1
|
Wang M, Liu X, Zhang M, Han Q, Chen B, Cao S, Liu B, Wang Z. Comparison of microplastics heteroaggregation with MoS 2 and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137063. [PMID: 39754878 DOI: 10.1016/j.jhazmat.2024.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS2 and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles. More importantly, the deposition and transport of MPs are highly dependent on the configuration of the resulting aggregates. MoS2 nanosheets conformally coat MPs, forming compact and colloidally stable complexes that completely alter the MPs' surface to the negatively charged MoS2. The interaction resulted in high mobility and minimal deposition in environmental matrices. In contrast, GO nanosheets bridge MPs into large clusters, reducing transport and increasing deposition. This difference in aggregate configuration is attributed to the distinct interactions between the nanosheets and MPs: rigid MoS2 nanosheets adhere via strong van der Waals forces, while GO, with oxygen functional groups on its edges and surfaces, folds and crosslinks between particles upon adsorption. These findings underscore the critical role of 2D materials in shaping the environmental fate of MPs, advancing our knowledge on the aggregation process.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Environment, Harbin Institute of Technology, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xun Liu
- School of Environment, Harbin Institute of Technology, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyu Cao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Ma Q, Sun Y, Zhou S, Yin X, Sun H. The transport of polystyrene microplastics in saturated porous media: Impacts of functional groups and solution chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124696. [PMID: 40020367 DOI: 10.1016/j.jenvman.2025.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Global attention to microplastics (MPs) pollution has been increasing as it has become a novel environmental issue. Natural aging processes alter MPs surface properties, introducing charged functional groups that affect their transport in porous media. This study investigated the transport of polystyrene microplastics (PSMPs) in saturated porous media through column experiments, including non-functionalized PSMPs (PS-Bare), carboxyl-modified PSMPs (PS-COOH), and amino-modified PSMPs (PS-NH2). Unlike previous studies focusing on pristine microplastics, our research integrated the effects of surface functionalization with complex solution chemistry, including ionic strength, cation valence, and pH. Results indicated that surface functional groups and solution chemistry combined to impact PSMPs migration through zeta potential and hydrodynamic size. Increasing ionic strength decreased migration rates due to double-layer compression and charge screening. Higher cation valence and lower pH decreased PS-Bare and PS-COOH migration rates, while PS-NH2 showed the opposite trend due to differences in surface charges. As pH increased, carboxyl groups dissociated, enhancing the negative charge on PS-COOH and promoting its migration, while amino groups deprotonated, reducing the positive charge on PS-NH2 and inhibiting its migration. PS-NH2 exhibited higher mobility than expected. Despite its positive charge, PS-NH2 preferentially occupied active sites on sand surfaces, reducing aggregation and enhancing transport. In the presence of Al3+, PSMPs recovery rates were PS-NH2 (94.60%) > PS-COOH (41.48%) > PS-Bare (41.12%). This study enhances understanding of functionalized microplastics transport and its potential impact on groundwater contamination.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi, 710075, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, Shaanxi, 710021, PR China
| | - Yingying Sun
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi, 710075, PR China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, Shaanxi, 710021, PR China
| | - Shi Zhou
- College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
3
|
Hou Y, Wang Y, Zhang Y, Lu Z, Zhang Z, Dong Z, Qiu Y. Cotransport of nanoplastics with nZnO in saturated porous media: From brackish water to seawater. J Environ Sci (China) 2025; 148:541-552. [PMID: 39095187 DOI: 10.1016/j.jes.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 08/04/2024]
Abstract
The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.
