1
|
Kaur P, Szlachta M, Xu J, Vepsäläinen J, Lappalainen R, Hussin F, Aroua MK. Advancements and feasibility of synergistic approaches in phosphorus recovery from wastewater: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125786. [PMID: 40359863 DOI: 10.1016/j.jenvman.2025.125786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
This review explores the potential and challenges of synergetic approaches, such as coupling, hybrid, and sequential methods, to enhance phosphorus recovery while minimizing environmental impacts. It emphasizes phosphorus recovery's economic and ecological dimensions, stressing the imperative for ongoing research and development to bolster economic viability and scalability. This review also discusses factors for improvement and outlines the exploration of innovative technologies and comprehensive techno-economic assessments to bridge the gap between advancements and real-world implementation. Its highlights include global efforts for phosphorus recovery, the need for synergetic approaches, an understanding of the difference between efficiency and performance approaches, required innovation in the future, and the environmental and economic implications.
Collapse
Affiliation(s)
- Parminder Kaur
- Circular Economy Solutions Unit, Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| | - Małgorzata Szlachta
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33104, Tampere, Finland.
| | - Junhua Xu
- Circular Economy Solutions Unit, Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Reijo Lappalainen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Farihahusnah Hussin
- School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Mohamed Kheireddine Aroua
- School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; School of Engineering, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
2
|
Kim D, Lee CS, Lee BG, Park J, Kim KC, Choe JK, Westerhoff P, Rho H. γ-Al 2O 3 selectively adsorbs transition group metals from contaminated waters to produce bi-metallic catalysts for efficient nitrate reduction. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138428. [PMID: 40306248 DOI: 10.1016/j.jhazmat.2025.138428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Metals present in industrial or mining wastewater are hazardous to human health and the environment, and their remediation is costly. In this study, we used γ-Al2O3 to capture transition metals (e.g., Pd, Cu, Ni, and Co) from wastewater and used the spent adsorbent as catalysts for nitrate reduction. Based on a pH-dependent surface-mediated redox reaction mechanism, Pd and Cu ions are selectively adsorbed onto γ-Al2O3 at ambient temperature without involving the use of chemical reductants, thus transforming these pollutants into active catalytic sites. We particularly focused on Pd/Cu bimetallic catalysts, finding that the Pd and Cu ion concentrations in contaminated water impacted both nitrate reduction efficiency and nitrogen selectivity. The best nitrate reduction occurred with 0.74 wt% Pd and 0.66 wt% Cu on γ-Al2O3, achieving high nitrate reactivity and ∼81 % selectivity for N2 formation over 10 cycles. Ni and Co, which have smaller redox potential differences than Pd and Cu, showed limited interference with Pd and Cu adsorption, allowing γ-Al2O3 to form Pd-Cu bimetallic catalysts selectively in batch and column tests. Overall, metal-based catalysts can be fabricated under ambient conditions while remediating metal-contaminated wastewater, thereby producing functional products (e.g., hydrogenation catalysts), which is consistent with circular economy principles.
Collapse
Affiliation(s)
- Deokhwan Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Republic of Korea; Department of Construction Environment Engineering, KICT School, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chung-Seop Lee
- Environmental R&D Center, Institute of Environmental Science & Technology, SK Innovation, 325 Expo‑ro Yuseong‑gu, Daejeon 305‑712, Republic of Korea
| | - Byoung Guan Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea
| | - Paul Westerhoff
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Republic of Korea; Department of Construction Environment Engineering, KICT School, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Patra S, Chakraborty S, Chakravarty R. Emerging role of electrochemistry in radiochemical separation of medically important radiometals: state of the art. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:282-294. [PMID: 39583906 PMCID: PMC11578814 DOI: 10.62347/xitw6701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Electrochemical separation technology has brought a renaissance in the field of nuclear medicine towards obtaining clinical-grade radiometals for preparation of a wide variety of radiopharmaceuticals. This article is a comprehensive summary of the electrochemical processes developed for the separation of radiometals that could be used for diagnostic or therapeutic applications in nuclear medicine. For using electrochemistry as a tool for the separation of radiometals, intricate knowledge is essential to understand the basic parameters of electrochemical separation processes which include applied potential, selection of electrolyte, choice of the electrode, the temperature of the electrolyte, pH of the electrolyte and time of electrolysis. The advantages of the electrochemical separation approach over the other conventional methodologies such as solvent extraction, column chromatography, sublimation, etc., have also been discussed. The latest research and development from our laboratory on electrochemical methodologies developed for separation of 90Y from 90Sr, 188Re from 188W, 99mTc from 99Mo, 47Sc from 46Ca, 45Ca from 46Sc,153Sm from 154Eu, 169Er from 169Yb, 177Lu from Yb and 132/135La from Ba have been described. In all the cases, the final product is obtained either in a 'no-carrier-added' (NCA) form or free from inextricable impurities and thus found suitable for formulation of radiopharmaceuticals.
