1
|
Tang YY, Chen JM, Zhang J, Wu H, Wang YP, Zhang JF. Biodegradation of polystyrene by Spodoptera litura and Spodoptera frugiperda larvae (Lepidoptera: Noctuidae): Insights into the frass characterization and responses of gut microbiomes. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138178. [PMID: 40199076 DOI: 10.1016/j.jhazmat.2025.138178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Polystyrene (PS) biodegradation by some lepidoptera larvae has been demonstrated, but little is known about the Spodoptera litura and Spodoptera frugiperda (Lepidoptera: Noctuidae). Here we confirmed that PS-fed larvae showed significantly higher survival rates than starvation and antibiotic groups, with S. frugiperda consuming PS more efficiently than S. litura (1.52 vs. 0.56 mg larva⁻¹ day⁻¹). PS-frass characterization revealed oxygen-containing groups (C-O, CO, -OH) with reduced thermal stability and a significant decrease in weight-average molecular weight (S. litura: -6.01 %; S. frugiperda: -8.93 %), evidencing oxidative depolymerization of PS by both species. The gut microbiota (Pedobacter, Achromobacter, Pseudomonas, Acinetobacter, etc.) and functional enzymes (e.g., monooxygenase, dioxygenase, chitinases) were upregulated in PS-fed larvae. Metabolome analysis revealed altered stress responses and reprogrammed metabolic pathways, particularly in lipid and carbohydrate metabolism, which correlated strongly with gut microbiota changes. Overall, we demonstrated the biodegradation of PS by S. litura and S. frugiperda for the first time, and proposed a plausible degradation mechanism mediated by gut microbiota, illustrating both the host and gut microbiomes contributed to PS biodegradation. These findings highlight the feasibility of developing insect-based plastic degradation systems through the isolation of key microbial-enzymatic consortia, offering a sustainable solution for plastic waste management.
Collapse
Affiliation(s)
- Ya-Yuan Tang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jian-Ming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juan Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Hong Wu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Yi-Ping Wang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jue-Feng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Cai J, Wu X, Yang J, Ma Y, Sun B, Wu F. Does higher ratio of wheat straw addition decrease PAHs degradation in PAHs-contaminated paddy soils and PAHs concentrations in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176533. [PMID: 39368507 DOI: 10.1016/j.scitotenv.2024.176533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
There are considerable studies focusing on impacts of straw returning on PAHs degradation and bioavailability in PAHs-contaminated upland soils, while similar research in paddy soils is limited. Incubation experiments and pot trials were conducted to study effects of straw returning on PAHs degradation in paddy soils and PAHs accumulation in rice, respectively. There are threshold effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils. The inflection point of PAHs degrading was recorded under 0.8 % wheat straw treatment (conventional (CS) and pretreated wheat straw (PS)), which increased PAHs degradation by 18.13-32.36 %. The lowest PAHs concentrations in rice were recorded under 1 % straw (CS and PS) treatment, which was attributed to the highest PAHs degradation in rhizosphere soils. Compared to CS treatment, PS treatment significantly (p < 0.05) increased PAHs degradation by 7.93-10.28 % and PAHs concentrations in rice by 12.38-45.87 % due to that increasing dissolved organic carbon (DOC) enhanced PAHs concentrations in porewater of rhizosphere soils. Higher diversity enhanced the metabolic pathways and function genes to degrade PAHs by improving bacterial phenotypes and biochemical processes under 1 % wheat straw and PS treatment. The present study firstly demonstrated that the effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils and PAHs concentrations in rice depended on amount and methods of straw returning.