Collapse
Affiliation(s)
- Yuanzhang Hou
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yange Wang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yidi Zhang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhibo Lu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenbo Zhang
- School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhiqiang Dong
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China; China Railway Engineering Group Co., Beijing 100039, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Luo H, Chang L, Ju T, Li Y. Factors Influencing the Vertical Migration of Microplastics up and down the Soil Profile. ACS OMEGA 2024; 9:50064-50077. [PMID: 39741809 PMCID: PMC11683605 DOI: 10.1021/acsomega.4c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Soil ecosystems are under serious threat from microplastics (MPs), and this is causing worldwide concern. The relationship between soil and MPs has become a popular research topic, and the vertical migration of soil MPs is of increasing interest. This Review summarizes the current status of research into the factors affecting the vertical migration of soil MPs. Published research shows that the characteristics of MPs and the physicochemical properties of the soil affect the infiltration process. Soil organisms play a key role in the vertical migration by acting as vectors or as a result of adsorption. Dissolved organic matter and metal oxides transfer MPs by adsorption-desorption. In addition, rainfall and dry-wet cycles alter the mobility of soil MPs, leading to changes in migration processes. Agricultural activities such as tillage and irrigation may distribute MPs throughout the topsoil. Vertical migration of soil MPs is a process influenced by a combination of factors, and the role of these factors in MP deposition needs to be explored further.
Collapse
Affiliation(s)
- Han Luo
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Lei Chang
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Tianhang Ju
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Yuefen Li
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| |
Collapse
|
5
|
Wu L, Yin J, Wu W, Pang K, Sun H, Yin X. Effect of low-molecular-weight organic acids on the transport of polystyrene nanoplastics in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136343. [PMID: 39476696 DOI: 10.1016/j.jhazmat.2024.136343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 12/01/2024]
Abstract
Low molecular weight organic acids (LMWOAs) are extensively present as soluble organic matter in the environment, potentially influencing the transport of polystyrene nanoplastics (PSNPs) in soil and groundwater environments. In this study, we studied the impact of three LMWOAs (Acetic Acid (AA), Malic Acid (MA), and Citric Acid (CA)) on PSNPs migration under varied pH and Ionic Strength (IS) conditions in the saturated porous medium. The results demonstrated that the low LMWOAs concentrations (0.0001 mol L-1) promoted PSNPs migration rate, while high concentrations (0.001, 0.01 mol L-1) reduced the migration rate and increased the deposition. Due to the different relative molecular weights and number of functional groups of different LMWOAs, the order of promoting (0.0001 mol L-1) /inhibiting (0.001, 0.01 mol L-1) effects of LMWOAs on PSNPs migration rate under various physicochemical conditions in this study was AA < MA < CA. The decrease in IS and increase in pH promoted the migration of PSNPs. Electrostatic repulsion and spatial potential resistance affected PSNPs migration. This study offers theoretical support for the understanding of migration patterns and mechanisms of nanoparticles in soil-water environments.
Collapse
Affiliation(s)
- Lan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Ai J, Wang B, Gao X, Yuan Y, Zhou S, Yin X, Wang J, Jia H, Sun H. Effect of biosurfactants on the transport of polyethylene microplastics in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176636. [PMID: 39357764 DOI: 10.1016/j.scitotenv.2024.176636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Microplastic (MP) pollution has become a significant global environmental issue, and the potential application of biosurfactants in soil remediation has attracted considerable attention. However, the effects of biosurfactants on the transport and environmental risks of MPs are not fully understood. This study investigated the transport of polyethylene (PE) in the presence of two types of biosurfactants: typical anionic biosurfactant (rhamnolipids) and non-ionic biosurfactant (sophorolipids) using column experiments. We explored the potential mechanisms involving PE surface roughness and the influence of dissolved organic matter (DOM) on PE transport in the column under the action of biosurfactants, utilizing the Wenzel equation and fluorescence analysis. The results revealed that both the concentration of biosurfactants and the surface roughness of PE were advantageous for the adhesion of biosurfactants to the PE surface, thereby enhancing the mobility of PE in the column. The proportion of hydrophobic substances in various DOM sources is a critical factor that enhances PE transport in the column. However, the biosurfactant-mediated enhancement of PE transport was inhibited by the biosurfactant-DOM mixture. This was mainly due to DOM occupying the adhesion sites of biosurfactants on PE surfaces. Moreover, the mobility of PE in the presence of sophorolipids is higher than that in the presence of rhamnolipids because the combined hydrophobic and electrostatic forces between PE and sophorolipids create synergistic effects that improve PE stability. Additionally, the mobility of PE increased with rising pH and decreasing ionic strength. These findings provide a more comprehensive understanding of MP transport when using biosurfactants for soil remediation.