Collapse
Affiliation(s)
- Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research CentreTrombay, Mumbai 400085, India
- Homi Bhabha National InstituteAnushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research CentreTrombay, Mumbai 400085, India
- Homi Bhabha National InstituteAnushaktinagar, Mumbai 400094, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research CentreTrombay, Mumbai 400085, India
- Homi Bhabha National InstituteAnushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Niu B, E S, Song Q, Xu Z, Han B, Qin Y. Physicochemical reactions in e-waste recycling. Nat Rev Chem 2024; 8:569-586. [PMID: 38862738 DOI: 10.1038/s41570-024-00616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Electronic waste (e-waste) recycling is becoming a global concern owing to its immense quantity, hazardous character and the potential loss of valuable metals. The many processes involved in e-waste recycling stem from a mixture of physicochemical reactions, and understanding the principles of these reactions can lead to more efficient recycling methods. In this Review, we discuss the principles behind photochemistry, thermochemistry, mechanochemistry, electrochemistry and sonochemistry for metal recovery, polymer decomposition and pollutant elimination from e-waste. We also discuss how these processes induce or improve reaction rates, selectivity and controllability of e-waste recycling based on thermodynamics and kinetics, free radicals, chemical bond energy, electrical potential regulation and more. Lastly, key factors, limitations and suggestions for improvements of these physicochemical reactions for e-waste recycling are highlighted, wherein we also indicate possible research directions for the future.
Collapse
Affiliation(s)
- Bo Niu
- Key Laboratory of Farmland Ecological Environment of Hebei Province, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, China.
| | - Shanshan E
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China
| | - Qingming Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Han
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Yufei Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Jiangxi Green Recycling Co., Ltd, Fengcheng, China
| |
Collapse
|
5
|
Liu E, Hu T, Al-Dhabi NA, Soyol-Erdene TO, Bayanjargal O, Zuo Y, Wang J, Tang W. MOF-derived Fe/Ni@C marigold-like nanosheets as heterogeneous electro-Fenton cathode for efficient antibiotic oxytetracycline degradation. ENVIRONMENTAL RESEARCH 2024; 247:118357. [PMID: 38325782 DOI: 10.1016/j.envres.2024.118357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
The widespread occurrence of organic antibiotic pollution in the environment and the associated harmful effects necessitate effective treatment method. Heterogeneous electro-Fenton (hetero-EF) has been regarded as one of the most promising techniques towards organic pollutant removal. However, the preparation of efficient cathode still remains challenging. Herein, a novel metal-organic framework (MOF)-derived Fe/Ni@C marigold-like nanosheets were fabricated successfully for the degradation of oxytetracycline (OTC) by serving as the hetero-EF cathode. The FeNi3@C (Fe/Ni molar ratio of 1:3) based hetero-EF system exhibited 8.2 times faster OTC removal rate than that of anodic oxidation and possessed many advantages such as excellent OTC degradation efficiency (95.4% within 90 min), broad environmental adaptability (satisfactory treatment performance for multiple antibiotics under various actual water matrixes), good stability and reusability, and significant toxicity reduction. The superior hetero-EF catalytic performance was mainly attributed to: 1) porous carbon and Ni existence were both conducive to the in-situ generation of H2O2 from dissolved O2; 2) the synergistic effects of bimetals together with electron transfer from the cathode promoted the regeneration of ≡ FeII/NiII, thereby accelerating the production of reactive oxygen species; 3) the unique nanosheet structure derived from the precursor two-dimensional Fe-Ni MOFs enhanced the accessibility of active sites. This work presented a promising hetero-EF cathode for the electrocatalytic treatment of antibiotic-containing wastewaters.