Collapse
Affiliation(s)
- Jun Cai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangyao Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Benhua Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, Yan Y, Wang F, Zhang T, Zhuang WQ, Yu K. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100359. [PMID: 39221074 PMCID: PMC11361885 DOI: 10.1016/j.ese.2023.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 09/04/2024]
Abstract
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Yuanyuan Zhu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qing Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, 518081, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, 999077, Hong Kong, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Li S, Yan X, Abdullah Al M, Ren K, Rensing C, Hu A, Tsyganov AN, Mazei Y, Smirnov A, Mazei N, Yang J. Ecological and evolutionary processes involved in shaping microbial habitat generalists and specialists in urban park ecosystems. mSystems 2024; 9:e0046924. [PMID: 38767347 PMCID: PMC11237591 DOI: 10.1128/msystems.00469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Microbiomes are integral to ecological health and human well-being; however, their ecological and evolutionary drivers have not been systematically investigated, especially in urban park ecosystems. As microbes have different levels of tolerance to environmental changes and habitat preferences, they can be categorized into habitat generalists and specialists. Here, we explored the ecological and evolutionary characteristics of both prokaryotic and microeukaryotic habitat generalists and specialists from six urban parks across five habitat types, including moss, soil, tree hole, water, and sediment. Our results revealed that different ecological and evolutionary processes maintained and regulated microbial diversity in urban park ecosystems. Under ecological perspective, community assembly of microbial communities was mainly driven by stochastic processes; however, deterministic processes were higher for habitat specialists than generalists. Microbial interactions were highly dynamic among habitats, and habitat specialists played key roles as module hubs in intradomain networks. In aquatic interdomain networks, microeukaryotic habitat specialists and prokaryotic habitat specialists played crucial roles as module hubs and connectors, respectively. Furthermore, analyzing evolutionary characteristics, our results revealed that habitat specialists had a much higher diversification potential than generalists, while generalists showed shorter phylogenetic branch lengths as well as larger genomes than specialists. This study broadens our understanding of the ecological and evolutionary features of microbial habitat generalists and specialists in urban park ecosystems across multi-habitat. IMPORTANCE Urban parks, as an important urban greenspace, play essential roles in ecosystem services and are important hotspots for microbes. Microbial diversity is driven by different ecological and evolutionary processes, while little is currently known about the distinct roles of ecological and evolutionary features in shaping microbial diversity in urban park ecosystems. We explored the ecological and evolutionary characteristics of prokaryotic and microeukaryotic habitat generalists and specialists in urban park ecosystems based on a representative set of different habitats. We found that different ecological and evolutionary drivers jointly maintained and regulated microbial diversity in urban park microbiomes through analyzing the community assembly process, ecological roles in hierarchical interaction, and species diversification potential. These findings significantly advance our understanding regarding the mechanisms governing microbial diversity in urban park ecosystems.
Collapse
Affiliation(s)
- Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mamun Abdullah Al
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Kexin Ren
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Christopher Rensing
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Institute of Environmental Microbiology, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | - Yuri Mazei
- Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biolog, St. Petersburg University, St Petersburg, Russia
| | | | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
5
|
Gao L, Wang S, Xu X, Zheng J, Cai T, Jia S. Metagenomic analysis reveals the distribution, function, and bacterial hosts of degradation genes in activated sludge from industrial wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122802. [PMID: 37913976 DOI: 10.1016/j.envpol.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
For comprehensive insights into the bacterial community and its functions during industrial wastewater treatment, with a particular emphasis on its pivotal role in the bioremediation of organic pollutants, this study utilized municipal samples as a control group for metagenomic analysis. This approach allowed us to investigate the distribution, function, and bacterial hosts of biodegradation genes (BDGs) and organic degradation genes (ODGs), as well as the dynamics of bacterial communities during the industrial wastewater bioprocess. The results revealed that BDGs and ODGs associated with the degradation of benzoates, biphenyls, triazines, nitrotoluenes, and chlorinated aromatics were notably more abundant in the industrial samples. Specially, genes like clcD, linC, catE, pcaD, hbaB, hcrC, and badK, involved in the peripheral pathways for the catabolism of aromatic compounds, benzoate transport, and central aromatic intermediates, showed a significantly higher abundance of industrial activated sludge (AS) than municipal AS. Additionally, the BDG/ODG co-occurrence contigs in industrial samples exhibited a higher diversity in terms of degradation gene carrying capacity. Functional analysis of Clusters of Orthologous Groups (COGs) indicated that the primary function of bacterial communities in industrial AS was associated with the category of "metabolism". Furthermore, the presence of organic pollutants in industrial wastewater induced alterations in the bacterial community, particularly impacting the abundance of key hosts harboring BDGs and ODGs (e.g. Bradyrhizobium, Hydrogenophaga, and Mesorhizobium). The specific hosts of BDG/ODG could explain the distribution characteristics of degradation genes. For example, the prevalence of the Adh1 gene, primarily associated with Mesorhizobium, was notably more prevalent in the industrial AS. Overall, this study provides valuable insights into the development of more effective strategies for the industrial wastewater treatment and the mitigation of organic pollutant contamination.