Collapse
Affiliation(s)
- Juehao Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaolong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunning Yuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
8
|
Wu Y, Wu M, Cheng Z, Hao Y, Mo C, Li Q, Wu J, Wu J, Hu BX, Lu G. Impact of diatomit on the transport behavior of unmodified and carboxyl-modified nanoplastics in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124758. [PMID: 39154881 DOI: 10.1016/j.envpol.2024.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Due to the extensive use of plastic products and unreasonable disposal, nanoplastics contamination has become one of the important environmental problems that mankind must face. The composition and structure of porous media can determine the complexity and diversity of the transport behavior of nanoplastics. In this study, the influence of diatomite (DIA) on the nanoplastics transport in porous media is investigated by column experiments combined with XDLVO interaction energy and transport model. Results suggest that the recovery rates of unmodified polystyrene nanoparticles (PSNPs) and carboxyl-modified polystyrene nanoparticles (PSNPs-COOH) in the porous media containing DIA decreases compared with that in the pure quartz sand (QS), and the BTCs showed a "blocking" pattern. The presence of DIA inhibits the transport of both PSNPs and PSNPs-COOH, but the inhibition is not significant. This may be because the presence of DIA provides more favorable deposition sites for PSNPs and PSNPs-COOH to some extent. However, since DIA itself carries a certain negative charge, this can only play a role in compressing the double electric layer for PSNPs and PSNPs-COOH with the same negative charge, and cannot destabilize them. The migration capacity of PSNPs and PSNPs-COOH is strongest in the DIA-QS porous media at pH = 7, and is weak at pH = 9 and pH = 5. The inhibition of migration at pH = 9 can be attributed to the dissolution of the DIA surface under alkaline conditions and the formation of pore and defect structures, which provide more deposition sites for PSNPs and PSNPs-COOH. The presence of humic acid (HA) leads to an increase in the mobility of PSNPs and PSNPs-COOH, and the mobility is enhanced with HA concentration. The mobility of PSNPs and PSNPs-COOH in DIA-QS decreases with ionic valence and ionic strength, and PSNPs-COOH is more significantly inhibited compared to PSNPs.
Collapse
Affiliation(s)
- Yuheng Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Bill X Hu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
9
|
Liu H, Wen Y. Evaluation of the migration behaviour of microplastics as emerging pollutants in freshwater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58294-58309. [PMID: 39298032 DOI: 10.1007/s11356-024-34994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed in freshwater environments such as rivers and lakes, posing immeasurable potential risks to aquatic ecosystems and human health. The migration behaviour of microplastics can exacerbate the degree or scope of risk. A complete understanding of the migration behaviour of microplastics in freshwater environments, such as rivers and lakes, can help assess the state of occurrence and environmental risk of microplastics and provide a theoretical basis for microplastic pollution control. Firstly, this review presents the hazards of microplastics in freshwater environments and the current research focus. Then, this review systematically describes the migration behaviours of microplastics, such as aggregation, horizontal transport, sedimentation, infiltration, stranding, resuspension, bed load, and the affecting factors. These migration behaviours are influenced by the nature of the microplastics themselves (shape, size, density, surface modifications, ageing), environmental conditions (ionic strength, cation type, pH, co-existing pollutants, rainfall, flow regime), biology (vegetation, microbes, fish), etc. They can occur cyclically or can end spontaneously. Finally, an outlook for future research is given.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China
| |
Collapse
|
10
|
Dong P, Liang Y, Shen C, Jiang E, Bradford SA. Dual roles of goethite coating on the transport of plastic nanoparticles in heterogeneous porous media: The significance of collector surface roughness. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134153. [PMID: 38593658 DOI: 10.1016/j.jhazmat.2024.134153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
This study systematically examines the roles of positive goethite on the retention and release of negative plastic nanoparticles (PSNPs) with different surface functional groups (Blank, -COOH, and -NH2). It provides the first evidence for the dual roles of goethite coatings on colloid transport; e.g., increased transport caused by surface morphology modification or decreased transport due to increased surface roughness and charge heterogeneity. Although previous work has shown that goethite-coated sand increases the retention of negative colloids, this work demonstrates that collector surface roughness can also reduce the retention of PSNPs due to increased interaction energy profiles. Nonmonotonic retention of all the different functionalized PSNPs was observed in goethite-coated rough sand, and the magnitude of variations was contingent on the PSNP functionalization, the solution ionic strength (IS), and the goethite coating. The release of PSNPs with IS decrease (phase I) and pH increase (phase II) varied significantly due to differences in energy barriers to detachment, e.g., release in phase I was inhibited in both goethite-coated sands, whereas release in phase II was enhanced in coated smooth sand but completely inhibited in rough sand. The findings of this study provide innovative insight into transport mechanisms for colloidal and colloid-associated contaminants.