Collapse
Affiliation(s)
- Enyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Tong Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tseren-Ochir Soyol-Erdene
- Department of Environmental and Forest Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Ochirkhuyag Bayanjargal
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Yuqi Zuo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
6
|
Yu J, Deng W, Huang X, Zhao M, Li X, Zhang T, Pan B. Intramolecular generation of endogenous Cu(III) for selectively self-catalytic degradation of Cu(II)-EDTA from wastewater by UV/peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133521. [PMID: 38232554 DOI: 10.1016/j.jhazmat.2024.133521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
HO•/SO4•--based advanced oxidation processes for the decomplexation of heavy metal-organic complexes usually encounter poor efficiency in real scenarios. Herein, we reported an interesting self-catalyzed degradation of Cu(II)-EDTA with high selectivity in UV/peroxymonosulfate (PMS). Chemical probing experiments and competitive kinetic analysis quantitatively revealed the crucial role of in situ formed Cu(III). The Cu(III) species not only oxidized Cu(II)-EDTA rapidly at ∼3 × 107 M-1 s-1, but also exhibited 2-3 orders of magnitude higher steady-state concentration than HO•/SO4•-, leading to highly efficient and selective degradation of Cu(II)-EDTA even in complex matrices. The ternary Cu(II)-OOSO3- complexes derived from Cu(II)-EDTA decomposition could generate Cu(III) in situ via the Cu(II)-Cu(I)-Cu(III)-Cu(II) cycle involving intramolecular electron transfer. This method was also applicable to various Cu(II) complexes in real electroplating wastewater, demonstrating higher energy efficiency than commonly studied UV-based AOPs. This study provids a proof of concept for efficient decomplexation through activating complexed heavy metals into endogenous reactive species.
Collapse
Affiliation(s)
- Junyi Yu
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei Deng
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Min Zhao
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Sun W, Li J, Chen Z, Wang S, Lichtfouse E, Liu H. Decomposition of metal-organic complexes and metal recovery in wastewater: A systematic review and meta-synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169582. [PMID: 38154646 DOI: 10.1016/j.scitotenv.2023.169582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Metals are rarely found as free ions in natural and anthropogenic environments, but they are often associated with organic matter and minerals. Under the context of circular economy, metals should be recycled, yet they are difficult to extract for their complex forms in real situations. Based on the protocols of review methodology and the analysis of VOS viewer, there are few reviews on the properties of metal-organic complexes, decomplexation methods, the effect of coexisting ions, the pH influence, and metal recovery methods for the increasingly complicated metal-organic complexes wastewater. Conventional treatment methods such as flocculation, adsorption, biological degradation, and ion exchange fail to decompose metal-organic complexes completely without causing secondary pollution in wastewater. To enhance comprehension of the behavior and morphology exhibited by metal-organic complexes within aqueous solutions, we presented the molecular structure and properties of metal-organic complexes, the decomplexation mechanisms that encompassed both radical and non-radical oxidizing species, including hydroxyl radical (OH), sulfate radical (SO˙4-), superoxide radical (O˙2-), hydrogen peroxide (H2O2), ozone (O3), and singlet oxygen (1O2). More importantly, we reviewed novel aspects that have not been covered by previous reviews considering the impact of operational parameters and coexisting ions. Finally, the potential avenues and challenges were proposed for future research.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ziang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuwen Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
8
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
9
|
