022.135612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Zero-valent iron (ZVI, Fe0) enables chemical reduction of environmental pollutants coupled with reactivity loss due to surface oxidation. During ZVI treatment process, however, microbial community stability in terms of resistance and resilience remains largely unclear. Here, we monitored bacterial community succession over a 4 weeks period in soil microcosms with or without 2% (w/w) Fe0 amendment. To simulate soil pollution, 100 μg g-1 chlorinated pesticide lindane (γ-hexachlorocyclohexane) was added to the microcosms as a model contaminant. In addition to microbial activity as measured by soil organic carbon mineralization, bacterial abundance, diversity and composition were determined using qPCR and high-throughput sequencing of 16 S rRNA genes. Co-occurrence analysis was performed to reveal the interaction patterns within the bacterial communities. The results indicated that ZVI caused near-complete transformation of lindane, while in the microcosms without Fe0 amendment the pesticide was recalcitrant. ZVI strongly inhibited CO2-efflux at the early stage of incubation, but the bacterial community appeared to be less sensitive to Fe0 amendment. The ratios of negative to positive correlations between network nodes suggested that Fe0 had marginal influence on community stability compared to the lindane treatments, which destabilized the bacterial community. Community succession occurred in the presence of ZVI, as exemplified by a dominancy transition from anaerobic to aerobic taxa. Yet, ZVI alleviated the stress of lindane on soil bacteria by improving community structure and increasing network complexity. Taken together, these findings demonstrate the stability of soil bacterial community under Fe0 stress, which might be conducive to functional recovery of soil microorganisms following ZVI remediation.
Collapse
Affiliation(s)
- Pengfei Shao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China.
| | - Yuzhu Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Decheng Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Shimin Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China.
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| |
Collapse
|
10
|
Biodegradation of technical hexachlorocyclohexane by Cupriavidus malaysiensis. World J Microbiol Biotechnol 2022; 38:108. [DOI: 10.1007/s11274-022-03284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|