Collapse
Affiliation(s)
- Pengcheng Dong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning, China
| | - Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning, China.
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Erxiao Jiang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning, China
| | - Scott A Bradford
- USDA, ARS, Sustainable Agricultural Water Systems Unit, Davis, CA 95616, United States
| |
Collapse
|
11
|
Zhang G, Wang B, Jiang N, Pang K, Wu W, Yin X. Effect of water-soluble polymers on the transport of functional group-modified polystyrene nanoplastics in goethite-coated saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134044. [PMID: 38493628 DOI: 10.1016/j.jhazmat.2024.134044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The research on the impact of water-soluble polymers (WSPs) on the migration and fate of plastic particles is extremely limited. This article explored the effects of polyacrylic acid (PAA, a common WSP) and physicochemical factors on the transport of polystyrene nanoparticles (PSNPs-NH2/COOH) with different functional groups in QS (quartz sand) and FOS (goethite-modified quartz sand, simulates mineral colloids). Research has shown that PAA can selectively adsorb onto the surface of PSNPs-NH2, forming ecological corona heterogeneous aggregates. This process increased the spatial hindrance and elastic repulsion, resulting in the recovery of PSNPs-NH2 always exceeding that of PSNPs-COOH. Overall, PAA can hinder the migration of PSNPs in QS but can promote their migration in FOS. When multivalent cations coexist with PAA, the transport of PSNPs in the media is primarily affected by cation bridging and CH-cation-π interaction. The presence of oxyanions and PAA prevents PSNPs from following the Hofmeister rule and promotes their migration (PO43-: 82.34 ± 0.16% to 94.63 ± 2.82%>SO42-: 81.38 ± 2.73% to 91.15 ± 0.93%>NO3-: 55.85 ± 0.70%-87.16 ± 3.80%). The findings of this study contribute significantly to a better understanding of the migration of WSPs and group-modified NPs in complex saturated porous media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
12
|
Xu D, Du B, Ji Y, Sun H, Wang T, Yin X. Stereoselective transport of 2-aryl propionic acid enantiomers in porous media subjected to chiral organic acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133824. [PMID: 38377915 DOI: 10.1016/j.jhazmat.2024.133824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
The study examined the transport behavior of the 2-aryl propionic acid (2-APA) chiral pharmaceutical enantiomers by means of a laboratory-scale saturated quartz sand column experiment. Four typical of 2-APA and their enantiomers were selected for the study under different types of chiral organic acids (COAs)-mediated effects. Differences in the transport of the 2-APA enantiomeric pairs have been identified in response to various pH, types of COAs, and enantiomeric structures of COAs. Redundancy analysis identified the factors responsible for the largest differences in transport of 2-APA enantiomeric pairs, while spectroscopic characterization and density function theory (DFT) studies elucidated the underlying mechanisms contributing to the differences in transport of enantiomeric pairs. Obvious correlations among homochirality or heterochirality between COAs and 2-APA enantiomeric pairs were observed for changes in the mobility of 2-APA. The results indicate widespread COAs significantly affect the transport behavior of chiral man-made chemicals, suggesting more attention is needed to fill the gap in the perception of the transport behavior of chiral compounds.