Body N, Bevernaegie R, Lefebvre C, Jabin I, Hermans S, Riant O, Troian-Gautier L. Photo-Catalyzed α-Arylation of Enol Acetate Using Recyclable Silica-Supported Heteroleptic and Homoleptic Copper(I) Photosensitizers. Chemistry 2023; 29:e202301212. [PMID: 37582678 DOI: 10.1002/chem.202301212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Earth-abundant photosensitizers are highly sought after for light-mediated applications, such as photoredox catalysis, depollution and energy conversion schemes. Homoleptic and heteroleptic copper(I) complexes are promising candidates in this field, as copper is abundant and the corresponding complexes are easily obtained in smooth conditions. However, some heteroleptic copper(I) complexes suffer from low (photo)stability that leads to the gradual formation of the corresponding homoleptic complex. Such degradation pathways are detrimental, especially when recyclability is desired. This study reports a novel approach for the heterogenization of homoleptic and heteroleptic Cu complexes on silica nanoparticles. In both cases, the photophysical properties upon surface immobilization were only slightly affected. Excited-state quenching with aryl diazonium derivatives occurred efficiently (108 -1010 M-1 s-1 ) with heterogeneous and homogeneous photosensitizers. Moderate but almost identical yields were obtained for the α-arylation of enol acetate using the homoleptic complex in homogeneous or heterogeneous conditions. Importantly, the silica-supported photocatalysts were recycled with moderate loss in photoactivity over multiple experiments. Transient absorption spectroscopy confirmed that excited-state electron transfer occurred from the homogeneous and heterogeneous homoleptic copper(I) complexes to aryl diazonium derivatives, generating the corresponding copper(II) center that persisted for several hundreds of microseconds, compatible with photoredox catalysis applications.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Robin Bevernaegie
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Xue Y, Jia Y, Liu S, Yuan S, Ma R, Ma Q, Fan J, Zhang WX. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132106. [PMID: 37506648 DOI: 10.1016/j.jhazmat.2023.132106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shiyin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Raner Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
11
|
Han JH, Bae J, Lim J, Jwa E, Nam JY, Hwang KS, Jeong N, Choi J, Kim H, Jeung YC. Acidification-based direct electrolysis of treated wastewater for hydrogen production and water reuse. Heliyon 2023; 9:e20629. [PMID: 37860540 PMCID: PMC10582299 DOI: 10.1016/j.heliyon.2023.e20629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
This report describes the direct electrolysis of treated wastewater (as a catholyte) to produce hydrogen and potentially reuse the water. To suppress the negative shift of the cathodic potential due to an increase in pH by the hydrogen evolution reaction (HER), the treated wastewater is acidified using the synergetic effect of protons generated from the bipolar membrane and inorganic precipitation occurred at the surface of the cathode during the HER. Natural seawater, as an accessible source for Mg2+ ions, was added to the treated wastewater because the concentration of Mg2+ ions contained in the original wastewater was too low for acidification to occur. The mixture of treated wastewater with seawater was acidified to pH 3, allowing the initial cathode potential to be maintained for more than 100 h. The amount of inorganic precipitates formed on the cathode surface is greater than that in the control case (adding 0.5 M NaCl instead of seawater) but does not adversely affect the cathodic potential and Faradaic efficiency for H2 production. Additionally, it was confirmed that less organic matter was adsorbed to the inorganic deposits under acidic conditions. These indicate that acidification plays an important role in improving the performance and stability of low-grade water electrolysis. Considering that the treated wastewater is discharged near the ocean, acidification-based electrolysis of the effluent with seawater can be a water reuse technology for green hydrogen production, enhancing water resilience and contributing to the circular economy of water resources.