Collapse
Affiliation(s)
- Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Ghafouri M, Pourjafar F, Ghobadi Nejad Z, Yaghmaei S. Biological treatment of triclosan using a novel strain of Enterobacter cloacae and introducing naphthalene dioxygenase as an effective enzyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131833. [PMID: 37473572 DOI: 10.1016/j.jhazmat.2023.131833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
In recent years, triclosan (TCS) has been widely used as an antibacterial agent in personal care products due to the spread of the Coronavirus. TSC is an emerging contaminant, and due to its stability and toxicity, it cannot be completely degraded through traditional wastewater treatment methods. In this study, a novel strain of Enterobacter cloacae was isolated and identified that can grow in high TCS concentrations. Also, we introduced naphthalene dioxygenase as an effective enzyme in TCS biodegradation, and its role during the removal process was investigated along with the laccase enzyme. The change of cell surface hydrophobicity during TCS removal revealed that a glycolipid biosurfactant called rhamnolipid was involved in TCS removal, leading to enhanced biodegradation of TCS. The independent variables, such as initial TCS concentration, pH, removal duration, and temperature, were optimized using the response surface method (RSM). As a result, the maximum TCS removal (97%) was detected at a pH value of 7 and a temperature of 32 °C after 9 days and 12 h of treatment. Gas chromatography-mass spectrometry (GC/MS) analysis showed five intermediate products and a newly proposed pathway for TCS degradation. Finally, the phytotoxicity experiment conducted on Cucumis sativus and Lens culinaris seeds demonstrated an increase in germination power and growth of stems and roots in comparison to untreated water. These results indicate that the final treated water was less toxic.
Collapse
Affiliation(s)
- Mahsa Ghafouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Pourjafar
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran.
| |
Collapse
|
7
|
Dai C, Qu Y, Wu W, Li S, Chen Z, Lian S, Jing J. QSP: An open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. WATER RESEARCH 2023; 235:119814. [PMID: 36934538 DOI: 10.1016/j.watres.2023.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) has attracted great attention due to its important role in the bacterial interactions and its relevance to water management. With the development of high-throughput sequencing technology, a specific database for QS-related sequence annotation is urgently needed. Here, Hidden Markov Model (HMM) profiles for 38 types of QS-related proteins were built using a total of 4024 collected seed sequences. Based on both homolog search and keywords confirmation against the non-redundant database, we established a QS-related protein (QSP) database, that includes 809,721 protein sequences and 186,133 nucleotide sequences, downloaded available at: https://github.com/chunxiao-dcx/QSP. The entries were classified into 38 types and 315 subtypes among 91 bacterial phyla. Furthermore, an automatic annotation pipeline, named QSAP, was developed for rapid annotation, classification and abundance quantification of QSP-like sequences from sequencing data. This pipeline provided the two homolog alignment strategies offered by Diamond (Blastp) or HMMER (Hmmscan), as well as a data cleansing function for a subset or union set of the hits. The pipeline was tested using 14 metagenomic samples from various water environments, including activated sludge, deep-sea sediments, estuary water, and reservoir water. The QSAP pipeline is freely available for academic use in the code repository at: https://github.com/chunxiao-dcx/QSAP. The establishment of this database and pipeline, provides a useful tool for QS-related sequence annotation in a wide range of projects, and will increase our understanding of QS communication in aquatic environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Ali M, Song X, Wang Q, Zhang Z, Zhang M, Chen X, Tang Z, Liu X. Thermally enhanced biodegradation of benzo[a]pyrene and benzene co-contaminated soil: Bioavailability and generation of ROS. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131494. [PMID: 37172381 DOI: 10.1016/j.jhazmat.2023.131494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
In this study, a set of comprehensive experiments were conducted to explore the effects of temperature on the biodegradation, bioavailability, and generation of reactive oxygen species (ROS) by thermally enhanced biodegradation (TEB) under benzene and BaP co-contaminated conditions. The biodegradation rates of benzene increased from 57.4% to 88.7% and 84.9%, and the biodegradation efficiency of BaP was enhanced from 15.8% to 34.6% and 28.6%, when the temperature was raised from the ambient temperature of 15 °C to 45 °C and 30 °C, respectively. In addition, the bioavailability analysis results demonstrated that the water- and butanol-extractable BaP increased with elevated temperatures. High enzymatic activities and PAH-RHDα gene in gram-positive bacteria favored the long-term elevated temperatures (30 and 45 °C) compared to gram-negative bacteria. Moreover, ROS species (O2•- and •OH) generation was detected which were scavenged by the increased superoxide dismutase and catalase activities at elevated temperatures. Soil properties (pH, TOC, moisture, total iron, Fe3+, and Fe2+) were affected by the temperature treatments, revealing that metal-organic-associated reactions occurred during the TEB of benzene-BaP co-contamination. The results concluded that biodegradation of benzene-BaP co-contamination was greatly improved at 45 °C and that microbial activities enhanced the biodegradation under TEB via the increased bioavailability and generation and degradation of ROS.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|