Collapse
Affiliation(s)
- Duo Xu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Bowen Du
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Yantian Ji
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling Shaanxi, 712100, PR China.
| |
Collapse
|
13
|
Hul G, Okutan H, Le Coustumer P, Ramseier Gentile S, Zimmermann S, Ramaciotti P, Perdaems P, Stoll S. Influence of Concentration, Surface Charge, and Natural Water Components on the Transport and Adsorption of Polystyrene Nanoplastics in Sand Columns. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:529. [PMID: 38535675 PMCID: PMC10974996 DOI: 10.3390/nano14060529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/12/2024]
Abstract
Information about the influence of surface charges on nanoplastics (NPLs) transport in porous media, the influence of NPL concentrations on porous media retention capacities, and changes in porous media adsorption capacities in the presence of natural water components are still scarce. In this study, laboratory column experiments are conducted to investigate the transport behavior of positively charged amidine polystyrene (PS) latex NPLs and negatively charged sulfate PS latex NPLs in quartz sand columns saturated with ultrapure water and Geneva Lake water, respectively. Results obtained for ultrapure water show that amidine PS latex NPLs have more affinity for negatively charged sand surfaces than sulfate PS latex NPLs because of the presence of attractive electrical forces. As for the Geneva Lake water, under natural conditions, both NPL types and sand are negatively charged. Therefore, the presence of repulsion forces reduces NPL's affinity for sand surfaces. The calculated adsorption capacities of sand grains for the removal of both types of NPLs from both types of water are oscillating around 0.008 and 0.004 mg g-1 for NPL concentrations of 100 and 500 mg L-1, respectively. SEM micrography shows individual NPLs or aggregates attached to the sand and confirms the limited role of the adsorption process in NPL retention. The important NPL retention, especially in the case of negatively charged NPLs, in Geneva Lake water-saturated columns is related to heteroaggregate formation and their further straining inside narrow pores. The presence of DOM and metal cations is then crucial to trigger the aggregation process and NPL retention.
Collapse
Affiliation(s)
- Gabriela Hul
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Hande Okutan
- Ecole Doctorale, Université de Bordeaux Montaigne, 33607 Pessac, France
- Department of Geological Engineering, University of Mugla Sitki Kocman, Mugla 48260, Türkiye
| | - Philippe Le Coustumer
- Ecole Doctorale, Université de Bordeaux Montaigne, 33607 Pessac, France
- Bordeaux Imaging Center CBRS—INRAE—INSERM, Université de Bordeaux, 33000 Bordeaux, France
| | | | | | | | | | - Serge Stoll
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
14
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
15
|
Zhang G, Cui J, Song J, Ji Y, Zuo Y, Jia H, Yin X. Transport of polystyrene nanoplastics with different functional groups in goethite-coated saturated porous media: Effects of low molecular weight organic acids and physicochemical properties. J Colloid Interface Sci 2024; 653:423-433. [PMID: 37722171 DOI: 10.1016/j.jcis.2023.09.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The influence of low molecular weight organic acids (LMWOAs) and goethite on the migration of nanoplastics in the soil environment remains poorly understood. To elucidate the mechanism of influence, the study investigated the impact of LMWOAs on the migration ability of functionalized polystyrene nanoplastics (PSNPs-NH2/COOH) in quartz sand (QS) and goethite (α-FeOOH)-coated quartz sand (FOS). We investigated the effect of changes in iron valence induced by LMWOAs on the migration of PSNPs. The results revealed that the migration ability of polystyrene nanoplastics (PSNPs) declined as the ionic strength (IS) increased and the pH decreased, primarily due to the compression of the double layer and protonation reactions. The migration of PSNPs is facilitated by LMWOAs through distinct mechanisms in the two media. Specifically, LMWOAs were adsorbed on the FOS and QS surfaces through complexation and hydrogen bonding, respectively. At pH 4.0, LMWOAs exhibit redox activity, resulting in the generation of additional Fe(III). This redox process enhances the electrostatic attraction between the media and PSNPs, thereby reducing the competition at specific points and spatial resistance associated with LMWOAs. In contrast to FOS, LMWOAs at pH 4.0 reduced the migration ability of PSNPs in QS, following the trend of MA > TA > CA. This difference was attributed to the pKa of LMWOAs and the weak hydrogen bonding on the QS surface. The relevant mathematical models effectively validate the migration results. The above conclusions suggest that LMWOAs can alter the valence state of iron on the surface of goethite, thereby influencing the migration of plastic particles in environmental media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiahao Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jie Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yantian Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajie Zuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