Collapse
Affiliation(s)
- Ji-Hyung Han
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Jeongwook Bae
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Joohyun Lim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Eunjin Jwa
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Joo-Youn Nam
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Kyo Sik Hwang
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Namjo Jeong
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Jiyeon Choi
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Hanki Kim
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Youn-Cheul Jeung
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| |
Collapse
|
12
|
Weng H, Wang Y, Li F, Muroya Y, Yamashita S, Cheng S. Recovery of platinum group metal resources from high-level radioactive liquid wastes by non-contact photoreduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131852. [PMID: 37331059 DOI: 10.1016/j.jhazmat.2023.131852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Recovery of platinum group metals (PGMs) including palladium (Pd), rhodium (Rh), and ruthenium (Ru) from high-level radioactive liquid waste (HLLW) possesses enormous environmental and economic benefits. A non-contact photoreduction method was herein developed to selectively recover each PGM from HLLW. Soluble Pd(II), Rh(III), and Ru(III) ions were reduced to insoluble zero-valent metals and separated from simulated HLLW containing neodymium (Nd) as a representative for lanthanides, another main component in HLLW. Detailed investigation on the photoreduction of different PGMs revealed that Pd(II) could be reduced under 254- or 300-nm UV exposure using either ethanol or isopropanol as reductants. Only 300-nm UV light enabled the reduction of Rh(III) in the presence of ethanol or isopropanol. Ru(III) was the most difficult to reduce, which was only realized by 300-nm UV illumination in isopropanol solution. The effects of pH was also studied, suggesting that lower pH favored the separation of Rh(III) but hindered the reduction of Pd(II) and Ru(III). A delicate three-step process was accordingly designed to achieve the selective recovery of each PGM from simulated HLLW. Pd(II) was reduced by 254-nm UV light with the help of ethanol in the first step. Then Rh(III) was reduced by 300-UV light in the second step after the pH was adjusted to 0.5 to suppress the Ru(III) reduction. In the third step, Ru(III) was reduced by 300-nm UV light after isopropanol was added and the pH was adjusted to 3.2. The separation ratios of Pd, Rh, and Ru exceeded 99.8%, 99.9%, and 90.0%, respectively. Meanwhile, all Nd(III) still remained in the simulated HLLW. The separation coefficients between Pd/Rh and Rh/Ru exceeded 56,000 and 75,000, respectively. This work may provide an alternative method to recover PGMs from HLLW, which minimize the secondary radioactive wastes compared with other approaches.
Collapse
Affiliation(s)
- Hanqin Weng
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Beam Material Science, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan.
| | - Yi Wang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Reactor Operation and Application Research Sub-Institute, Nuclear Power Institute of China, Chengdu, Sichuan 610041, China
| | - Fuhai Li
- Suzhou Nuclear Power Research Institute Co. Ltd., Suzhou, Jiangsu 215004, China
| | - Yusa Muroya
- Department of Beam Material Science, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan; Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 4-7-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
13
|
Costa JM. Considerations on Electrochemical Technologies for Water Purification and Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6140. [PMID: 37372727 DOI: 10.3390/ijerph20126140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Water scarcity and pollution are global issues caused by factors, such as population growth, industrialization, and the utilization of water resources [...].
Collapse
Affiliation(s)
- Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| |
Collapse
|
14
|
Du J, Xing W, Yu J, Feng J, Tang L, Tang W. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe 2/mesoporous carbon hollow spheres. WATER RESEARCH 2023; 235:119831. [PMID: 36893590 DOI: 10.1016/j.watres.2023.119831] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Transition-metal dichalcogenides can be used for capacitive deionization (CDI) via pseudocapacitive ion intercalation/de-intercalation due to their unique two-dimensional (2D) laminar structure. MoS2 has been extensively studied in the hybrid capacitive deionization (HCDI), but the desalination performance of MoS2-based electrodes remains only 20-35 mg g-1 on average. Benefiting from the higher conductivity and larger layer spacing of MoSe2 than MoS2, it is expected that MoSe2 would exhibit a superior HCDI desalination performance. Herein, for the first time, we explored the use of MoSe2 in HCDI and synthesized a novel MoSe2/MCHS composite material by utilizing mesoporous carbon hollow spheres (MCHS) as the growth substrate to inhibit the aggregation and improve the conductivity of MoSe2. The as-obtained MoSe2/MCHS presented unique 2D/3D interconnected architectures, allowing for synergistic effects of intercalation pseudocapacitance and electrical double layer capacitance (EDLC). An excellent salt adsorption capacity of 45.25 mg g- 1 and a high salt removal rate of 7.75 mg g- 1 min-1 were achieved in 500 mg L- 1 NaCl feed solution at an applied voltage of 1.2 V in batch-mode tests. Moreover, the MoSe2/MCHS electrode exhibited outstanding cycling performance and low energy consumption, making it suitable for practical applications. This work demonstrates the promising application of selenides in CDI and provides new insights for ration design of high-performance composite electrode materials.
Collapse
Affiliation(s)
- Jiaxin Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Wenle Xing
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Jiaqi Yu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jing Feng
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
15
|
Liu Y, Lian R, Wu X, Dai L, Ding J, Wu X, Ye X, Chen R, Ding R, Liu J, Van der Bruggen B. Nickel recovery from electroplating sludge via bipolar membrane electrodialysis. J Colloid Interface Sci 2023; 637:431-440. [PMID: 36716667 DOI: 10.1016/j.jcis.2023.01.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
In this study, nickel (Ni) was recovered from electroplating sludge in the form of Ni(OH)2 using a bipolar membrane electrodialysis (BMED) system. The results showed that the H+ generated by the bipolar membrane could effectively desorb Ni from the sludge to the solution and the solution pH considerably affected Ni desorption. The desorption process can be described using the first-order kinetic model. The current density and solid/liquid ratio (m/v) considerably affected Ni recovery. Moreover, 100% of Ni was removed from the electroplating sludge and 93.5% of Ni was recovered after 28 h under a current density of 20 mA/cm2, a solid/liquid ratio of 1.0:15 and an electroplating-sludge particle size of 100 mesh. As the number of electroplating compartments increased from one to two and three, the current efficiency for recovering Ni changed from 12.1% to 11.8% and 11.9%, respectively, and the specific energy consumption decreased from 0.064 to 0.048 and 0.039 kW·h/g, respectively. Fourier-transform infrared spectroscopy and Raman spectroscopy showed that the precipitate obtained in this study is similar to commercial Ni(OH)2 and the purity of Ni(OH)2 in the obtained precipitate was 79%. Thus, the results showed that the BMED system is effective for recovering Ni from electroplating sludge.
Collapse
Affiliation(s)
- Yaoxing Liu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China.
| | - Rui Lian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Xiaoyun Wu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fujian Province, Fuzhou 350007, China
| | - Liping Dai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jianguo Ding
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Xiaoyu Wu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Xin Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Riyao Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Rui Ding
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Jianxi Liu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
16
|
Loza S, Loza N, Kovalchuk N, Romanyuk N, Loza J. Comparative Study of Different Ion-Exchange Membrane Types in Diffusion Dialysis for the Separation of Sulfuric Acid and Nickel Sulfate. MEMBRANES 2023; 13:396. [PMID: 37103823 PMCID: PMC10145838 DOI: 10.3390/membranes13040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The possibility of using various types of ion-exchange membranes in diffusion dialysis for the separation of sulfuric acid and nickel sulfate has been evaluated. The process of the dialysis separation of a real waste solution from an electroplating facility containing 252.3 g/L of sulfuric acid, 20.9 g/L of nickel ions and small amounts of zinc, iron, copper ions, etc. has been studied. Heterogeneous cation-exchange membrane containing sulfonic groups and heterogeneous anion-exchange membranes with different thicknesses (from 145 μm to 550 μm) and types of fixed groups (four samples with quaternary ammonium base and one sample with secondary and tertiary amines) have been used. The diffusion fluxes of sulfuric acid, nickel sulfate, and the total and osmotic fluxes of the solvent have been determined. The use of a cation-exchange membrane does not allow the separation of the components, since the fluxes of both components are low and comparable in magnitude. The use of anion-exchange membranes makes it possible to efficiently separate sulfuric acid and nickel sulfate. Anion-exchange membranes with quaternary ammonium groups are more effective in the diffusion dialysis process, while the thin membrane turns out to be the most effective.
Collapse
|
17
|
Liu Y, Lv M, Wu X, Ding J, Dai L, Xue H, Ye X, Chen R, Ding R, Liu J, Van der Bruggen B. Recovery of copper from electroplating sludge using integrated bipolar membrane electrodialysis and electrodeposition. J Colloid Interface Sci 2023; 642:29-40. [PMID: 37001455 DOI: 10.1016/j.jcis.2023.03.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Electroplating sludge, though a hazardous waste, is a valuable resource as it contains a large amount of precious metals. In this study, copper was recovered from the electroplating sludge using a technology that integrates bipolar membrane electrodialysis (BMED) and electrodeposition. The experimental results showed that Cu2+ in the electroplating sludge was successfully separated and concentrated in the BMED system without adding any chemical reagents; the concentrated Cu2+ was recovered in the form of copper foil in an electrodeposition system. Current density clearly affected the Cu2+ separation and concentration in the BMED system; the current density, solution pH and Cu2+ concentration drastically affected the Cu2+ electrodeposition ratio and the morphology and purity of the obtained copper foil. Under the optimised experimental conditions, 96.4% of Cu2+ was removed from the electroplating sludge and 65.4% of Cu2+ was recovered in the foil form. On increasing the number of electroplating sludge compartments from one to two and three, the current efficiency for recovering Cu2+ increased from 17.4% to 28.5% and 35.2%, respectively, and the specific energy consumption decreased from 11.3 to 6.7 and 5.3 kW h/kg of copper, respectively. The purity of the copper foil was higher than 99.5%. Thus, the integrated technology can be regarded as an effective method for recovering copper from electroplating sludge.