16
|
Wu Y, Cheng Z, Wu M, Hao Y, Lu G, Mo C, Li Q, Wu J, Wu J, Hu BX. Quantification of two-site kinetic transport parameters of polystyrene nanoplastics in porous media. CHEMOSPHERE 2023; 338:139506. [PMID: 37453519 DOI: 10.1016/j.chemosphere.2023.139506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, a combination of column experiments, interface chemistry theory and transport model with two-site kinetics was used to systematically investigate the effect of pH on the transport of polystyrene nanoparticles (PSNPs) in porous media. The porous media containing quartz sand (QS) and three kinds of clay minerals (CMs)-kaolinite (KL), illite (IL) and montmorillonite (MT), was used in column experiments to simulate the porous media in the soil-groundwater systems. Experimental results showed that the inhibitory effect of CMs on the transport of PSNPs is weakened as pH increases. The two-dimensional (2D) surface of the DLVO interaction energy (2D-pH-DLVO) was built to calculate the interactions between PSNPs and CMs under different conditions of pH. Results suggested the inflection point of PSNP-QS, PSNP-KL, PSNP-IL and PSNP-MT are 2.42, 3.30, 2.84 and 3.69, respectively. Most importantly, there was a significant correlation between the two-site kinetic parameters related to PSNPs transport and the DLVO energy barrier (DB). The contributions of the interactions of PSNPs-PSNPs and PSNPs-minerals were determined for PSNPs transport in porous media. The critical values of pH related to the migration ability of PSNPs in porous media could be determined by a combination of column experiments, 2D-pH-DLVO and PSNPs transport model. The critical values of pH were 2.95-3.01, 3.22-3.51, 2.98-3.02, 3.31-3.33 for the migration ability of PSNPs in QS, QS + KL, QS + IL and QS + MT porous media, respectively. The stronger migration ability of PSNPs under high pH conditions is attributed to the enhanced deprotonation of the media surface and increased negative surface charge, which increases the electrostatic repulsion between PSNPs and porous media (QS, CMs). Moreover, the agglomeration of PSNPs usually is weaker and the average particle size of agglomerates is smaller under the condition of high pH, thus leading to the stronger migration ability of PSNPs under high pH conditions.
Collapse
Affiliation(s)
- Yuheng Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China; Guangdong Yixin Ecological Technology Co., Ltd, Guangzhou, 510055, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
17
|
Fei J, Cui J, Wang B, Xie H, Wang C, Zhao Y, Sun H, Yin X. Co-transport of degradable microplastics with Cd(Ⅱ) in saturated porous media: Synergistic effects of strong adsorption affinity and high mobility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121804. [PMID: 37172771 DOI: 10.1016/j.envpol.2023.121804] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
With the utilization of degradable plastics in the agricultural film and packaging industries, degradable microplastics (MPs) with strong mobility distributed in the underground environment may serve as carriers for heavy metals. It is essential to explore the interaction of (aged) degradable MPs with Cd(Ⅱ). The adsorption and co-transport behavior of different types of (aged) MPs (polylactic acid (PLA), polyvinyl chloride (PVC)) with Cd(Ⅱ) were investigated through batch adsorption experiments and column experiments under different conditions, respectively. The adsorption results showed that the adsorptive capacity of (aged) PLA with O-functional groups, polarity, and more negative charges was stronger than that of PVC and aged PVC, which was attributed to the binding of (aged) PLA to Cd(Ⅱ) through complexation and electrostatic attraction. The co-transport results indicated that the promotion of Cd(Ⅱ) transport by MPs followed the order of aged PLA > PLA > aged PVC > PVC. This facilitation was more pronounced under conditions of stronger transport of MPs and favorable attachment of Cd(Ⅱ) to MPs. Overall, the combination of strong adsorption affinity and high mobility helped (aged) PLA act as effective carriers for Cd(Ⅱ). The DLVO theory well explains the transport behavior of Cd(Ⅱ)-MPs. These findings provide new insights into the co-transport of degradable MPs and heavy metals in the subsurface environment.
Collapse
Affiliation(s)
- Jiao Fei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Jiahao Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoyuan Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | | | - Yifan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| |
Collapse
|