Collapse
|
18
|
Loza S, Loza N, Korzhov A, Romanyuk N, Kovalchuk N, Melnikov S. Hybrid Membrane Technology for Acid Recovery from Wastewater in Coated Steel Wire Production: A Pilot Scale Study. MEMBRANES 2022; 12:membranes12121196. [PMID: 36557103 PMCID: PMC9785984 DOI: 10.3390/membranes12121196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 06/02/2023]
Abstract
In the present study, the problem of sulfuric acid recycling from spent copper plating solution was solved using a hybrid membrane technology, including diffusion dialysis and electrodialysis. A real solution from the production of copper-coated steel wire, containing 1.45 mol/L of sulfuric acid, 0.67 mol/L of ferrous sulfate and 0.176 mol/L of copper sulfate, was processed. Diffusion dialysis with anion-exchange membranes was used to separate sulfuric acid and salts of heavy metals. Then, purified dilute sulfuric acid was concentrated by electrodialysis. The energy consumption for sulfuric acid electrodialysis concentration at a current density of 400 A/m2 was 162 W·h/mol, with a current efficiency of 16%. After processing according to the hybrid membrane scheme, the solution contained 1.13 mol/L sulfuric acid, 0.077 mol/L ferrous sulfate and 0.022 mol/L copper sulfate. According to established requirements, the solution of a copper plating bath had to contain from 0.75 to 1.25 M sulfuric acid, 0.16-0.18 M of copper sulfate and ferrous sulfate not more than 0.15 M. The resulting acid solution with a small amount of ferrous sulfate and copper sulfate could be used to prepare a copper plating bath solution.
Collapse
|
19
|
Sakr AK, Abdel Aal MM, Abd El-Rahem KA, Allam EM, Abdel Dayem SM, Elshehy EA, Hanfi MY, Alqahtani MS, Cheira MF. Characteristic Aspects of Uranium(VI) Adsorption Utilizing Nano-Silica/Chitosan from Wastewater Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213866. [PMID: 36364642 PMCID: PMC9658519 DOI: 10.3390/nano12213866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 05/13/2023]
Abstract
A new nano-silica/chitosan (SiO2/CS) sorbent was created using a wet process to eliminate uranium(VI) from its solution. Measurements using BET, XRD, EDX, SEM, and FTIR were utilized to analyze the production of SiO2/CS. The adsorption progressions were carried out by pH, SiO2/CS dose, temperature, sorbing time, and U(VI) concentration measurements. The optimal condition for U(VI) sorption (165 mg/g) was found to be pH 3.5, 60 mg SiO2/CS, for 50 min of sorbing time, and 200 mg/L U(VI). Both the second-order sorption kinetics and Langmuir adsorption model were observed to be obeyed by the ability of SiO2/CS to eradicate U(VI). Thermodynamically, the sorption strategy was a spontaneous reaction and exothermic. According to the findings, SiO2/CS had the potential to serve as an effectual sorbent for U(VI) displacement.
Collapse
Affiliation(s)
- Ahmed K. Sakr
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
- Correspondence: (A.K.S.); (M.F.C.)
| | | | | | - Eman M. Allam
- Nuclear Materials Authority, El Maadi, Cairo 11381, Egypt
| | | | | | - Mohamed Y. Hanfi
- Nuclear Materials Authority, El Maadi, Cairo 11381, Egypt
- Institute of Physics and Technology, Ural Federal University, St. Mira, 19, 620002 Yekaterinburg, Russia
| | - Mohammed S. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester LE1 7RH, UK
| | - Mohamed F. Cheira
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
- Correspondence: (A.K.S.); (M.F.C.)
| |
Collapse
|